Alpha-Qwerty Cipher: an Extended Vigenère Cipher
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Download
International Journal of Integrated Engineering: Special Issue 2018: Data Information Engineering, Vol. 10 No. 6 (2018) p. 183-192. © Penerbit UTHM DOI: https://doi.org/10.30880/ijie.2018.10.06.026 Analysis of Four Historical Ciphers Against Known Plaintext Frequency Statistical Attack Chuah Chai Wen1*, Vivegan A/L Samylingam2, Irfan Darmawan3, P.Siva Shamala A/P Palaniappan4, Cik Feresa Mohd. Foozy5, Sofia Najwa Ramli6, Janaka Alawatugoda7 1,2,4,5,6Information Security Interest Group (ISIG), Faculty Computer Science and Information Technology University Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia E-mail: [email protected], [email protected], {shamala, feresa, sofianajwa}@uthm.edu.my 3School of Industrial Engineering, Telkom University, 40257 Bandung, West Java, Indonesia 7Department of Computer Engineering, University of Peradeniya, Sri Lanka E-mail: [email protected] Received 28 June 2018; accepted 5August 2018, available online 24 August 2018 Abstract: The need of keeping information securely began thousands of years. The practice to keep the information securely is by scrambling the message into unreadable form namely ciphertext. This process is called encryption. Decryption is the reverse process of encryption. For the past, historical ciphers are used to perform encryption and decryption process. For example, the common historical ciphers are Hill cipher, Playfair cipher, Random Substitution cipher and Vigenère cipher. This research is carried out to examine and to analyse the security level of these four historical ciphers by using known plaintext frequency statistical attack. The result had shown that Playfair cipher and Hill cipher have better security compare with Vigenère cipher and Random Substitution cipher. -
COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere a Long & Rich History
COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere A Long & Rich History Examples: • ~50 B.C. – Caesar Cipher • 1587 – Babington Plot • WWI – Zimmermann Telegram • WWII – Enigma • 1976/77 – Public Key Cryptography • 1990’s – Widespread adoption on the Internet Increasingly Important COS 433 Practice Theory Inherent to the study of crypto • Working knowledge of fundamentals is crucial • Cannot discern security by experimentation • Proofs, reductions, probability are necessary COS 433 What you should expect to learn: • Foundations and principles of modern cryptography • Core building blocks • Applications Bonus: • Debunking some Hollywood crypto • Better understanding of crypto news COS 433 What you will not learn: • Hacking • Crypto implementations • How to design secure systems • Viruses, worms, buffer overflows, etc Administrivia Course Information Instructor: Mark Zhandry (mzhandry@p) TA: Fermi Ma (fermima1@g) Lectures: MW 1:30-2:50pm Webpage: cs.princeton.edu/~mzhandry/2017-Spring-COS433/ Office Hours: please fill out Doodle poll Piazza piaZZa.com/princeton/spring2017/cos433mat473_s2017 Main channel of communication • Course announcements • Discuss homework problems with other students • Find study groups • Ask content questions to instructors, other students Prerequisites • Ability to read and write mathematical proofs • Familiarity with algorithms, analyZing running time, proving correctness, O notation • Basic probability (random variables, expectation) Helpful: • Familiarity with NP-Completeness, reductions • Basic number theory (modular arithmetic, etc) Reading No required text Computer Science/Mathematics Chapman & Hall/CRC If you want a text to follow along with: Second CRYPTOGRAPHY AND NETWORK SECURITY Cryptography is ubiquitous and plays a key role in ensuring data secrecy and Edition integrity as well as in securing computer systems more broadly. -
"Cyber Security" Activity
Cyber Security Keeping your information safe Standards: (Core ideas related to the activity) NGSS: ETS1.B – A solution needs to be tested and them modified on the basis of the test results in order to improve it MS-PS4.C – Digitized signals sent as wave pulses are a more reliable way to encode and transmit information CC Math: 5.OA-3 – Analyze patterns and relationships K12CS: 3-5 CS-Devices – Computing devices may be connected to other devices or components to extend their capabilities. Connections can take many forms such as physical or wireless. 3-5 N&I-Cybersecurity – Information can be protected using various security measures. These measures can be physical or digital 3-5 IoC-Culture – The development and modification of computing technology is driven by people’s needs and wants and can affect different groups differently 6-8 CS-Devices – The interaction between humans and computing devices presents advantages, disadvantages, and unintended consequences. The study of human-computer interaction can improve the design of devices and extend the abilities of humans. 6-8 N&I-Cybersecurity – The information sent and received across networks can be protected from unauthorized access and modification in a variety of ways, such as encryption to maintain its confidentiality and restricted access to maintain its integrity. Security measures to safeguard online information proactively address the threat of breaches to personal and private data 6-8 A&P-Algorithms – Algorithms affect how people interact with computers and the way computers respond. People design algorithms that are generalizable to many situations 6-8 IoC-Culture – Advancements in computing technology change people’s everyday activities. -
The Mathemathics of Secrets.Pdf
THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6 -
An Investigation Into Mathematical Cryptography with Applications
Project Report BSc (Hons) Mathematics An Investigation into Mathematical Cryptography with Applications Samuel Worton 1 CONTENTS Page: 1. Summary 3 2. Introduction to Cryptography 4 3. A History of Cryptography 6 4. Introduction to Modular Arithmetic 12 5. Caesar Cipher 16 6. Affine Cipher 17 7. Vigenère Cipher 19 8. Autokey Cipher 21 9. One-Time Pad 22 10. Pohlig-Hellman Encryption 24 11. RSA Encryption 27 12. MATLAB 30 13. Conclusion 35 14. Glossary 36 15. References 38 2 1. SUMMARY AND ACKNOWLEDGEMENTS In this report, I will explore the history of cryptography, looking at the origins of cryptosystems in the BC years all the way through to the current RSA cryptosystem which governs the digital era we live in. I will explain the mathematics behind cryptography and cryptanalysis, which is largely based around number theory and in particular, modular arithmetic. I will relate this to several famous, important and relevant cryptosystems, and finally I will use the MATLAB program to write codes for a few of these cryptosystems. I would like to thank Mr. Kuldeep Singh for his feedback and advice during all stages of my report, as well as enthusiasm towards the subject. I would also like to thank Mr. Laurence Taylor for generously giving his time to help me in understanding and producing the MATLAB coding used towards the end of this investigation. Throughout this report I have been aided by the book ‘Elementary Number Theory’ by Mr. David M. Burton, amongst others, which was highly useful in refreshing my number theory knowledge and introducing me to the concepts of cryptography; also Mr. -
Network Security
Cristina Nita-Rotaru CS6740: Network security Additional material: Cryptography 1: Terminology and classic ciphers Readings for this lecture Required readings: } Cryptography on Wikipedia Interesting reading } The Code Book by Simon Singh 3 Cryptography The science of secrets… } Cryptography: the study of mathematical techniques related to aspects of providing information security services (create) } Cryptanalysis: the study of mathematical techniques for attempting to defeat information security services (break) } Cryptology: the study of cryptography and cryptanalysis (both) 4 Cryptography Basic terminology in cryptography } cryptography } plaintexts } cryptanalysis } ciphertexts } cryptology } keys } encryption } decryption plaintext ciphertext plaintext Encryption Decryption Key_Encryption Key_Decryption 5 Cryptography Cryptographic protocols } Protocols that } Enable parties } Achieve objectives (goals) } Overcome adversaries (attacks) } Need to understand } Who are the parties and the context in which they act } What are the goals of the protocols } What are the capabilities of adversaries 6 Cryptography Cryptographic protocols: Parties } The good guys } The bad guys Alice Carl Bob Eve Introduction of Alice and Bob Check out wikipedia for a longer attributed to the original RSA paper. list of malicious crypto players. 7 Cryptography Cryptographic protocols: Objectives/Goals } Most basic problem: } Ensure security of communication over an insecure medium } Basic security goals: } Confidentiality (secrecy, confidentiality) } Only the -
Substitution Ciphers
Foundations of Computer Security Lecture 40: Substitution Ciphers Dr. Bill Young Department of Computer Sciences University of Texas at Austin Lecture 40: 1 Substitution Ciphers Substitution Ciphers A substitution cipher is one in which each symbol of the plaintext is exchanged for another symbol. If this is done uniformly this is called a monoalphabetic cipher or simple substitution cipher. If different substitutions are made depending on where in the plaintext the symbol occurs, this is called a polyalphabetic substitution. Lecture 40: 2 Substitution Ciphers Simple Substitution A simple substitution cipher is an injection (1-1 mapping) of the alphabet into itself or another alphabet. What is the key? A simple substitution is breakable; we could try all k! mappings from the plaintext to ciphertext alphabets. That’s usually not necessary. Redundancies in the plaintext (letter frequencies, digrams, etc.) are reflected in the ciphertext. Not all substitution ciphers are simple substitution ciphers. Lecture 40: 3 Substitution Ciphers Caesar Cipher The Caesar Cipher is a monoalphabetic cipher in which each letter is replaced in the encryption by another letter a fixed “distance” away in the alphabet. For example, A is replaced by C, B by D, ..., Y by A, Z by B, etc. What is the key? What is the size of the keyspace? Is the algorithm strong? Lecture 40: 4 Substitution Ciphers Vigen`ere Cipher The Vigen`ere Cipher is an example of a polyalphabetic cipher, sometimes called a running key cipher because the key is another text. Start with a key string: “monitors to go to the bathroom” and a plaintext to encrypt: “four score and seven years ago.” Align the two texts, possibly removing spaces: plaintext: fours corea ndsev enyea rsago key: monit orsto gotot hebat hroom ciphertext: rcizl qfkxo trlso lrzet yjoua Then use the letter pairs to look up an encryption in a table (called a Vigen`ere Tableau or tabula recta). -
Cryptanalysis of Selected Block Ciphers
Downloaded from orbit.dtu.dk on: Sep 24, 2021 Cryptanalysis of Selected Block Ciphers Alkhzaimi, Hoda A. Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Alkhzaimi, H. A. (2016). Cryptanalysis of Selected Block Ciphers. Technical University of Denmark. DTU Compute PHD-2015 No. 360 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Cryptanalysis of Selected Block Ciphers Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Department of Mathematics and Computer Science-COMPUTE in The Technical University of Denmark by Hoda A.Alkhzaimi December 2014 To my Sanctuary in life Bladi, Baba Zayed and My family with love Title of Thesis Cryptanalysis of Selected Block Ciphers PhD Project Supervisor Professor Lars R. Knudsen(DTU Compute, Denmark) PhD Student Hoda A.Alkhzaimi Assessment Committee Associate Professor Christian Rechberger (DTU Compute, Denmark) Professor Thomas Johansson (Lund University, Sweden) Professor Bart Preneel (Katholieke Universiteit Leuven, Belgium) Abstract The focus of this dissertation is to present cryptanalytic results on selected block ci- phers. -
Cryptology: an Historical Introduction DRAFT
Cryptology: An Historical Introduction DRAFT Jim Sauerberg February 5, 2013 2 Copyright 2013 All rights reserved Jim Sauerberg Saint Mary's College Contents List of Figures 8 1 Caesar Ciphers 9 1.1 Saint Cyr Slide . 12 1.2 Running Down the Alphabet . 14 1.3 Frequency Analysis . 15 1.4 Linquist's Method . 20 1.5 Summary . 22 1.6 Topics and Techniques . 22 1.7 Exercises . 23 2 Cryptologic Terms 29 3 The Introduction of Numbers 31 3.1 The Remainder Operator . 33 3.2 Modular Arithmetic . 38 3.3 Decimation Ciphers . 40 3.4 Deciphering Decimation Ciphers . 42 3.5 Multiplication vs. Addition . 44 3.6 Koblitz's Kid-RSA and Public Key Codes . 44 3.7 Summary . 48 3.8 Topics and Techniques . 48 3.9 Exercises . 49 4 The Euclidean Algorithm 55 4.1 Linear Ciphers . 55 4.2 GCD's and the Euclidean Algorithm . 56 4.3 Multiplicative Inverses . 59 4.4 Deciphering Decimation and Linear Ciphers . 63 4.5 Breaking Decimation and Linear Ciphers . 65 4.6 Summary . 67 4.7 Topics and Techniques . 67 4.8 Exercises . 68 3 4 CONTENTS 5 Monoalphabetic Ciphers 71 5.1 Keyword Ciphers . 72 5.2 Keyword Mixed Ciphers . 73 5.3 Keyword Transposed Ciphers . 74 5.4 Interrupted Keyword Ciphers . 75 5.5 Frequency Counts and Exhaustion . 76 5.6 Basic Letter Characteristics . 77 5.7 Aristocrats . 78 5.8 Summary . 80 5.9 Topics and Techniques . 81 5.10 Exercises . 81 6 Decrypting Monoalphabetic Ciphers 89 6.1 Letter Interactions . 90 6.2 Decrypting Monoalphabetic Ciphers . -
A Complete Bibliography of Publications in Cryptologia
A Complete Bibliography of Publications in Cryptologia Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 04 September 2021 Version 3.64 Title word cross-reference 10016-8810 [?, ?]. 1221 [?]. 125 [?]. 15.00/$23.60.0 [?]. 15th [?, ?]. 16th [?]. 17-18 [?]. 18 [?]. 180-4 [?]. 1812 [?]. 18th (t; m)[?]. (t; n)[?, ?]. $10.00 [?]. $12.00 [?, ?, ?, ?, ?]. 18th-Century [?]. 1930s [?]. [?]. 128 [?]. $139.99 [?]. $15.00 [?]. $16.95 1939 [?]. 1940 [?, ?]. 1940s [?]. 1941 [?]. [?]. $16.96 [?]. $18.95 [?]. $24.00 [?]. 1942 [?]. 1943 [?]. 1945 [?, ?, ?, ?, ?]. $24.00/$34 [?]. $24.95 [?, ?]. $26.95 [?]. 1946 [?, ?]. 1950s [?]. 1970s [?]. 1980s [?]. $29.95 [?]. $30.95 [?]. $39 [?]. $43.39 [?]. 1989 [?]. 19th [?, ?]. $45.00 [?]. $5.95 [?]. $54.00 [?]. $54.95 [?]. $54.99 [?]. $6.50 [?]. $6.95 [?]. $69.00 2 [?, ?]. 200/220 [?]. 2000 [?]. 2004 [?, ?]. [?]. $69.95 [?]. $75.00 [?]. $89.95 [?]. th 2008 [?]. 2009 [?]. 2011 [?]. 2013 [?, ?]. [?]. A [?]. A3 [?, ?]. χ [?]. H [?]. k [?, ?]. M 2014 [?]. 2017 [?]. 2019 [?]. 20755-6886 [?, ?]. M 3 [?]. n [?, ?, ?]. [?]. 209 [?, ?, ?, ?, ?, ?]. 20th [?]. 21 [?]. 22 [?]. 220 [?]. 24-Hour [?, ?, ?]. 25 [?, ?]. -Bit [?]. -out-of- [?, ?]. -tests [?]. 25.00/$39.30 [?]. 25.00/839.30 [?]. 25A1 [?]. 25B [?]. 26 [?, ?]. 28147 [?]. 28147-89 000 [?]. 01Q [?, ?]. [?]. 285 [?]. 294 [?]. 2in [?, ?]. 2nd [?, ?, ?, ?]. 1 [?, ?, ?, ?]. 1-4398-1763-4 [?]. 1/2in [?, ?]. 10 [?]. 100 [?]. 10011-4211 [?]. 3 [?, ?, ?, ?]. 3/4in [?, ?]. 30 [?]. 310 1 2 [?, ?, ?, ?, ?, ?, ?]. 312 [?]. 325 [?]. 3336 [?, ?, ?, ?, ?, ?]. affine [?]. [?]. 35 [?]. 36 [?]. 3rd [?]. Afluisterstation [?, ?]. After [?]. Aftermath [?]. Again [?, ?]. Against 4 [?]. 40 [?]. 44 [?]. 45 [?]. 45th [?]. 47 [?]. [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Age 4in [?, ?]. [?, ?]. Agencies [?]. Agency [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. -
CS1132 Fall 2013 Assignment 2 Due 11/21 11:59Pm 1 Cryptography Fun!
CS1132 Fall 2013 Assignment 2 due 11/21 11:59pm Adhere to the Code of Academic Integrity. You may discuss background issues and general strategies with others and seek help from course staff, but the implementations that you submit must be your own. In particular, you may discuss general ideas with others but you may not work out the detailed solutions with others. It is never OK for you to see or hear another student's code and it is never OK to copy code from published/Internet sources. If you feel that you cannot complete the assignment on you own, seek help from the course staff. When submitting your assignment, follow the instructions summarized in Section 4 of this document. Do not use the break or continue statement in any homework or test in CS1132. 1 Cryptography Fun! Just several decades ago, cryptography existed solely in the domain of national governments and large corporations. However, the advent of the Internet and the wide availability of computers have now made cryptography an indispensable part of everyday digital communications. In this part of the assignment, you will implement one well-known classical ciphers: the Vigenere cipher. This ci- phers predates modern cryptography but nonetheless provide a relevant and insightful look at some commonly used cryptography techniques. You will implement it as MATLAB functions that can be used to encrypt and subsequently decrypt messages. The Vigenre cipher is one of the most well-known ciphers of all time. It is a method of encrypting plaintext using a series of different Caesar ciphers based on the letters of the keyword. -
Nomenclators Nomenclator Example Alberti's Cipher Disk
Nomenclators Early code/cipher combination, popular form 1400s-1800s. Philip of Spain (1589, see Kahn): LO = Spain POM = King of Spain 64 = confederation overlined two-digit groups = null + substitution cipher with homophones Nomenclator Example Nomenclator used by Mary, Queen of Scots . in 1586 in the plot against Elizabeth I Taken from Simon Singh. The Code Book. Alberti’s Cipher Disk Invented by Leon Battista Alberti in 1460s. outer disk (fixed) plaintext inner disk (moving) ciphertext Agree on index letter on inner disk. Key: letter corresponding to index letter on outer disk. Key can change during encryption 1 Cipher Disk Examples Let’s choose “K” as index letter. Examples: rRVTZOK aKVtTRCK HKmZMEP Since the key can change, this cipher is no longer monoalphabetic, but polyalphabetic. Are there other ways to use the cipher disk? Johannes Trithemius 1462-1516, Germany Polygraphiae, 1518 First printed book on cryptography. • Ave Maria Cipher • Polyalphabetic substitution • Progressive key Steganographia, 1606 • hidden writing http://diglib.hab.de/drucke/12-3-rhet-2f/start.htm Polygraphiae I The Polygraphiae contains many pages of code. 2 Polygraphiae II: Ave Maria 1st and 2nd page Steganographia http://books.google.com/books?id=bQdC AAAAcAAJ&dq=Trithemius%20Stegano graphia&pg=PR6#v=onepage&q&f=false Polygraphiae III Tabula recta, from the 6th book of the Polygraphiae. • Polyalphabetic substitution • Progressive key The history of information security: a comprehensive handbook, de Leeuw, Bergstra 3 Polygraphiae IV Examples (starting with first alphabet) • Johannes • SUGKESUOWSUN The history of information security: a comprehensive handbook, de Leeuw, Bergstra Modern Tabula Recta More Examples (not from beginning) • XNNN • NUGUV http://commons.wikimedia.org/wiki/File:Vigenere-square.png Giovan Batista Belaso La cifra del.