Repeat Glacier Collapses and Surges in the Amney Machen Mountain Range, Tibet, Possibly Triggered by a Developing Rock-Slope Instability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1961 Climbers Outing in the Icefield Range of the St
the Mountaineer 1962 Entered as second-class matter, April 8, 1922, at Post Office in Seattle, Wash., under the Act of March 3, 1879. Published monthly and semi-monthly during March and December by THE MOUNTAINEERS, P. 0. Box 122, Seattle 11, Wash. Clubroom is at 523 Pike Street in Seattle. Subscription price is $3.00 per year. The Mountaineers To explore and study the mountains, forests, and watercourses of the Northwest; To gather into permanent form the history and traditions of this region; To preserve by the encouragement of protective legislation or otherwise the natural beauty of Northwest America; To make expeditions into these regions in fulfillment of the above purposes; To encourage a spirit of good fellowship among all lovers of outdoor Zif e. EDITORIAL STAFF Nancy Miller, Editor, Marjorie Wilson, Betty Manning, Winifred Coleman The Mountaineers OFFICERS AND TRUSTEES Robert N. Latz, President Peggy Lawton, Secretary Arthur Bratsberg, Vice-President Edward H. Murray, Treasurer A. L. Crittenden Frank Fickeisen Peggy Lawton John Klos William Marzolf Nancy Miller Morris Moen Roy A. Snider Ira Spring Leon Uziel E. A. Robinson (Ex-Officio) James Geniesse (Everett) J. D. Cockrell (Tacoma) James Pennington (Jr. Representative) OFFICERS AND TRUSTEES : TACOMA BRANCH Nels Bjarke, Chairman Wilma Shannon, Treasurer Harry Connor, Vice Chairman Miles Johnson John Freeman (Ex-Officio) (Jr. Representative) Jack Gallagher James Henriot Edith Goodman George Munday Helen Sohlberg, Secretary OFFICERS: EVERETT BRANCH Jim Geniesse, Chairman Dorothy Philipp, Secretary Ralph Mackey, Treasurer COPYRIGHT 1962 BY THE MOUNTAINEERS The Mountaineer Climbing Code· A climbing party of three is the minimum, unless adequate support is available who have knowledge that the climb is in progress. -
Alaska Range
Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Caves, Denuded Caves and Collapse Dolines As Past Hydrological Pattern Indicators of the Grabovica Plateau, the Dinaric Karst (Bosnia and Herzegovina)
RAZPRAVE Dela 49 ● 2018 ● 95–111 CAVES, DENUDED CAVES AND COLLAPSE DOLINES AS PAST HYDROLOGICAL PATTERN INDICATORS OF THE GRABOVICA PLATEAU, THE DINARIC KARST (BOSNIA AND HERZEGOVINA) Uroš Stepišnik*, PhD., Aleš Grlj** *Department of Geography, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana ** Institute of Anthropological and Spatial Studies, ZRC SAZU, Novi trg 2, SI-1000 Ljubljana e-mail: [email protected], [email protected] Original scientific article COBISS 1.01 DOI: 10.4312/dela.49.95-111 Abstract The Grabovica Plateau is a corrosion plain in southern Bosnia and Herzegovina. The whole area is characterised by a through-flow karst system, where subsurface streams submerging at Duvanjsko polje are directed towards springs at Livanjsko polje. In this study, we conducted morphographic and morphometric investigation of surface and sub- surface features, especially collapse dolines, denuded caves along with active and inactive cave systems. We interpreted morphogenesis and past hydrologic pattern within the area. Keywords: collapse doline, denuded cave, geomorphology, speleology, hydrology JAME, DENUDIRANE JAME IN UDORNICE KOT KAZALNIKI NEKDA- NJEGA HIDROLOŠKEGA DELOVANJA PLANOTE GRABOVICA (BO- SNIA IN HERCEGOVINA) Izvleček Planota Grabovica je korozijska uravnava v južnem delu Bosne in Hercegovine. Za celot- no območje je značilen pretočni kras, kjer podzemni tokovi, ki ponikajo na Duvanjskem polju, odtekajo v smeri izvirov na Livanjskem polju. V tej raziskavi smo izdelali mor- fografske in morfometrične analize površinskih in podzemskih oblik, predvsem udornic, denudiranih jam ter aktivnih in reliktnih jamskih sistemov. Interpretirali smo morfogene- zo in preteklo hidrološko delovanje proučevanega območja. Ključne besede: udornica, denudirana jama, geomorfologija, speleologija, hidrologija 95 Dela_49_FINAL.indd 95 21.12.2018 11:16:28 Uroš Stepišnik, Aleš Grlj / Dela 49 ● 2018 ● 95–111 1 INTRODUCTION The Dinaric Alps are located in the western Balkan Peninsula almost parallel to the east- ern Adriatic coast. -
Cosmogenic Age Constraints on Post-LGM Catastrophic Rock Slope Failures in the Tatra Mountains (Western Carpathians)
Catena 138 (2016) 52–67 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Cosmogenic age constraints on post-LGM catastrophic rock slope failures in the Tatra Mountains (Western Carpathians) Tomáš Pánek a,ZbyněkEngelb, Pavel Mentlík c,⁎, Régis Braucher d,MichalBřežný a, Václav Škarpich a,AlbertZondervane a Department of Physical Geography and Geoecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic b Department of Physical Geography and Geoecology, Charles University in Prague, Albertov 6, 12843 Praha, Czech Republic c Centre of Biology, Geoscience and Environmental Education, University of West Bohemia, Plzeň, Czech Republic d Aix-Marseille Université, CEREGE, CNRS UM 34, F-13545 Aix-en-Provence, France e Environment and Materials Division, GNS Science, Lower Hutt, New Zealand article info abstract Article history: Although deglaciation is one of the crucial factors controlling the stability of slopes in high mountains, the chro- Received 30 June 2015 nological response of rock slope failure (RSF) to glacier retreat still remains poorly known. Here we provide the Received in revised form 19 October 2015 first cosmogenic (10Be) age constraints on prominent rock avalanches and rockfalls (collectively termed ‘rock Accepted 10 November 2015 slope failures’–RSFs) from the Tatra Mountains, the highest mountain range with the most pronounced glacier Available online xxxx morphology within the Carpathians. Six representative RSFs were selected for surface exposure dating in the Keywords: mountain range. Two sites are situated in the western part with less pronounced local relief and gentler slope Rock slope failures gradient, and four come from the highest eastern part with oversteepened rock slopes. -
A Guide to the Geology of Rocky Mountain National Park, Colorado
A Guide to the Geology of ROCKY MOUNTAIN NATIONAL PARK COLORADO For sale by the Superintendent of Documents, Washington, D. C. Price 15 cents A Guide to the Geology of ROCKY MOUNTAIN NATIONAL PARK [ COLORADO ] By Carroll H. Wegemann Former Regional Geologist, National Park Service UNITED STATES DEPARTMENT OF THE INTERIOR HAROLD L. ICKES, Secretary NATIONAL PARK SERVICE . NEWTON B. DRURY, Director UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1944 Table of Contents PAGE INTRODUCTION in BASIC FACTS ON GEOLOGY 1 THE OLDEST ROCKS OF THE PARK 2 THE FIRST MOUNTAINS 3 The Destruction of the First Mountains 3 NATURE OF PALEOZOIC DEPOSITS INDICATES PRESENCE OF SECOND MOUNTAINS 4 THE ROCKY MOUNTAINS 4 Time and Form of the Mountain Folding 5 Erosion Followed by Regional Uplift 5 Evidences of Intermittent Uplift 8 THE GREAT ICE AGE 10 Continental Glaciers 11 Valley Glaciers 11 POINTS OF INTEREST ALONG PARK ROADS 15 ROAD LOGS 18 Thompson River Entrance to Deer Ridge Junction 18 Deer Ridge Junction to Fall River Pass via Fall River .... 20 Fall River Pass to Poudre Lakes 23 Trail Ridge Road between Fall River Pass and Deer Ridge Junction 24 Deer Ridge Junction to Fall River Entrance via Horseshoe Park 29 Bear Lake Road 29 ILLUSTRATIONS LONGS PEAK FROM BEAR LAKE Front and back covers CHASM FALLS Inside back cover FIGURE PAGE 1. GEOLOGIC TIME SCALE iv 2. LONGS PEAK FROM THE EAST 3 3. PROFILE SECTION ACROSS THE ROCKY MOUNTAINS 5 4. ANCIENT EROSIONAL PLAIN ON TRAIL RIDGE 6 5. ANCIENT EROSIONAL PLAIN FROM FLATTOP MOUNTAIN ... 7 6. VIEW NORTHWEST FROM LONGS PEAK 8 7. -
Brief Communication: Collapse of 4 Mm3 of Ice from a Cirque Glacier in the Central Andes of Argentina
The Cryosphere, 13, 997–1004, 2019 https://doi.org/10.5194/tc-13-997-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina Daniel Falaschi1,2, Andreas Kääb3, Frank Paul4, Takeo Tadono5, Juan Antonio Rivera2, and Luis Eduardo Lenzano1,2 1Departamento de Geografía, Facultad de Filosofía y Letras, Universidad Nacional de Cuyo, Mendoza, 5500, Argentina 2Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza, 5500, Argentina 3Department of Geosciences, University of Oslo, Oslo, 0371, Norway 4Department of Geography, University of Zürich, Zürich, 8057, Switzerland 5Earth Observation research Center, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan Correspondence: Daniel Falaschi ([email protected]) Received: 14 September 2018 – Discussion started: 4 October 2018 Revised: 15 February 2019 – Accepted: 11 March 2019 – Published: 26 March 2019 Abstract. Among glacier instabilities, collapses of large der of up to several 105 m3, with extraordinary event vol- parts of low-angle glaciers are a striking, exceptional phe- umes of up to several 106 m3. Yet the detachment of large nomenon. So far, merely the 2002 collapse of Kolka Glacier portions of low-angle glaciers is a much less frequent pro- in the Caucasus Mountains and the 2016 twin detachments of cess and has so far only been documented in detail for the the Aru glaciers in western Tibet have been well documented. 130 × 106 m3 avalanche released from the Kolka Glacier in Here we report on the previously unnoticed collapse of an the Russian Caucasus in 2002 (Evans et al., 2009), and the unnamed cirque glacier in the Central Andes of Argentina recent 68±2×106 and 83±2×106 m3 collapses of two ad- in March 2007. -
Oregon Geography
Oregon Geography 4th Grade Social Studies Medford School District 549c Created by: Anna Meunier and Sarah Flora Oregon Geography 4th Grade Social Studies Medford School District 549c Table of Contents Oregon Geography Unit Syllabus ........................................................................ 1 Oregon Geography Unit Objectives ..................................................................... 2 Oregon Geography Unit Lesson Plans.................................................................. 3 Print Shop Order ................................................................................................. 4 Oregon Geography Unit Lessons ......................................................................... 6 Oregon Geography Daily Lessons ...................................................................... 19 Lesson #1 ........................................................................................................................................ Lessons #2 & #3 .............................................................................................................................. Lesson #4 ........................................................................................................................................ Lesson #5 ........................................................................................................................................ Lesson #6 ....................................................................................................................................... -
A Geomorphic Classification System
A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals -
Pilot Butte State Scenic Viewpoint Master Plan
PILOT BUTTE STATE SCENIC VIEWPOINT MASTER PLAN A p r o v e d y h e O e g o n P r k s n d R c r e a t i o n C m m i s s i o n u n e 7 , 0 2 0 PILOT BUTTE STATE SCENIC VIEWPOINT DRAFT MASTER PLAN TABLE OF CONTENTS Chapter 1 Introduction ............................................. 1 2 Context ..................................................... 7 3 Planning Approach and Process ............. 23 4 Scoping Issues ........................................ 29 5 Park Resource Assessments ..................... 33 6 Recreation Assessment ............................ 57 7 Land Management ................................... 67 8 Goals and Strategies ................................ 73 9 Plan Components .................................... 79 10 Reviews and Approvals ......................... 109 11 Plan Implementation ............................. 115 Table of Contents i PILOT BUTTE STATE SCENIC VIEWPOINT MASTER DRAFT PLAN LIST OF FIGURES 1 City of Bend Population Over Time ............... 8 2 Tumalo Management Unit ........................... 10 3 Existing Conditions and Amenities ............. 11 4 Local Greenspace Network .......................... 12 5 Plan Area ..................................................... 34 6 Eco Regions ................................................. 36 7 Vegetation Cover Type................................. 41 8 Wildlife Habitat Type .................................. 41 9 Composite Natural Resources ...................... 49 10 Viewshed Analysis ....................................... 52 11 Existing Trail -
Sudden Large-Volume Detachments of Low-Angle Mountain Glaciers – More Frequent Than Thought
https://doi.org/10.5194/tc-2020-243 Preprint. Discussion started: 22 October 2020 c Author(s) 2020. CC BY 4.0 License. 2 Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought 4 Andreas Kääb1, Mylène Jacquemart2, Adrien Gilbert3, Silvan Leinss4, Luc Girod1, Christian Huggel5, 6,7 8,9 10 10 11 6 Daniel Falaschi , Felipe Ugalde , Dmitry Petrakov , Sergey Chernomorets , Mikhail Dokukin , Frank Paul5, Simon Gascoin12, Etienne Berthier13, Jeff Kargel14,15 8 1 Department of Geosciences, University of Oslo, Norway 10 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, United States 3 Université Grenoble Alpes, CNRS, IGE, Grenoble, France 12 4 Institute of Environmental Engineering, ETH Zurich, Switzerland 5 Department of Geography, University of Zurich, Switzerland 14 6 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza, Argentina 7 Departamento de Geografía, Facultad de Filosofía y Letras, Universidad Nacional de Cuyo, Mendoza, Argentina 16 8 Geoestudios, San José de Maipo, Chile 9 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile 18 10 Faculty of Geography, M.V.Lomonosov Moscow State University, Moscow, Russia 11 High-Mountain Geophysical Institute, Nalchik, Russia 20 12 CESBIO, Université de Toulouse, CNES/CNRS/INRA/IRD/UPS, Toulouse, France 13 LEGOS, CNES, CNRS, IRD, UPS, Université de Toulouse, Toulouse, France 22 14 Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA 15 Planetary Science Institute, University of Arizona, Tucson, AZ, USA 24 Correspondence to: Andreas Kääb ([email protected]) 26 Abstract. The detachment of large parts of low-angle mountain glaciers, resulting in massive ice-rock avalanches, have so far been 28 believed to be a unique type of event, made known to the global scientific community first for the 2002 Kolka Glacier detachment, Caucasus Mountains, and then for the 2016 collapses of two glaciers in the Aru range, Tibet. -
Screen Quality
258 Credit: Andrew Magor/UNEP/Topfoto 259 3.8 Tundra and Polar Regions f all the terrestrial biomes, tun- permanently frozen subsoil called per- Circle in the Southern Hemisphere (EEA dra is the coldest. Tundra comes mafrost. Because the topsoil is so shallow n.d.). Although similar in many ways, the Ofrom the Finnish word tunturia, and underlaid by permafrost, it becomes two polar regions differ in that the Arctic which means treeless plain (Pullen 1996). quickly saturated with water. Lakes, ponds, is a frozen ocean surrounded by land, There are two distinct types of tundra: the and bogs dot the surface of the Arctic tun- whereas the Antarctic is a frozen continent vast Arctic tundra and high-altitude alpine dra throughout the brief summer months, surrounded by ocean. tundra on mountains. providing moisture for plants and Most of the world’s fresh water is Arctic tundra is located in the Northern nesting and feeding habitats for huge locked up in polar ice caps. Large glaciers Hemisphere on lands encircling the North numbers of waterfowl and other and ice sheets cover Arctic islands and Pole and extending south to the conifer- animals (Pullen 1996). Greenland in the north and the conti- ous boreal forests of the taiga and covering Alpine tundra is found on mountains nent of Antarctica in the south. Where ice approximately 5.6 million km2 (2 million throughout the world, at high altitudes— sheets and glaciers meet the ocean, huge square miles) Wookey 2002). Arctic tundra above the tree line—where conditions are chunks of ice continually break off, in a is characterized by cold, desert-like condi- too cold and too dry for trees to grow.