Nature Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The-Potential-Use-For-Groundwater
i Professor Peter Cook 84 Richmond Avenue Colonel Light Gardens SA 5041 [email protected] Professor Derek Eamus School of Life Sciences University of Technology Sydney PO Box 123 Sydney NSW 2007 [email protected] Cover Photo: Open woodland vegetation in the Ti Tree Basin. ii Table of Contents Executive Summary .................................................................................................................... v 1. INTRODUCTION ................................................................................................................... 9 2. METHODOLOGIES TO INFER GROUNDWATER USE .......................................................... 11 2.1 Direct Measurements of Rooting Depth 11 2.2 Soil Water Potentials 12 2.3 Leaf and Soil Water Potentials 13 2.4 Stable Isotopes 2H and 18O 14 2.5 Depth of Water Use and Groundwater Access 16 2.6 Green Islands 17 2.7 Transpiration Rates 19 2.8 Tree Rings 20 2.9 Dendrometry 22 2.10 13C of Sapwood 22 3. GROUNDWATER AND VEGETATION IN THE TI TREE BASIN .............................................. 24 3.1 Geography and Climate 24 3.2 Groundwater Resources 27 3.3 Vegetation Across the Ti Tree Basin 29 4. TI TREE BASIN GDE STUDIES ............................................................................................. 32 4.1 Transpiration and Evapotranspiration Rates 32 4.2 Soil Water Potentials 35 4.3 Leaf Water Potentials 38 4.4 Stable Isotopes 43 4.5 Sapwood 13C and Leaf Vein Density 44 5. OTHER ARID ZONE STUDIES ............................................................................................. -
Brachychiton Rupestris (T.Mitch
Brachychiton rupestris (T.Mitch. ex Lindl.) K.Schum. Familia: Sterculiaceae (Esterculiáceas), aunque actualmente está incluido en Malvaceae. Sinónimos: Delabechea rupestris T.Mitch. ex Lindl., Sterculia rupestris (T.Mitch. ex Lindl.) Benth. Nombre común: árbol botella. Aspecto general y detalle de las flores en Junio y detalle de los frutos en Agosto Etimología: Brachychiton deriva del griego brachys = corto y chiton = túnica o cubierta, probablemente en alusión a la cubierta externa persistente de las semillas. El epíteto específico rupestris procede del latín rupes,-is = roca, peñasco, seguido del sufijo –estris,-e, que indica lugar de crecimiento, que crece entre rocas, ambiente en el que crece en su lugar de origen. El nombre popular de “árbol bote- lla”, también aplicado a otros árboles, alude a la forma de engrosar el tronco. Procedencia: Este de Australia, en Queensland. Descripción: Árbol caducifolio o semicaducifolio, de 8-10 m de altura en cultivo, con las ramillas glabras y glaucas, la copa densa y globosa y el tronco engrosado en la base, liso, verdoso y teselado de joven, tornándose grisáceo y muy fisurado longitudinalmente con el paso de los años. Hojas juveniles palmati-digitadas o fuertemente lobuladas, con 3-9 folíolos o lóbulos, sésiles, de lineares a linear- lanceolados, de 6-14 x 0,3-1 cm. Pecíolo de 5-15 cm de largo; hojas adultas enteras, oblongo-lineares o lanceoladas, de 5-12 x 0,8-2 cm, con la base truncada, redondeada o cuneada, el margen ligeramen- te crenulado y el ápice acuminado, a veces apiculado; son glabras, de color verde brillante por el haz y más pálidas o glaucas por el envés, con el nervio central marcado en el haz y en el envés. -
Kingdom Class Family Scientific Name Common Name I Q a Records
Kingdom Class Family Scientific Name Common Name I Q A Records plants monocots Poaceae Paspalidium rarum C 2/2 plants monocots Poaceae Aristida latifolia feathertop wiregrass C 3/3 plants monocots Poaceae Aristida lazaridis C 1/1 plants monocots Poaceae Astrebla pectinata barley mitchell grass C 1/1 plants monocots Poaceae Cenchrus setigerus Y 1/1 plants monocots Poaceae Echinochloa colona awnless barnyard grass Y 2/2 plants monocots Poaceae Aristida polyclados C 1/1 plants monocots Poaceae Cymbopogon ambiguus lemon grass C 1/1 plants monocots Poaceae Digitaria ctenantha C 1/1 plants monocots Poaceae Enteropogon ramosus C 1/1 plants monocots Poaceae Enneapogon avenaceus C 1/1 plants monocots Poaceae Eragrostis tenellula delicate lovegrass C 2/2 plants monocots Poaceae Urochloa praetervisa C 1/1 plants monocots Poaceae Heteropogon contortus black speargrass C 1/1 plants monocots Poaceae Iseilema membranaceum small flinders grass C 1/1 plants monocots Poaceae Bothriochloa ewartiana desert bluegrass C 2/2 plants monocots Poaceae Brachyachne convergens common native couch C 2/2 plants monocots Poaceae Enneapogon lindleyanus C 3/3 plants monocots Poaceae Enneapogon polyphyllus leafy nineawn C 1/1 plants monocots Poaceae Sporobolus actinocladus katoora grass C 1/1 plants monocots Poaceae Cenchrus pennisetiformis Y 1/1 plants monocots Poaceae Sporobolus australasicus C 1/1 plants monocots Poaceae Eriachne pulchella subsp. dominii C 1/1 plants monocots Poaceae Dichanthium sericeum subsp. humilius C 1/1 plants monocots Poaceae Digitaria divaricatissima var. divaricatissima C 1/1 plants monocots Poaceae Eriachne mucronata forma (Alpha C.E.Hubbard 7882) C 1/1 plants monocots Poaceae Sehima nervosum C 1/1 plants monocots Poaceae Eulalia aurea silky browntop C 2/2 plants monocots Poaceae Chloris virgata feathertop rhodes grass Y 1/1 CODES I - Y indicates that the taxon is introduced to Queensland and has naturalised. -
Plant Life of Western Australia
INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm. -
Land Unit Master
Land Unit Information Sheet Land system name: Ludgate Land unit: LE3 General description This land unit represents the numerous shallow closed depressions, which occur throughout the Ludgate land system and range in size from hundreds of hectares to very small, so small that they cannot be delineated at a map scale of 1:100 000. Grey Vertosols (uniform, cracking clay soils) are predominant, however the area and depth of clay seem to have a major influence on the density and composition of the native vegetation. Acacia cambagei (gidgee), A. farnesiana (mimosa bush), Eucalyptus coolabah (coolabah), Eremophila bignoniiflora (eurah) together with Astrebla species (Mitchell grass) and Brachyachne convergens (native couch) are common on the deep, self-mulching clay soils, whereas the smaller areas with shallow clays, and slightly saline areas tend to have only coolabah, mimosa bush and a ground cover of annual plant species. Invariably, Eucalyptus brownii (Reid River box) and E. whitei (White's ironbark) fringe the depressions. Regional ecosystem 10.3.15 is predominant. Site characteristics Landform element Average slope Plain 0% Site drainage Soil permeability Poorly drained Slowly permeable Flooding risk Inundation risk Low Very high Potential recharge to groundwater Soil depth Low Variable; >1,5m Present land use Grazing, wetlands Susceptibility to land degradation processes Sheet erosion Gully erosion Wind erosion Salting Very low Very low Low High This information has been generated from the Desert Uplands Land Resource Database. The Environmental Protection Agency accepts no liability for any decisions or actions taken on the basis of this information. State of Queensland. Environmental Protection Agency 2004. -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Northwest Highlands Bioregion Technical Descriptions
Department of Environment and Science Regional Ecosystem Technical Descriptions Technical descriptions provide a detailed description of the full range in structure and floristic composition of regional ecosystems (e.g. 1.1.10) and their component vegetation communities (e.g. 1.11.10a, 1.11.10b). The descriptions are compiled using site survey data from the Queensland Herbarium’s CORVEG database. Distribution maps, representative images (if available) and the pre-clearing and remnant area (hectares) of each vegetation community derived from the regional ecosystem mapping (spatial) data are included. The technical descriptions should be used in conjunction with the fields from the regional ecosystem description database (REDD) for a full description of the regional ecosystem. Quantitative site data from relatively undisturbed sites are extracted from CORVEG and summarized to provide information specific to each vegetation community. Technical descriptions include the attributes: tree canopy height and cover and native plant species composition of the predominant layer, which are used to assess the remnant status of vegetation under the Vegetation Management Act 1999. However, as technical descriptions reflect the full range in structure and floristic composition across the climatic, natural disturbance and geographic range of the regional ecosystem, local reference sites should be used where possible (Neldner et al. 2005 section 3.3.3). The technical descriptions are subject to review and are updated as additional data becomes available. -
Palatability of Plants to Camels (DBIRD NT)
Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2. -
Impacts of Land Clearing
Impacts of Land Clearing on Australian Wildlife in Queensland January 2003 WWF Australia Report Authors: Dr Hal Cogger, Professor Hugh Ford, Dr Christopher Johnson, James Holman & Don Butler. Impacts of Land Clearing on Australian Wildlife in Queensland ABOUT THE AUTHORS Dr Hal Cogger Australasian region” by the Royal Australasian Ornithologists Union. He is a WWF Australia Trustee Dr Hal Cogger is a leading Australian herpetologist and former member of WWF’s Scientific Advisory and author of the definitive Reptiles and Amphibians Panel. of Australia. He is a former Deputy Director of the Australian Museum. He has participated on a range of policy and scientific committees, including the Dr Christopher Johnson Commonwealth Biological Diversity Advisory Committee, Chair of the Australian Biological Dr Chris Johnson is an authority on the ecology and Resources Study, and Chair of the Australasian conservation of Australian marsupials. He has done Reptile & Amphibian Specialist Group (IUCN’s extensive research on herbivorous marsupials of Species Survival Commission). He also held a forests and woodlands, including landmark studies of Conjoint Professorship in the Faculty of Science & the behavioural ecology of kangaroos and wombats, Mathematics at the University of Newcastle (1997- the ecology of rat-kangaroos, and the sociobiology of 2001). He is a member of the International possums. He has also worked on large-scale patterns Commission on Zoological Nomenclature and is a in the distribution and abundance of marsupial past Secretary of the Division of Zoology of the species and the biology of extinction. He is a member International Union of Biological Sciences. He is of the Marsupial and Monotreme Specialist Group of currently the John Evans Memorial Fellow at the the IUCN Species Survival Commission, and has Australian Museum. -
Chapter 6 ENUMERATION
Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi. -
Draft Revegetation Strategy for the Townsville City Council Region
Draft Revegetation Strategy for the Townsville City Council Region Draft report produced by Con Lokkers for Townsville City Council 2000 Townsville City Council Draft Revegetation Strategy Contents: 1. Scope of report ....................................................................................................................... 3 2. Site description and natural resources.................................................................................... 4 2.1. Geology ........................................................................................................................... 4 2.2. Landforms ....................................................................................................................... 4 2.3. Soils................................................................................................................................. 5 2.4. Climate ............................................................................................................................ 7 2.5. Flora ................................................................................................................................ 8 2.6. Fauna ............................................................................................................................. 10 2.7. Communities and species with high conservation significance. ................................... 10 2.8. Weeds and feral animals. .............................................................................................. 11 3. Rehabilitation prioritisation -
South West Queensland QLD Page 1 of 89 21-Jan-11 Species List for NRM Region South West Queensland, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.