Morphological Adaptation of the Skull for Various Behaviors in the Tree Shrews

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Adaptation of the Skull for Various Behaviors in the Tree Shrews FULL PAPER Anatomy Morphological Adaptation of the Skull for Various Behaviors in the Tree Shrews Hideki ENDO1), Tsutomu HIKIDA2), Masaharu MOTOKAWA3), Loke Ming CHOU4), Katsuhiro FUKUTA5) and Brian J. STAFFORD6,7) 1)Department of Zoology, National Science Museum, Tokyo, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, 2)Department of Zoology, Faculty of Science, 3)The University Museum, Kyoto University, Kyoto 606–8501, Japan, 4)Raffles Museum of Biodiversity Research, National University of Singapore, Singapore, 5)Laboratory of Animal Morphology and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464–8601, Japan, 6)Mammal Division, National Museum of Natural History, Smithsonian Institution, Washington D.C. and 7)Department of Anatomy, Howard University College of Medicine, Washington D.C., U.S.A. (Received 5 February 2003/Accepted 8 April 2003) ABSTRACT. Skull size and shape were examined among 14 species of the tree shrews (Tupaia montana, T. picta, T. splendidula, T. mulleri, T. longipes, T. glis, T. javanica, T. minor, T. gracilis, T. dorsalis, T. tana, Dendrogale melanura, D. murina, and Ptilocercus lowii). The bones of face were rostro-caudally longer in T. tana and T. dorsalis, contrasting with T. minor and T. gracilis, D. melanura, D. murina and P. lowii which have smaller facial length ratios. The arbo-terrestrial species (T. longipes and T. glis) were similar to terrestrial spe- cies in length ratios of bones of face unlike the other arbo-terrestrial species (T. montana, T. picta, T. splendidula, and T. mulleri). We propose that T. longipes and T. glis have adapted to foraging for termites and ants as have T. tana and T. dorsalis. Additionally small body size in T. javanica may be the result of being isolated in Java. We separated the species into 5 groups from the measurment values of skulls: 1) Terrestrial species; T. tana and T. dorsalis, 2) Arboreal species; T. minor and T. gracilis, 3) Arbo-terrestrial species group 1: T. montana, T. splendidula, T. picta and T. mulleri, and T. javanica, 4) Arbo-terrestrial species group 2: T. glis and T. longipes, 5) Arboreal species of Dendrogale and Ptilocercus. Principal component analysis separated species into 8 clusters as follows: 1) T. tana, 2) T. dorsalis, 3) T. montana, T. splendidula, T. picta and T. mulleri, 4) T. glis and T. longipes, 5) T. javanica, 6) T. minor and T. gracilis, 7) D. melanura and D. murina, and 8) P. lowii. We suggest that these clusters correspond to behavioral strategies and peculiarities observed in foraging, feeding and locomotion in each species. KEY WORDS: adaptation, behavior, osteometry, skull, Tupaiidae. J. Vet. Med. Sci. 65(8): 873–879, 2003 Tree shrews (Order Scandentia) consist of about 18 spe- National University of Singapore, in the Department of cies [1, 2, 6, 13, 22]. Since this order shows us the evolu- Wildlife and National Parks (Kuala Lumpur, Malaysia), and tionary process of arboreal adaptation in terrestrial animals, in Bogor Zoological Museum (Bogor, Indonesia). Sex the morphological variation in locomotor and feeding mech- determination was dependent on the description of biologi- anisms is noticeable among species [1, 22]. The behavior of cal data of specimens. Only specimens with fully erupted various species has been also detailed in field works [7]. molars were considered to be adults. Species composition, Previously we functional-morphologically examined 4 spe- origin, and sex are shown in Table 1. Skull measurements cies of Tupaia, and suggested that T. tana, T. javanica and were obtained with vernier calipers to the nearest 0.05 mm. T. minor have evolved different behaviors [10]. Here we Measurements are defined in Table 2, and were based on extend this study to include most members of Scandentia Driesch [5]. All measurements were then divided by the and to quantitatively examine morphological adaptations for geometric mean of PL in each species to remove the effects various behaviors (i.e. locomotion, foraging, feeding and of size. In these measurement ratios statistical differences nesting). In this study, we use 14 species of tree shrews among species were examined in the non-parametric U-test including Dendrogale and Ptilocercus to compare interspe- by the use of the software of Statistica (StatSoft, Inc., cies variations, and to clarify the adaptation strategy in skull Tokyo, Japan). The t-test was not used, since the normal morphology. distribution is not guaranteed with measurement ratios. Principal component analysis was used with all measure- MATERIALS AND METHODS ment data to examine variation among taxa. A package soft- ware for multivariate analysis (Shakai-Joho Service, Tokyo, We examined 337 skulls of 14 species of tree shrews Japan) added to Microsoft Excel 98 was used for this analy- (Tupaia montana, T. picta, T. splendidula, T. mulleri, T. lon- sis. gipes, T. glis, T. javanica, T. minor, T. gracilis, T. dorsalis, T. tana, Dedrogale melamura, D. murina, and Ptilocercus RESULTS lowii). The specimens have been stored in Muséum National d’Histoire Naturelle (Paris, France), in the Smith- The species were grouped into 5 morphological types sonian Institution, in The University Museum, Kyoto Uni- according to the data of the osteometrical ratio data in each versity, in the Raffles Museum of Biodiversity Research, species (Tables 3–5). In this grouping, the pattern of behav- 874 H. ENDO ET AL. Table 1. Species, behavioral character, origin and sex composition of the specimens Species Behavior Origin of Specimens Male Female Tupaia montana Arbo-terrestrial Borneo 52 54 Tupaia picta Arbo-terrestrial Borneo 3 0 Tupaia splendidula Arbo-terrestrial Borneo 2 2 Tupaia mulleri Arbo-terrestrial Borneo 1 1 Tupaia longipes Arbo-terrestrial Borneo 9 3 Tupaia glis Arbo-terrestrial Malayan Peninsula 22 38 Tupaia javanica Arbo-terrestrial Java 9 6 Tupaia minor Arboreal Borneo, Sumatra 5 4 Tupaia gracilis Arboreal Borneo 14 6 Tupaia tana Terrestrial Borneo, Sumatra 24 26 Tupaia dorsalis Terrestrial Borneo 2 3 Dendrogale melanura Arboreal Borneo 10 5 Dendrogale murina Arboreal Thailand, Vietnam 2 4 Ptilocercus lowii Arboreal Malayan Peninsula 13 17 Total 168 169 Table 2. List of skull and mandibular measurements and restrial species (Tables 3–5). The skull was laterally wider their abbreviations in the two species, and the ratios GNB/PL and GMB/PL Cranium were much larger than those in the species of other locomo- Profile length PL tion. Condylobasal length CL Arbo-terrestrial species group 1, T. montana, T. picta, T. Short lateral facial length SL splendidula, T. mulleri and T. javanica: The strong elonga- Zygomatic width ZW tion was not confirmed in these species unlike T. tana and T. Least breadth between the orbits LBO dorsalis, although the bones of face was relatively longer Greatest neurocranium breadth GNB than that of arboreal species. Median palatal length MPL Length from Basion to Staphylion LBS Arbo-terrestrial species group 2, T. longipes and T. glis: Dental length DL The ratios SL/PL, MPL/PL, DL/PL and LIA/PL were large Greatest palatal breadth GPB (Tables 3–5). The bones of face in the two species were ros- Greatest mastoid breadth GMB tro-caudally longer than the arbo-terrestrial group 1 in many Height from Akrokranion to Basion HAB cases. Especially the ratios DL/PL and LIA/PL of T. lon- Mandible gipes and T. glis were not different from those of terrestrial Length from the condyle LC Length from the angle LA T. tana and T. dorsalis (Tables 3–5). Length from Infradentale LIA Arboreal species of Dendrogale and Ptilocercus: The to aboral border of the alveolus bones of face were not elongated in these species, and length Height of the vertical ramus HR ratio is extremely small in P. lowii. In contrast the width Height of the mandible at M1 HM ratios ZW/PL and GMB/PL were large in Ptilocercus. First and second principal components represent size and proportion factor, respectively. We could point out that ior and locomotion such as terrestrial, arbo-terrestrial and these components segregated specimens into 8 clusters of arboreal in each species was based upon the descriptions species that were similar for both sexes (Fig. 1, Table 6): and the original data of field works (Table 1) [1, 2, 6, 7, 13, Cluster 1, T. tana, Cluster 2, T. dorsalis, Cluster 3, T. mon- 22]. We also distinguished the two groups of arbo-terres- tana, T. splendidula, T. picta, and T. mulleri, Cluster 4, T. trial species from the morphological similarities. glis and T. longipes, Cluster 5, T. javanica, Cluster 6, T. Terrestrial species, T. tana and T. dorsalis: The facial minor and T. gracilis, Cluster 7, D. melanura and D. part was rostro-caudally elongated in the skull. The ratios murina, and Cluster 8, P. lowii. SL/PL, MPL/PL, DL/PL and LIA/PL were larger than those of the other species (Tables 3–5). The ratios SL/PL and DISCUSSION MPL/PL were especially large in both sexes of the two spe- cies. The elongation of the bones of face resulted in small The skull is morphologically divided into two major ratios of skull width in terrestrially-adapted species, and the functional units, bones of cranium and bones of face, to clar- ratios ZW/PL, LBO/PL, GNB/PL and GMB/PL were much ify adaptational strategy in each species and behavior pat- smaller (Tables 3–5). tern. Measurement ratios of the bones of face are Arboreal species, T. minor and T. gracilis: The bones of noteworthy (Tables 3 and 4). SL/PL, MPL/PL, DL/PL and face were obviously short, and the ratio SL/PL was statisti- LIA/PL represent rostro-caudal length ratio in the bones of cally different from that of terrestrial species and arbo-ter- face.
Recommended publications
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Phylogeny, Biogeography and Systematic Revision of Plain Long-Nosed Squirrels (Genus Dremomys, Nannosciurinae) Q ⇑ Melissa T.R
    Molecular Phylogenetics and Evolution 94 (2016) 752–764 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny, biogeography and systematic revision of plain long-nosed squirrels (genus Dremomys, Nannosciurinae) q ⇑ Melissa T.R. Hawkins a,b,c,d, , Kristofer M. Helgen b, Jesus E. Maldonado a,b, Larry L. Rockwood e, Mirian T.N. Tsuchiya a,b,d, Jennifer A. Leonard c a Smithsonian Conservation Biology Institute, Center for Conservation and Evolutionary Genetics, National Zoological Park, Washington DC 20008, USA b Division of Mammals, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington DC 20013-7012, USA c Estación Biológica de Doñana (EBD-CSIC), Conservation and Evolutionary Genetics Group, Avda. Americo Vespucio s/n, Sevilla 41092, Spain d George Mason University, Department of Environmental Science and Policy, 4400 University Drive, Fairfax, VA 20030, USA e George Mason University, Department of Biology, 4400 University Drive, Fairfax, VA 20030, USA article info abstract Article history: The plain long-nosed squirrels, genus Dremomys, are high elevation species in East and Southeast Asia. Received 25 March 2015 Here we present a complete molecular phylogeny for the genus based on nuclear and mitochondrial Revised 19 October 2015 DNA sequences. Concatenated mitochondrial and nuclear gene trees were constructed to determine Accepted 20 October 2015 the tree topology, and date the tree. All speciation events within the plain-long nosed squirrels (genus Available online 31 October 2015 Dremomys) were ancient (dated to the Pliocene or Miocene), and averaged older than many speciation events in the related Sunda squirrels, genus Sundasciurus.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • The Ethmoidal Region of the Skull of Ptilocercus Lowii
    Research Article Primate Biol., 2, 89–110, 2015 www.primate-biol.net/2/89/2015/ doi:10.5194/pb-2-89-2015 © Author(s) 2015. CC Attribution 3.0 License. The ethmoidal region of the skull of Ptilocercus lowii (Ptilocercidae, Scandentia, Mammalia) – a contribution to the reconstruction of the cranial morphotype of primates I. Ruf1, S. Janßen2, and U. Zeller2 1Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Abteilung Paläoanthropologie und Messelforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 2FG Spezielle Zoologie, Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Ziegelstrasse 5–9, 10117 Berlin, Germany Dedicated to Hans-Jürg Kuhn on the occasion of his 80th birthday. Correspondence to: I. Ruf ([email protected]) Received: 17 June 2015 – Revised: 6 September 2015 – Accepted: 7 September 2015 – Published: 25 September 2015 Abstract. The ethmoidal region of the skull houses one of the most important sense organs of mammals, the sense of smell. Investigation of the ontogeny and comparative anatomy of internal nasal structures of the macros- matic order Scandentia is a significant contribution to the understanding of the morphotype of Scandentia with potential implications for our understanding of the primate nasal morphological pattern. For the first time peri- natal and adult stages of Ptilocercus lowii and selected Tupaia species were investigated by serial histological sections and high-resolution computed tomography (µCT), respectively. Scandentia show a very common olfac- tory turbinal pattern of small mammals in having two frontoturbinals, three ethmoturbinals, and one interturbinal between the first and second ethmoturbinal. This indicates a moderately developed sense of smell (moderately macrosmatic).
    [Show full text]
  • Olson Et Al. 2005.Pdf
    Molecular Phylogenetics and Evolution 35 (2005) 656–673 www.elsevier.com/locate/ympev Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene Link E. Olson a,¤, Eric J. Sargis b, Robert D. Martin c a Department of Zoology, Field Museum, Chicago, IL 60605, USA b Department of Anthropology, Yale University, New Haven, CT 06520, USA c Department of Anthropology, Field Museum, Chicago, IL 60605, USA Received 31 July 2004; revised 4 January 2005 Available online 24 February 2005 Abstract Despite their traditional and continuing prominence in studies of interordinal mammalian phylogenetics, treeshrews (order Scandentia) remain relatively unstudied with respect to their intraordinal relationships. At the same time, signiWcant morphological variation among living treeshrews has been shown to have direct relevance to higher-level interpretations of character state change as reconstructed in traditional interordinal studies, which have often included only a single species of treeshrew. Therefore, the impor- tance of resolving relationships among treeshrews extends well beyond a better understanding of patterns of diversiWcation within the order. A recent review highlighted several shortcomings in published studies of treeshrew phylogenetics based on morphology. Here we present the Wrst investigation of treeshrew phylogenetics based on DNA sequences, utilizing previously published sequences from the mitochondrial 12S rRNA gene and combining them with newly generated sequence data from 15 species. Parsimony, likeli- hood, and Bayesian analyses all strongly support a sister relationship between Ptilocercus and the remaining species, further substan- tiating its recent elevation to familial status. Dendrogale is consistently recovered as the next taxon to diverge, but relationships among the remaining taxa are poorly supported by these data.
    [Show full text]
  • Carpal Development and Morphology in Archontan Mammals
    JOURNAL OF MORPHOLOGY 235:135-155 (1998) Carpal Development and Morphology in Archontan Mammals 1 2 BRIAN J. STAFFORD * AND RICHARD W. THORINGTON, JR xPhD Program in Anthropology & New York Consortium in Evolutionary Primatology, City University of New York, New York, New York ^Department ofVertebrate Zoology, Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC ABSTRACT Carpal morphology and development in bats, colugos, tree shrews, murids, and sciurids were studied in order to homologize carpal elements. Prenatal coalescence of discrete cartilaginous templates with a loss of a center of ossification appears to be the most common method of reducing carpal elements in these mammals. Only bats and colugos showed postnatal ossification between discrete elements as a method of reducing carpal ele- ments. Carpal morphology of tree shrews is more diverse than previously reported. Ptilocercus shows a highly derived carpal morphology that may be related to its relatively greater arboreality Dendrogale exhibits what is most likely the ancestral tupaiid carpal morphology. Carpal morphologies of Tupaia, Urogale, and Anathana are identical to each other. Carpal morphology differs between megachiropterans and microchiropterans. These differences may be related to different aerodynamic constraints between the suborders. The carpal morphology of microchiropterans is diverse and may reflect different adaptive regimes between microchiropteran families. Carpal morphology of the colugos shows both megachiropteran and microchiropteran characters. The function of these characters in colugos and bats (stabilization of the carpus in dorsiflexion) is proposed to be similar, although the locomotor roles may be quite different between these taxa. J. Morphol. 235:135—155, 1998. © 1998 Wiley-Liss, Inc.
    [Show full text]
  • Small Mammals of the Song Thanh and Saola Quang Nam Nature Reserves, Central Vietnam
    Russian J. Theriol. 18(2): 120–136 © RUSSIAN JOURNAL OF THERIOLOGY, 2019 Small mammals of the Song Thanh and Saola Quang Nam Nature Reserves, central Vietnam Ly Ngoc Tu*, Bui Tuan Hai, Masaharu Motokawa, Tatsuo Oshida, Hideki Endo, Alexei V. Abramov, Sergei V. Kruskop, Nguyen Van Minh, Vu Thuy Duong, Le Duc Minh, Nguyen Thi Tham, Ben Rawson & Nguyen Truong Son* ABSTRACT. Field surveys in the Song Thanh and Saola Quang Nam Nature Reserves (Quang Nam Prov- ince, central Vietnam) were conducted in 2018 and 2019. In total, 197 individuals of small mammals were captured and studied in the field or collected as voucher specimens. Based on these data, an updated checklist of small mammals of Quang Nam Province is provided. A total of 78 species in 15 families and 6 orders is recorded from both reserves: viz., 57 species in the Song Thanh Nature Reserve and 39 species in the Saola Quang Nam Nature Reserve. Records of 20 species are new to the mammal checklist of Quang Nam Province. How to cite this article: Tu L.N., Hai B.T., Motokawa M., Oshida T., Endo H., Abramov A.V., Kruskop S.V., Minh N.V., Duong V.T., Minh L.D., Tham N.T., Rawson B., Son N.T. 2019. Small mammals of the Song Thanh and Saola Quang Nam Nature Reserves, central Vietnam // Russian J. Theriol. Vol.18. No.2. P.120–136. doi: 10.15298/rusjtheriol.18.2.08 KEY WORDS: small mammals, checklist, Song Thanh, Saola Quang Nam, Vietnam. Ly Ngoc Tu [[email protected]], Vu Thuy Duong [[email protected]] and Nguyen Truong Son [truong- [email protected]], Department of Vertebrate Zoology,
    [Show full text]
  • 2014 Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons
    American Society of Mammalogists Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons 94th Annual Meeting Renaissance Convention Center Hotel Oklahoma City, Oklahoma 6-10 June 2014 1 Table of Contents I. Secretary-Treasurers Report ....................................................................................................... 3 II. ASM Board of Trustees ............................................................................................................ 10 III. Standing Committees .............................................................................................................. 12 Animal Care and Use Committee .......................................................................... 12 Archives Committee ............................................................................................... 14 Checklist Committee .............................................................................................. 15 Conservation Committee ....................................................................................... 17 Conservation Awards Committee .......................................................................... 18 Coordination Committee ....................................................................................... 19 Development Committee ........................................................................................ 20 Education and Graduate Students Committee ....................................................... 22 Grants-in-Aid Committee
    [Show full text]
  • Proceedings of the United States National Museum
    TREESHREWS: AN ACCOUNT OF THE MAMMALIAN FAMILY TUPAIID^. By Marcus Ward Lyon, Jr., Formerly of the Division of Mammals, United States National Museum. INTRODUCTION. This -review of the treeshrews, constituting the mammahan family Tupaiidse, was originally contemplated in 1904 by Mr. Gerrit S. Miller, jr., curator of mammals, United States National Museum, but owing to pressure of other work he was unable to carry it out. In 1910, shortly after I severed my active connections with the Division of Mammals, United States National Museum, Mr. Miller suggested to me the desirability of making a study of the treeshrews. I took up his suggestion and the present paper is the result. At that time he turned over to me some preliminary notes on the group he had made during a visit to European museums when he was primarily engaged in other lines of research. The increase of new material, both in the United States National Museum and in other museums, made it imperative that the entire field be gone over again. The collections in Washington were first studied, and during the summer of 1911 I visited most of the museums which Mr. Miller's previous work showed contained material valuable for this revision. Specifically, the material examined consists of about 800 speci- mens, all of which are listed in the tables of measurements and dis- tributed as follows: British Museum, 355 specimens, 27 types. United States National Museum, 324 specimens, 29 types. Civic Museum of Natural History, Genoa, 37 specimens, no types. Royal Zoological Museum, BerHn, 29 specimens, 1 type. Museum of Natural History, Paris, 20 specimens, 1 type.
    [Show full text]
  • 1 §4-71-6.5 List of Restricted Animals [ ] Part A: For
    §4-71-6.5 LIST OF RESTRICTED ANIMALS [ ] PART A: FOR RESEARCH AND EXHIBITION SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Hirudinea ORDER Gnathobdellida FAMILY Hirudinidae Hirudo medicinalis leech, medicinal ORDER Rhynchobdellae FAMILY Glossiphoniidae Helobdella triserialis leech, small snail CLASS Oligochaeta ORDER Haplotaxida FAMILY Euchytraeidae Enchytraeidae (all species in worm, white family) FAMILY Eudrilidae Helodrilus foetidus earthworm FAMILY Lumbricidae Lumbricus terrestris earthworm Allophora (all species in genus) earthworm CLASS Polychaeta ORDER Phyllodocida FAMILY Nereidae Nereis japonica lugworm PHYLUM Arthropoda CLASS Arachnida ORDER Acari FAMILY Phytoseiidae 1 RESTRICTED ANIMAL LIST (Part A) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Iphiseius degenerans predator, spider mite Mesoseiulus longipes predator, spider mite Mesoseiulus macropilis predator, spider mite Neoseiulus californicus predator, spider mite Neoseiulus longispinosus predator, spider mite Typhlodromus occidentalis mite, western predatory FAMILY Tetranychidae Tetranychus lintearius biocontrol agent, gorse CLASS Crustacea ORDER Amphipoda FAMILY Hyalidae Parhyale hawaiensis amphipod, marine ORDER Anomura FAMILY Porcellanidae Petrolisthes cabrolloi crab, porcelain Petrolisthes cinctipes crab, porcelain Petrolisthes elongatus crab, porcelain Petrolisthes eriomerus crab, porcelain Petrolisthes gracilis crab, porcelain Petrolisthes granulosus crab, porcelain Petrolisthes japonicus crab, porcelain Petrolisthes laevigatus crab, porcelain Petrolisthes
    [Show full text]
  • 2012. Provisional Checklist of Mammals of Borneo Ver 19.11.2012
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/257427722 2012. Provisional Checklist of Mammals of Borneo Ver 19.11.2012 DATASET · OCTOBER 2013 DOI: 10.13140/RG.2.1.1760.3280 READS 137 6 AUTHORS, INCLUDING: Mohd Ridwan Abd Rahman MT Abdullah University Malaysia Sarawak Universiti Malaysia Terengganu 19 PUBLICATIONS 16 CITATIONS 120 PUBLICATIONS 184 CITATIONS SEE PROFILE SEE PROFILE Available from: MT Abdullah Retrieved on: 26 October 2015 Provisional Checklist of Mammals of Borneo Compiled by M.T. Abdullah & Mohd Isham Azhar Department of Zoology Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak Email: [email protected] No Order Family Species English name Notes 01.01.01.01 Insectivora Erinaceidae Echinosorex gymnurus Moonrat 01.01.02.02 Insectivora Erinaceidae Hylomys suillus Lesser gymnure 01.02.03.03 Insectivora Soricidae Suncus murinus House shrew 01.02.03.04 Insectivora Soricidae Suncus ater Black shrew 01.02.03.05 Insectivora Soricidae Suncus etruscus Savi's pigmy shrew 01.02.04.06 Insectivora Soricidae Crocidura monticola Sunda shrew South-east Asia white-toothed 01.02.04.07 Insectivora Soricidae Crocidura fuligino shrew 01.02.05.08 Insectivora Soricidae Chimarrogale himalayica Himalayan water shrew 02.03.06.09 Scandentia Tupaiidae Ptilocercus lowii Pentail treeshrew 2.3.7.10 Scandentia Tupaiidae Tupaia glis Common treeshrew 2.3.7.11 Scandentia Tupaiidae Tupaia splendidula Ruddy treeshrew 2.3.7.12 Scandentia Tupaiidae
    [Show full text]
  • Molecular Systematics and Historical Biogeography of the Tree Shrews (Tupaiidae)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2000 Molecular Systematics and Historical Biogeography of the Tree Shrews (Tupaiidae). Kwai Hin Han Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Han, Kwai Hin, "Molecular Systematics and Historical Biogeography of the Tree Shrews (Tupaiidae)." (2000). LSU Historical Dissertations and Theses. 7361. https://digitalcommons.lsu.edu/gradschool_disstheses/7361 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]