Urania Nr 1/2005

Total Page:16

File Type:pdf, Size:1020Kb

Urania Nr 1/2005 Biblioteka G łówna o m 3 UM K Toruń oW05 M iXL py As t r o n o m atjirziii—luty Nowe testy ogólnej teorii względności Toruński radioteleskop ma już 10 lat! Lot do Saturna Supermasywna czarna dziura powstała we wczesnym Wszechświecie Arcprf-ioN Disk ' CHANDR* X-RAY Teleskop kosmiczny Chandra dostarczyt dowód na to, że super- cji w dziedzinie widzialnej wynika, że masa czarnej dziury w tym masywne czarne dziury mogły powstać we wczesnych fazach ist­ kwazarze wynosi miliard mas Słońca. W konkluzji uważa się, że nienia Wszechświata. Astronomowie Daniel Schwartz i Shanil centralne czarne dziury w masywnych galaktykach zaczęły się Virani z Centrum Astrofizycznego Harvard-Smithsonian w Cam­ tworzyć zaraz po Wielkim Wybuchu. bridge, USA obserwowali w promieniowaniu X kwazar SDSSp To odkrycie stanowi nowe wyzwanie dla teorii powstawania ga­ J1306, który leży w odległości 12,7 mld lat światła od nas. Ponie­ laktyk i supermasywnych czarnych dziur, ponieważ dotychczas pa­ waż wiek Wszechświata oceniany jest obecnie na 13,7 mld lat, to nowało przekonanie, że masywne czarne dziury tworzą się dopiero znaczy, że kwazar ten powstał zaledwie miliard lat po „urodzinach" w zaawansowanym stanie ewolucji Wszechświata. Wszechświata. Charakter promieniowania X tego kwazara jest po­ Obraz przedstawia nasze rozumienie czarnej dziury i jej oto­ dobny do promieniowania dużo starszych kwazarów. Z obserwa­ czenia. Czy tu tworzą się układy planetarne? AU Microscopii HD 107146 v m \ i \ % tfpk " o \mm ••• j Rozm iar Rozm iar ; orbity Neptuna J orbity Neptuna Teleskopy kosmiczne Spitzera i Hubble’a dostarczyły ostat­ gwiazdy mają rezerwuar materiału, z którego mogą się two­ nio unikatowe obrazy pyłowych dysków wokół gwiazd wiel­ rzyć planety, podczas gdy starsze są otoczone zwałami gruzu. kości Słońca. Młode gwiazdy obserwowane przez Hubble’a mają od 50 Teleskop Spitzera odkrył dysk pyłowy wokół dojrzałej, po­ do 250 min lat. Są wiec dość stare, aby teoretycznie posia­ dobnej do Słońca gwiazdy AU Mon, która posiada odkryte już dać planety gazowe, ale za młode, by już wytworzyły się wokół planety. Teleskop Hubble’a uzyskał obraz jasnego dysku wokół nich planety skaliste, takie jak Ziemia. Sześć gwiazd bada­ dużo młodszej gwiazdy HD 107146. Te odkrycia dają wgląd nych przez teleskop Spitzera ma wiek podobny do naszego w procesy, które doprowadziły do powstania naszego Syste­ Słońca, czyli ok. 4 mld lat i wiadomo, że posiadają planety mu Słonecznego — od stanu chaotycznych pyłów i żwirów na gazowe. Te obserwacje dają solidne przesłanki związków mię­ początku do bardziej określonego stanu dzisiejszego. Młode dzy dyskami pyłowymi a planetami. URANIA ■ Rocznik Z0D6 r i i: r i tom LXXVI INDEKS AUTORÓW Baran Józef 268 Matysiak Magdalena 270 Bartkiewicz Anna 18 Mazur Maciej M. 218 B ejger Michał 4 Melikidze George 108 Błaszkiewicz Leszek P. 202 Michalec Adam 2, 212,215, 271 Brancewicz Henryk 172 Musieliński Arkadiusz 154 Branicki Andrzej 178 Nelle Dariusz W. 31 Bruzda Mirosław 50 Paczyński Bohdan 246 Bukowska Danka 265 Patka Jacek 242 Bulik Tomasz 210 Pazderska Bogna 148 Cader-Sroka Barbara 263 Podkowicz Piotr 50 Chodorowski Franciszek 86 Polewaczyk Filip 50 Chrupała Henryk 181, 218 Redlarski Grzegorz 50 Domański Juliusz 34, 35, 37, 82, Rochowicz Krzysztof 7, 17, 25, 74, 130, 135,226 75, 67, 120, 121, 168, 170, 272, 273 Drążkowska Joanna 48, 67, 96, Rudnicki Konrad 254 144, 192, 240 Rudź Przemysław 50 Drążkowski Jacek 39, 47,81, Sadowski Marek 50 95, 143, 191,239, 285 Schreiber Roman 48, 73, 96, 144, 192, Dworak T. Zbigniew 56, 85, 94,114, 286 240, 288 Filipek Marcin 2 Sitarski Grzegorz 86 Fłin Piotr 123 Skórzyński Wiesław 38, 87, 129, Frąckowiak Michał 52 177, 224, 287 Gabiyszewki Ryszard 86 Słowikowska Agnieszka 160 Gil Janusz 108 Smak Józef 80 Gołębiewski Marek 26 Smolarz Piotr 50 Górecki Grzegorz 146 Sobolewska Małgorzata 68 Górski Krystian 50 Stolarczyk Renata 50 Graczyk Dariuszl6, 125, 174, 221, 274 Strobel Andrzej 46 Gryz Jacek 98 Szapach Bogdan 50 Gut Lucyna 33 Szary Andrzej 108 Hanasz Jan 16 Szutowicz Sławomira 86 Jarzębowski Tadeusz 258 Ściężor Tomasz 2, 32, 40, Jaskulska Krystyna 50, 98, 267 88, 140, 183, 184, 232, 280 Kabatek-Drążkowska Jadwiga 278 Stejl Vladimir 226 Kardaś Tomasz 100 Tissler Grzegorz 50 Kotarski Andrzej 50 Tomczak Michał 220 Kozłowski Szymon 108 Wąż Piotr 146 Kożuchowska Magda 211 Weżgowiec Marek 167 Królikowska Małgorzata 86 Wirkus Piotr 267 Kuczyński Jerzy 135 Witucki Leszek 50 Kukliński Marek 50 Wojtas Piotr 50 Kulesza Bogusław 190 Woszczyk Andrzej 1,49, 97, Kunert-Bajraszewska Magdalena 18 122, 145, 169, 171, 193,213,216, Lew Bartek 196, 248 220, 225,231,241 Łągiewka Jerzy (5)o.III Wutkowski Marcin 98 Łęgowski Stanisław 142 Zawada Karolina 29, 39, 66, 79, 128 Maciesiak Krzysztof 108 Zegler Ewa 124 Malinowski Adam __— —_ 50 Ziołkowski Krzysztof 8, 86, 166 Marcinek Jerzy / ^ ® 117 Zub Marta 108 UNIWERSYTFCK; rur,to INDEKS PRZEDMIOTOWY Marsjańskie impresje 26 Artykuły Młoda galaktyka w dojrzałym Wszechświecie 7 Albert Abraham Michelson — człowiek, który Najdalsza gromada galaktyk 170 świat nauczył mierzyć, Tomasz Kardaś 100 Najdalsza planeta pozasłoneczna 169 Fotometria milimagnitudowa tranzytów planet, S. Kozłowski, A. Szary, M. Zub, G. Melikidze, Narodziny gwiazdy 167 K. Maciesiak, J. Gil 108 Nasi sąsiedzi — młode masywne galaktyki 79 Głębokie przeglądy nieba w promieniach X Nowe polskie meteoryty 39 za pomocą teleskopu Chandra, Obszar N 214 w Wielkim Obłoku Magellana 168 Małgorzata Sobolewska 68 Planeta w układzie potrójnym gwiazd 216 Granice Układu Słonecznego — gdzie są i co się tam znajduje, Arkadiusz Musieliński 154 Planetoida Woszczyk 81 Kosmologia fluktuacji promieniowania tła (cz. 1) Planetoida z dwoma księżycami 225 Bartek Lew 1% Pocztówka z Tytana 66 Kosmologia fluktuacji promieniowania tła (cz. 2) Polscy astronomowie na tropie kosmicznej skali Bartek Lew 248 odległości 273 Księżyce (?) wokół planetoid Portrety supernowych w galaktykach spiralnych 17 T. Zbigniew Dworak 114 Potrójne zaćmienie Jowisza 39 Kwazary — obiekty wczesnego Wszechświata, Radiowe zaćmienie Słońca 271 Bogna Pazderska 148 Supergromada gwiazd w naszej Galaktyce 121 Lot do Saturna, Krzysztof Ziołkowski 8 Śmieci kosmiczne 171 Neutrina i ciemna energia — niezwykłe połączenie, Teleskop kosmiczny zobaczył planety pozasłoneczne Michał Frąckowiak 52 113 Nowe testy ogólnej teorii względności, Voyager u granic heliosfery 166 Michał Bejger 4 Widma zapałek, czyli o szkodliwości palenia Podwójny pulsar J0737-3039 — fascynujące papierosów 80 laboratorium fizyki, Agnieszka Słowikowska 160 Zagadkowe wydłużenie doby Saturna 16 Powojenne lata wrocławskiej astronomii, Tadeusz Jarzębowski 258 Zanim powstały gwiazdy 128 Prof, dr hab. Bohdan Paczyński doktorem Zorze na Saturnie raz jeszcze 73 honoris causa Uniwersytetu Wrocławskiego 244 Spektroskopia radiowa, Leszek P. Błaszkiewicz 202 W kraju Świat księżyców Saturna, T. Zbigniew Dworak 56 10 lat Koła Miłośników Astronomii Urodziny 32-m anteny — toruński radioteleskop im. Jana Heweliusza w Urzędowie 270 ma już 10 lat, Magdalena Kunert-Bajraszewska 15-lecieHubble’awOpiOA 190 Anna Bartkiewicz 18 Cząstki i promieniowanie wysokich energii 210 Włodzimierz Zonn 1905— 1975, Konrad Rudnicki 254 Dąbrowskie obserwatorium astronomiczne obchodzi swoje pierwsze urodziny 31 Rozmaitości Mgławice planetarne jako narzędzia do badania Brązowy karzeł na cenzurowanym 75 Wszechświata 211 Dorodny kosmiczny noworodek 272 Nowości z Kielc 123 Dziesiąta planeta? 216 Odległe światy — JENAM 2005 213 Galaktyka pełna faj erwerków 67 Otwarcie Obserwatorium Astronomicznego w Urzędowie 268 Gromada kulista pełna zagadek 120 OZMA2005 265 I ty możesz zostać odkrywcą 39 PTA informuje: XXXII Zjazd Polskiego Kosmiczna odnowa galaktyk spiralnych 74 Towarzystwa Astronomicznego 220 Kosmiczne potęgi mieszkają w skromnych domach 29 VI Konferencja Sekcji Obserwatorów Komet PTMA 32 Lądowanie na Tytanie w OPiOA 67 VIII Ogólnopolski Zlot Miłośników Astronomii Leje zapadliskowe na Terra Meridiani 117 —N iedźwiady 2004 30 Bogusława Humik, Hieronim Humik, Materia X Warsztaty Bieszczadzkie poświęcone kosmiczna na Ziemi, jej źródła i ewolucja 231 polom EM ELF w astrofizyce i geofizyce 215 Encyklopedia uniwersalna Larousse’ a 286 XXI Ogólnopolskie Młodzieżowe Seminarium Jan Kepler, Sen 46 Astronomiczne w Grudziądzu 172 Owen Gingerich, Książka, której nikt nie przeczytał. 142 XXI Seminarium PKiM 124 Roman K. Janiczek, Jan Mietelski, Marek Zawilski, XXXII Zjazd PTA 263 Kalendarz astronomiczny na XXI wiek 85 XXXIII Zjazd TOS 267 Zaćmienie Księżyca na Wielkiej Raczy 33 Galeria obiektów NGC Dariusz Graczyk In Memoriam NGC 2146; NGC 2194; NGC 2237/8,2246 76 Jan Kwaśniewicz 1952-2004 218 NGC 2261; NGC 2264; NGC 2359 125 Jan Palt 1923-2005 218 NGC 2371/2; NGC 2392; NGC 2403 174 Profesor Robert Głębocki 1940-2005 122 NGC 2419; NGC 2440; NGC 2539 221 NGC 2655, NGC 2841 iNGC2903 274 Astronomia w szkole 75 lat kłopotów ze stałą Hubble ’ a 34 Astronomia i muzyka Nietypowa lekcja 35 Jacek Drążkowski Oświata i nauki ezoteryczne 37 „Do nieba i między gwiazdy” 285 Proste doświadczenia (cz. 4) 82 Kroczący z gwiazdami: Jonn Serrie 191 Wirtualna podróż do ziemskich kraterów 278 Michael Stearns i jego muzyka 143 Wszechświat na różnych długościach fal 226 Muzyczny Redshift 47 Wyznaczanie odległości, promienia orbity i rozmiarów Muzyka dla Tytana 95 Jowisza 178 Muzyka Odległych Przestrzeni 239 XLVIII Olimpiada Astronomiczna zakończona 181 Znajdźmy też trochę czasu na historię 130 Ciekawe adresy internetowe. Roman Schreiber Poradnik obserwatora Wiesław Skórzyński 48,96,144,192,240, 288 Interesujące
Recommended publications
  • Expected Differences Between AGB Stars in the LMC and the SMC Due to Differences in Chemical Composition
    New Views of the Magellanic Clouds fA U Symposium, Vol. 190, 1999 Y.-H. Chu, N.B. Suntzef], J.E. Hesser, and D.A. Bohlender, eds. Expected Differences between AGB Stars in the LMC and the SMC Due to Differences in Chemical Composition Ju. Frantsman Astronomical Institute, Latvian University, Raina Blvd. 19, Riga, LV-1586, LATVIA Abstract. Certain aspects of the AGB population, such as the relative number of M and N stars, the mass loss rates, and the initial masses of carbon- oxygen cores, depend on the initial heavy element abundance Z. I have calculated synthetic populations of AGB stars for different initial Z values taking into consideration the evolution of single and close binary stars. I present the results of population syntheses of AGB stars in clusters as a function of different initial chemical compositions. The relation for the tip luminosity of AGB stars versus cluster age as a function of Z is presented and is used to determine the ages for a number of clusters in the LMC and the SMC, including clusters with no previous age determinations. Population simulations show that for low heavy element abundance (Z = 0.001) few M stars are formed with respect to the number of carbon stars. However, the total number of all AGB stars in clusters is not affected by the initial chemical composition. As a result of the evolution of close binary components after the mass exchange, an increase in the range of limiting values of the thermal pulsing AGB star luminosities is expected. The difference between the maximum luminosity on the AGB of single star and the luminosity of a star after a mass exchange event in a close binary system may be as great as 1 magnitude for very young clusters.
    [Show full text]
  • Remerciements – Unité 1
    TVO ILC SNC1D Remerciements Remerciements – Unité 1 Graphs, diagrams, illustrations, images in this course, unless otherwise specified, are ILC created, Copyright © 2018 The Ontario Educational Communications Authority. All rights reserved. Intro Video, Copyright © 2018 The Ontario Educational Communications Authority. All rights reserved. All title artwork and graphics, unless otherwise specified, Copyright © 2018The Ontario Educational Communications Authority. All rights reserved. Logo: Science Presse , Agence Science-Presse, URL: https://www.sciencepresse.qc.ca/, Accessed 14/01/2019. Logo: Curium, Curium, URL: https://curiummag.com/wp-content/uploads/2017/10/logo_ curium-web.png, Accessed 14/01/2019. Logo: Science Étonnante, David Louapre, URL: https://sciencetonnante.wordpress.com/, Accessed 20/03/2018, © 2018 HowStuffWorks, a division of InfoSpace Holdings LLC, a System1 Company. Blog, blogging and blogglers theme, djvstock/iStock/Getty Images Logo: Wordpress, WordPress.com, Automattic Inc., URL: https://wordpress.com/, Accessed 20/03/2018, © The WordPress Foundation. Logo: Wix, Wix.com, Inc., URL: https://static.wixstatic.com/ media/9ab0d1_39d56f21398048df8af89aab0cec67b8~mv1.png, Accessed 14/01/2019. Logo: Blogger, Blogger, Inc., ZyMOS, URL: https://commons.wikimedia.org/wiki/File:Blogger. svg, Accessed 20/03/2018, © Google LLC. HOME A film by Yann Arthus-Bertrand, GoodPlanet Foundation, Europacorp and Elzévir Films, URL: https://www.youtube.com/watch?v=GItD10Joaa0, Published 04/02/2009, Accessed 20/04/2018, Courtesy of the GoodPlanet
    [Show full text]
  • The Resolved Stellar Population in 50 Regions of M83 from Hst/Wfc3 Early Release Science Observations
    The Astrophysical Journal, 753:26 (22pp), 2012 July 1 doi:10.1088/0004-637X/753/1/26 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE RESOLVED STELLAR POPULATION IN 50 REGIONS OF M83 FROM HST/WFC3 EARLY RELEASE SCIENCE OBSERVATIONS Hwihyun Kim1, Bradley C. Whitmore2, Rupali Chandar3, Abhijit Saha4, Catherine C. Kaleida5, Max Mutchler2, Seth H. Cohen1, Daniela Calzetti6, Robert W. O’Connell7, Rogier A. Windhorst1, Bruce Balick8, Howard E. Bond2, Marcella Carollo9, Michael J. Disney10, Michael A. Dopita11,12, Jay A. Frogel13,14, Donald N. B. Hall12, Jon A. Holtzman15, Randy A. Kimble16, Patrick J. McCarthy17, Francesco Paresce18, Joe I. Silk19, John T. Trauger20, Alistair R. Walker5, and Erick T. Young21 1 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA; [email protected] 2 Space Telescope Science Institute, Baltimore, MD 21218, USA 3 Department of Physics & Astronomy, University of Toledo, Toledo, OH 43606, USA 4 National Optical Astronomy Observatories, Tucson, AZ 85726-6732, USA 5 Cerro Tololo Inter-American Observatory, La Serena, Chile 6 Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA 7 Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA 8 Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA 9 Department of Physics, ETH-Zurich, Zurich 8093, Switzerland 10 School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK 11 Mount Stromlo and Siding Spring Observatories, Research School of Astronomy & Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia 12 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 13 Galaxies Unlimited, 1 Tremblant Court, Lutherville, MD 21093, USA 14 Astronomy Department, King Abdulaziz University, P.O.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Chemical Evolution of the Large Magellanic Cloud)
    EVOLUCIÓN QUÍMICA DE LA NUBE GRANDE DE MAGALLANES. (CHEMICAL EVOLUTION OF THE LARGE MAGELLANIC CLOUD) Profesor Guía: Dr. Douglas Geisler Tesis para optar al grado académico de Doctor en Ciencias Físicas Autor RENEÉ CECILIA MATELUNA PÉREZ CONCEPCIÓN - CHILE NOVIEMBRE 2012 Director de Tesis : Dr. Douglas Geisler Departamento de Astronomia, Universidad de Concepción, Chile. Comisión Evaluadora : Dr. Giovanni Carraro. European Southern Observatory, Santiago, Chile. Dipartimento di Astronomia, Universitá di Padova, Padova, Italia. Dr. Sandro Villanova. Departamento de Astronomia, Universidad de Concepción, Chile. Dr. Tom Richtler. Departamento de Astronomia, Universidad de Concepción, Chile. Dedicado a Mi Padre Agradecimientos He llegado al final de un ciclo, y son muchas las personas que me han acompañado de alguna u otra forma en este proceso. Por esta razón, es que decidí hacer estos agradecimientos en un orden más o menos cronológico. Comenzaré por mis padres: Cecilia y René, ya que gracias a ellos estoy aquí. Mamá has sido un gran apoyo en este camino, te agradezco cada gesto de amor y cada sabio consejo que me has dado. Papá, aunque no estas físicamente presente para presenciar este momento, agradezco la oportunidad que me diste para ser fuerte y seguir adelante con mis sueños a pesar de las dificultades y se que estarías muy orgulloso de mi. Muchas gracias papá por el legado que me dejaste, mis hermanos: Alejandra, Gabriel, Mariela, José Luis y Alfredo, con ellos aprendo cada día de que en la diversidad esta la belleza y la armonía, muchas gracias, son un gran apoyo, los amo. A mis tios y primos: tia Quelita, tio Rene, Dany, Pauta y a mi comadre(Cecilia), gracias por entregarme su amor, sus consejos y esos momentos de celebración y risas.
    [Show full text]
  • Reflector December 2019 Pages.Pdf
    Published by the Astronomical League Vol. 72, No. 1 December 2019 EXOPLANET NEWS AN ASTRONOMICAL VOYAGE TO CHILE GRAVITATIONAL LENSES Contents Get Off the Beaten Path Join a Astronomy Tour African Stargazing Safari Join astronomer Stephen James July 17–23, 2020 O’Meara in wildlife-rich Botswana for evening stargazing and daytime safari drives at three luxury field camps. Only 16 spaces available! Optional extension to Victoria Falls. skyandtelescope.com/botswana2020 S&T’s 2020 solar eclipse cruise offers 2 2020 Eclipse Cruise: Chile, Argentina, minutes, 7 seconds of totality off the and Antarctica coast of Argentina and much more: Nov. 27–Dec. 19, 2020 Chilean fjords and glaciers, the legendary Drake Passage, and four days amid Antarctica’s waters and icebergs. skyandtelescope.com/chile2020 Total Solar Eclipse in Patagonia December 9–18, 2020 Come along with Sky & Telescope to view this celestial spectacle in the lakes region of southern Argentina. Experience breathtaking vistas of the lush landscape by day — and the southern sky’s incomparable stars by night. Optional visit to the world-famous Iguazú Falls. skyandtelescope.com/argentina2020 Astronomy Across Italy May, 2021 As you travel in comfort from Rome to Florence, Pisa, and Pad- ua, visit some of the country’s great astronomical sites: the Vat- ican Observatory, the Galileo Museum, Arcetri Observatory, and lots more. Enjoy fine food, hotels, and other classic Italian treats. Extensions in Rome and Venice available.Moved to May 2021 — skyandtelescope.com/italy2020 new dates coming soon! See all S&T tours at skyandtelescope.com/astronomy-travel Contents 2020Amateur Shrine to the Stars Fast Facts CalendarStellafane t, a quiet revolution A century ago in Springfield, Vermon in astronomy took place.
    [Show full text]
  • Catalogue of Large Magellanic Cloud Star Clusters Observed in the Washington Photometric System
    A&A 586, A41 (2016) Astronomy DOI: 10.1051/0004-6361/201527305 & c ESO 2016 Astrophysics Catalogue of Large Magellanic Cloud star clusters observed in the Washington photometric system T. Palma1,2,3,L.V.Gramajo3, J. J. Clariá3,4, M. Lares3,4,5, D. Geisler6, and A. V. Ahumada3,4 1 Millennium Institute of Astrophysics, Nuncio Monseñor Sotero Sanz 100, Providencia, Santiago, Chile e-mail: [email protected] 2 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 3 Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, 5000 Córdoba, Argentina 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 5 Instituto de Astronomía Teórica y Experimental (IATE), 922 Laprida, Córdoba, Argentina 6 Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Chile Received 4 September 2015/Accepted 17 November 2015 ABSTRACT Aims. The main goal of this study is to compile a catalogue of the fundamental parameters of a complete sample of 277 star clusters (SCs) of the Large Magellanic Cloud (LMC) observed in the Washington photometric system. A set of 82 clusters was recently studied by our team. Methods. All the clusters’ parameters such as radii, deprojected distances, reddenings, ages, and metallicities were obtained by applying essentially the same procedures, which are briefly described here. We used empirical cumulative distribution functions to examine age, metallicity and deprojected distance distributions for different cluster subsamples of the catalogue. Results. Our new sample of 82 additional clusters represents about a 40% increase in the total number of LMC SCs observed to date in the Washington photometric system.
    [Show full text]
  • New Insights on the Bursting Formation of Star Clusters in the Large Magellanic Cloud Andres´ E
    Mon. Not. R. Astron. Soc. 418, L40–L44 (2011) doi:10.1111/j.1745-3933.2011.01139.x New insights on the bursting formation of star clusters in the Large Magellanic Cloud Andres´ E. Piatti Instituto de Astronom´ıa y F´ısica del Espacio, CC 67, Suc. 28, 1428 Ciudad de Buenos Aires, Argentina Accepted 2011 August 18. Received 2011 August 12; in original form 2011 June 27 ABSTRACT We present the results on the age estimates of 36 Large Magellanic Cloud (LMC) clusters obtained for the first time from CCD Washington CT1T2 photometry. By using the (T1, C − T1) and (T1, T1 − T2) diagrams, we estimated ages for the cluster sample using the δT1 index. We confirm that the studied cluster sample belong to the ∼2 Gyr bursting formation epoch of the LMC. Furthermore, when rebuiling the cluster age distribution – taken into account the estimated age errors – we found that the number of clusters with ages between 1 and 3 Gyr now doubles that of the known bursting cluster population, which suggests that the tidal interaction between both Magellanic Clouds and, perhaps, also the Milky Way, was more stronger than expected. Key words: techniques: photometric – Magellanic Clouds – galaxies: individual: LMC. on the application of their StarFISH analysis software to the multi- 1 INTRODUCTION band photometry of twenty million of stars from the Magellanic It is known that signs of star cluster formation from bursting Clouds Photometric Survey. The general outlines of their results episodes have been found in the Large Magellanic Cloud (LMC). are consistent with previously published SFHs as well as with Piatti For instance, Piatti et al.
    [Show full text]
  • A Revised and Extended Catalog of Magellanic System Clusters
    A revised and extended catalog of Magellanic System clusters, associations and emission nebulae. II. the LMC Eduardo L. D. Bica1,2,3, Henrique R. Schmitt1,2,3, Carlos, M. Dutra1,2,3, Humberto L. Oliveira1,2,3 ABSTRACT A survey of extended objects in the Large Magellanic Cloud was carried out on the ESO/SERC R and J Sky Survey Atlases, checking entries in previous catalogs and searching for new objects. The census provided 6659 objects including star clusters, emission-free associations and objects related to emission nebulae. Each of these classes contains 3 subclasses with intermediate properties, which are used to infer total populations. The survey includes cross-identifications among catalogs and we present 3246 new objects. We provide accurate positions, classification, homogeneous measurements of sizes and position angles, as well as information on cluster pairs and hierarchical relation for superimposed objects. This unification and enlargement of catalogs is important for future searches of fainter and smaller new objects. We discuss the angular and size distributions of the objects of the different classes. The angular distributions show two off-centered systems with different inclinations, suggesting that the LMC disk is warped. The present catalog together with its previous counterpart for the SMC and the inter-Cloud region provide a total population of 7847 extended objects in the Magellanic System. The angular distribution of the ensemble reveals important clues on the interaction between the LMC and SMC. Subject headings: Catalogs — Magellanic Clouds — galaxies: star clusters — galaxies:stellar content — galaxies:ISM 1. Introduction The systematic study of the Large Magellanic Cloud (LMC) properties is nowadays possible partly arXiv:astro-ph/9810266v1 17 Oct 1998 owing to cataloging efforts carried out throughout decades.
    [Show full text]
  • Acknowledgements
    TVO ILC SNC1D Acknowledgements Acknowledgements – Unit 1 Learning activity 1 Blog Definition, Oxford University Press, URL: https://en.oxforddictionaries.com/definition/ blog, Accessed 20/03/2018. Logo: ScienceBlogs, URL: http://scienceblogs.com/, Accessed 20/03/2018, © 2006-2018 ScienceBlogs LLC. ScienceBlogs is a registered trademark of ScienceBlogs LLC. Logo: The Daily Galaxy, URL: http://www.dailygalaxy.com/, Accessed 20/03/2018. Logo: How Stuff Works, URL: https://science.howstuffworks.com/, Accessed 20/03/2018, © 2018 HowStuffWorks, a division of InfoSpace Holdings LLC, a System1 Company. Logo: IOP - Institute of Physics, URL: http://www.iopblog.org/, Accessed 20/03/2018, © Institute of Physics. Blog, blogging and blogglers theme, djvstock/iStock/Getty Images Logo: Wordpress, WordPress.com, Automattic Inc., URL: https://wordpress.com/, Accessed 20/03/2018, © The WordPress Foundation. Logo: Tumblr, Tumblr, Inc., URL: https://www.tumblr.com/, Accessed 20/03/2018, © Tumblr, Inc., a Delaware corporation and wholly-owned subsidiary of Oath Inc., a Delaware corporation. Logo: Blogger, Blogger, Inc., ZyMOS, URL: https://commons.wikimedia.org/wiki/File:Blogger. svg, Accessed 20/03/2018, © Google LLC. HOME - A film by Yann Arthus-Bertrand, Europacorp and Elzévir Films, URL: https://www. youtube.com/watch?v=HAE24kOPAVU&feature=youtu.be, Published 04/02/2009, Accessed 20/04/2018, Courtesy of the GoodPlanet Foundation. Mining dump trucks, aerial photo, dan_prat/iStock/Getty Images Land clearing, lanolan/iStock/Getty Images Hurricane George damage
    [Show full text]
  • Searching for Chemical Inhomogeneities in Open Clusters Analysis of the CN and CH Molecular Band Strengths in NGC 2158, NGC 2420, NGC 2682, NGC 7789, and Berkeley 29
    A&A 560, A5 (2013) Astronomy DOI: 10.1051/0004-6361/201322048 & c ESO 2013 Astrophysics Searching for chemical inhomogeneities in open clusters Analysis of the CN and CH molecular band strengths in NGC 2158, NGC 2420, NGC 2682, NGC 7789, and Berkeley 29 R. Carrera1,2 and C. E. Martínez-Vázquez1,2 1 Instituto de Astrofísica de Canarias, La Laguna, 38200 Tenerife, Spain e-mail: [rcarrera;cmartinez]@iac.es 2 Departamento de Astrofísica, Universidad de La Laguna, 38200 Tenerife, Spain Received 10 June 2013 / Accepted 21 August 2013 ABSTRACT Context. The total mass of a cluster, which is the main parameter determining its ability to host more than one stellar generation, may constitute a threshold below which the cluster is able to form only a single stellar population. Aims. Our goal is to investigate the existence of star-to-star variations in CN and CH band strengths, which are related to the N and C abundances, respectively, among the stars in five open clusters (NGC 2158, NGC 2420, NGC 2682, NGC 7789, and Berkeley 29). These variations are observed in globular cluster stars and they are linked with the existence of multiple populations. Since these systems are less massive than globular clusters, our results may allow us to constrain the lowest mass necessary to form more than one stellar population. Methods. We measured the strength of the CN and CH bands, which correlate with the C and N abundances, using four molecular indices in low-resolution SDSS/SEGUE spectra. Results. For four of the open clusters (NGC 2158, NGC 2420, NGC 2682, and Berkeley 29) we found that all the stars studied in each of them have similar CN and CH band strengths within the uncertainties, since neither anomalous spreads nor bimodalities have been detected in their CN and CH distributions.
    [Show full text]
  • 1983Apj. . .266. .105P the Astrophysical Journal, 266:105-129, 1983 March 1 © 1983. the American Astronomical Society. All Righ
    .105P .266. The Astrophysical Journal, 266:105-129, 1983 March 1 . © 1983. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1983ApJ. PHOTOMETRIC STUDIES OF COMPOSITE STELLAR SYSTEMS. V. INFRARED PHOTOMETRY OF STAR CLUSTERS IN THE MAGELLANIC CLOUDS S. E. Persson,1 M. Aaronson,2 Judith G. Cohen,3 Jay A. Frogel,4 and K. Matthews3 Received 1982 March 15; accepted 1982 August 24 ABSTRACT The results of an infrared photometric study of the integrated light of 84 clusters in the Large and Small Magellanic Clouds (LMC and SMC) are presented. These clusters span nearly the complete range of cluster ages in the Clouds. In contrast to uvgr and UBV cluster colors which vary smoothly with age, the infrared colors display wide variations among the Sear le, Wilkinson, and Bagnuolo groups IV-VI, i.e., in the “intermediate age” domain of ~l-8 x 109 yr. Very red J — K and H — K colors for these clusters are shown to be due to the presence of luminous (Mbol < — 4) carbon stars which are absent in the youngest and oldest clusters, and which have no effect upon the visible colors. An analysis of the CO and H — K data shows that on average half of the bolometric luminosity for 20 intermediate-age clusters comes from carbon stars on the asymptotic giant branch. This analysis agrees well with the recent carbon star surveys of Aaronson and Mould, Frogel and Cohen, and Lloyd-Evans. The effects of luminous carbon stars upon the infrared colors of the parent clusters are strong enough that metal-poor, intermediate-age stellar populations may be detectable in the integrated light of more distant galaxies.
    [Show full text]