Semen Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microinjection & Transfection 2016-2017
WORLD PRECISION INSTRUMENTS Instrumenting scientific ideas Microinjection & Transfection 2016-2017 Come see us at The Allied Genetics 2016 Conference • July 13-17 • Booths # 623 & 816/818 Everything you need for Microinjection Microinjection processes use either metal microinjection Recently, WPI introduced its customizable Microinjection needles or glass micropipettes to inject small liquid System with everything you need to get started. We can volumes. For example, genetic material may be inserted help you customize your system with many options and into a living cell, a drug introduced into an eye or brain, microinjection system accessories. The basic system or fluid injected into a muscle. Typically, microinjection includes: is performed under a microscope. A stereotaxic frame l Microinjection pump like the PV820 Pneumatic setup may be required. PicoPump l LED lighted microscope base with a PZMIII Stereo Microscope and an articulating mirror l Micromanipulator l Many accessories WPI offers a variety of pumps along with special syringes, stereotaxic frames, glass capillaries and needles. The setup you choose depends on the size of your microinjection aliquots, the volume to be injected and the size of needle or glass tip you choose. In addition, we offer an electroporator for transfection procedures. Whether you are working with Danio rerio (zebrafish), Xenopus, Drosophila or Caenorhabditis elegans, we can help you customize a microinjection system for your application. Options for Customizing Your System INJECTOR ✱ PV820 Pneumatic PicoPump with Hold Pressure • PV830 Pneumatic PicoPump with Hold Designed to simplify intracellular injection and a variety Microprocessor- The versatile Pressure and Vacuum of other micro in jec tion tasks, WPI's PicoPumps use UMP3 controlled injector uses • Nanoliter2010 carefully regulated air pres sures for se cur ing cells and injecting them with fluid. -
1997 Asa Program.Pdf
Friday, February 21 12:00 NOON- 11:00 PM Executive Council Meeting (lunch and supper served) (Chesapeake Room NB) Saturday, February 22 8:00-9:40 AM Postgraduate Course (Constellation 3:00-5:00 PM Postgraduate Course (Constellation Ballroom A) Ballroom A) 9:40-1 0:00 AM Refreshment Break 6:00-7:00 PM Student Mixer (Maryland Suites-Balti 10:00-12:00 NOON Postgraduate Course (Constellation more Room) Ballroom A) 7:00-9:00 PM ASA Welcoming Reception (Atrium 12:00-1 :00 PM Lunch (on your own) Lobby) 7:00-9:00 PM Exhibits Open (Constellation Ball I :00-2:40 PM Postgraduate Course (Constellation Ballroom A) rooms E, F) 2:40-3:00 PM Refreshment Break 9:00- 1 I :00 PM Executive Council Meeting (Chesa peake Room NB) Sunday, February 23 7:45-8:00 AM Welcome and Opening Remarks 12:00-1 :30 PM Women in Andrology Luncheon (Ches (Constellation Ballroom A) apeake Room NB) 8:00-9:00 AM Serono Lecture: "Genetics of Prostate Business Meeting 12:00-12:30 Cancer" Patrick Walsh (Constellation Speaker and Lunch 12:30-1:30 Ballroom A) I :30-3:00 PM Symposium I: "Regulation of Testicu 9:00-10:00 AM American Urological Association Lec lar Growth and Function" (Constellation ture: "New Medical Treatments of Im Ballroom A) potence" Irwin Goldstein (Constella Patricia Morris tion Ballroom A) Martin Matzuk 10:00-10:30 AM Refreshment Break/Exhibits 3:00-3:30 PM Refreshment Break/Exhibits (Constellation Ballrooms E, F) (Constellation Ballrooms E, F) 10:30-12:00 NOON Oral Session I: "Genes and Male Repro 3:30-4:30 PM Oral Session II: "Calcium Channels duction" (Constellation Ballroom A) and Male Reproduction" (Constellation Ballroom A) 12:00- 1 :30 PM Lune (on your own) � 4:30-6:30 PM Poster Session I (Constellation Ball �4·< rooms C, D) \v\wr 7:30-11:00 PM Banquet (National Aquarium) Monday, February 24 7:00-8:00 AM Past Presidents' Breakfast 12:00-1 :30 PM Simultaneous Events: (Pratt/Calvert Rooms) I. -
Laboratory Equipment Reference Sheet
Laboratory Equipment Stirring Rod: Reference Sheet: Iron Ring: Description: Glass rod. Uses: To stir combinations; To use in pouring liquids. Evaporating Dish: Description: Iron ring with a screw fastener; Several Sizes Uses: To fasten to the ring stand as a support for an apparatus Description: Porcelain dish. Buret Clamp/Test Tube Clamp: Uses: As a container for small amounts of liquids being evaporated. Glass Plate: Description: Metal clamp with a screw fastener, swivel and lock nut, adjusting screw, and a curved clamp. Uses: To hold an apparatus; May be fastened to a ring stand. Mortar and Pestle: Description: Thick glass. Uses: Many uses; Should not be heated Description: Heavy porcelain dish with a grinder. Watch Glass: Uses: To grind chemicals to a powder. Spatula: Description: Curved glass. Uses: May be used as a beaker cover; May be used in evaporating very small amounts of Description: Made of metal or porcelain. liquid. Uses: To transfer solid chemicals in weighing. Funnel: Triangular File: Description: Metal file with three cutting edges. Uses: To scratch glass or file. Rubber Connector: Description: Glass or plastic. Uses: To hold filter paper; May be used in pouring Description: Short length of tubing. Medicine Dropper: Uses: To connect parts of an apparatus. Pinch Clamp: Description: Glass tip with a rubber bulb. Uses: To transfer small amounts of liquid. Forceps: Description: Metal clamp with finger grips. Uses: To clamp a rubber connector. Test Tube Rack: Description: Metal Uses: To pick up or hold small objects. Beaker: Description: Rack; May be wood, metal, or plastic. Uses: To hold test tubes in an upright position. -
Product Overview
Product Overview Electrophysiology 2020 • Patch Clamp Amplifier • Electrophysiological Accessories • Two Electrode Voltage Clamp • Electrical Shielding • Automated Patch Clamp Systems • Pipette & Electrode Manufacturing • Data Acquisition Boards • Software www.heka.com For over 45 years HEKA has designed and manufactured sophisticated instrumentation and software for biomedical and industrial research applications. Through the years, HEKA has achieved an unparalleled reputation for precision and quality. Medical, pharmaceutical and industrial research facilities world-wide rely on HEKA ingenuity for their discoveries. While there have been many changes in research, instrumentation, and software, our commitment to bring innovative technology to our customers remains constant. HEKA is a select group of engineers, biomedical researchers, and computer scientists who pride themselves on the quality of HEKA products. HEKA offers complete pre- and post-sales technical support, and takes care of each customer personally. In every way, HEKA provides solutions. HEKA Elektronik GmbH is proud to be part of the Smart Ephys umbrella. Together with our other Harvard Bioscience, Inc. brands Multi Channel Systems GmbH and Warner Instruments we offer complete solutions for electrophysiology. You will find the high-quality products and service that you know and trust from each of the individual companies, but you can get information on all products, complete set-ups (e.g. patch clamp rigs), and product consultation from one source. Please check out the Smart Ephys website and contact your local sales representative with any questions. Buy Online The Smart Ephys one-stop-shop concept applies to online orders as well. Quickly order consumables and accessories via our webshop. Expedite equipment acquisition by generating your own quote for your purchasing department. -
Laboratory Safety Regulations Humboldt State University • Department of Chemistry Lower Level
Version 3.0 September 28,, 2015 Laboratory Safety Regulations Humboldt State University • Department of Chemistry Lower Level FAILURE TO OBSERVE SAFETY PRECAUTIONS MAY RESULT IN IMMEDIATE DISMISSAL FROM THE LABORATORY AND ASSOCIATED LECTURE! A. General 1. FirstAid kits are available in the following locations: Main stockroom—SA 569; Organic Stockroom—SA 566; Analytical/Inorganic/Physical Lab—SA 369. Bandaids for minor cuts are available in the main stockroom. 2. Notify your instructor as soon as possible after all accidents and/or injuries regardless of their severity. If you need medical treatment, you will be promptly taken to the Student Health Center. In case of accident after 5:00 pm or on weekends, call the campus police at 911. 3. Perform no unauthorized experiments. 4. Horseplay, pranks, and other acts of mischief are strictly prohibited and will result in immediate dismissal from the laboratory. 5. Work with chemicals only after you have learned about their potential hazards. Then, proceed with caution. 6. There are always risks when working with chemicals so work cautiously and defensively. Safety Data Sheets (SDS) are available in the Main Stockroom and are also available on the Web. 7. You are required to determine the hazards of any chemical before you use the chemical. For example, ask yourself the following: ● What are the greatest risks from using this chemical? How can I minimize these risks? ● In what form is this chemical most hazardous? Least hazardous? ● How can I arrange my work so that the chemical is used in the least hazardous manner? ● If I have to transport this chemical, what is the safest way to do so? ● How would I respond if the chemical were spilled? 8. -
Reduced Prostaglandin Levels in the Semen of Men with Very High Sperm Concentrations R
Reduced prostaglandin levels in the semen of men with very high sperm concentrations R. W. Kelly, I. Cooper and A. A. Templeton Medical Research Council, Unit ofReproductive Biology, 2 Forrest Road, Edinburgh EHI 2QW, and *Department of Obstetrics and Gynaecology, University of Edinburgh, 23 Chalmers Street, Edinburgh EH3 9ER, U.K. Summary. The prostaglandin levels have been measured in a group of men with sperm concentrations greater than 300 \m=x\106/ml and compared with the levels in men with sperm concentrations of 50 to 150 \m=x\106/ml. The distribution of the PG levels in all groups was highly skewed but the data could be transformed to a normal distribution by taking logarithms. Comparison of the PG levels showed a highly significant lowering of the PG levels in the polyzoospermic group when compared with either of the groups with normal sperm concentrations. Introduction Although prostaglandins (PGs) were first discovered in human seminal plasma (Goldblatt, 1933; von Euler, 1934, 1935) and although a relationship between PG levels in semen and fertility were apparently established in early investigations of seminal PG content (Bygdeman, Fredricsson, Svanborg & Samuelsson, 1970), the function of these compounds in semen is still not clear. The first PGs to be found in human semen were those of the E and F series (Samuelsson, 1963) which were followed by reports of the A, B, 19-hydroxy A and 19-hydroxy series (Hamberg & Samuelsson, 1966).The finding that the 19-hydroxy PGEs are the major PGs of human semen (Taylor & Kelly, 1974; Jonsson, Middleditch & Desiderio, 1975) has led to the suggestion that the A, B, 19-hydroxy A and 19-hydroxy PGs in semen and elsewhere are artefacts (Middleditch, 1975). -
Male Infertility, Asthenozoospermia, Teratozoospermia, Oligozoospermia, Azoospermia
Clinical Medicine and Diagnostics 2019, 9(2): 26-35 DOI: 10.5923/j.cmd.20190902.02 Semen Profile of Men Presenting with Infertility at First Fertility Hospital Makurdi, North Central Nigeria James Akpenpuun Ikyernum1, Ayu Agbecha2,*, Stephen Terungwa Hwande3 1Department of Medical and Andrology Laboratory, First Fertility Hospital, Makurdi, Nigeria 2Department of Chemical Pathology, Federal Medical Centre, Makurdi, Nigeria 3Department of Obstetrics and Gynaecology, First Fertility Hospital, Makurdi, Nigeria Abstract Background: There is a paucity of information regarding male infertility, where data exist, fertility estimates heavily depends on socio-demographic household surveys on female factor. In an attempt to generate reliable male infertility data using scientific methods, our study assessed the seminal profile of men. Aim: The study aimed at determining the pattern of semen profile and its relationship with semen concentration in male partners of infertile couples. Materials and Methods: the cross-sectional study involved 600 male partners of infertile couples from June 2015 To December 2017. Frequency percentages of socio-demographics, sexual history/co-morbidities, and semen parameters were determined. The association of semen concentration with other semen parameters, socio-demographics, and sexual history/co-morbidities was also determined. Results: asthenozoospermia and teratozoospermia were the commonest seminal abnormalities observed, followed by oligozoospermia and azoospermia. Primary infertility (67%) was higher than secondary infertility (33%). Leukospermia was observed in 58.5% of male partners. No significant (p>0.05) association was observed between socio-demographics, co-morbidities, and semen concentration. History of sexually transmitted infections (p<0.05) and other semen parameters (p<0.005) were significantly associated with semen concentration. -
Laboratory Equipment Used in Filtration
KNOW YOUR LAB EQUIPMENTS Test tube A test tube, also known as a sample tube, is a common piece of laboratory glassware consisting of a finger-like length of glass or clear plastic tubing, open at the top and closed at the bottom. Beakers Beakers are used as containers. They are available in a variety of sizes. Although they often possess volume markings, these are only rough estimates of the liquid volume. The markings are not necessarily accurate. Erlenmeyer flask Erlenmeyer flasks are often used as reaction vessels, particularly in titrations. As with beakers, the volume markings should not be considered accurate. Volumetric flask Volumetric flasks are used to measure and store solutions with a high degree of accuracy. These flasks generally possess a marking near the top that indicates the level at which the volume of the liquid is equal to the volume written on the outside of the flask. These devices are often used when solutions containing dissolved solids of known concentration are needed. Graduated cylinder Graduated cylinders are used to transfer liquids with a moderate degree of accuracy. Pipette Pipettes are used for transferring liquids with a fixed volume and quantity of liquid must be known to a high degree of accuracy. Graduated pipette These Pipettes are calibrated in the factory to release the desired quantity of liquid. Disposable pipette Disposable transfer. These Pipettes are made of plastic and are useful for transferring liquids dropwise. Burette Burettes are devices used typically in analytical, quantitative chemistry applications for measuring liquid solution. Differing from a pipette since the sample quantity delivered is changeable, graduated Burettes are used heavily in titration experiments. -
Proceedings of the Indiana Academy of Science
m A Simple Apparatus for the Study of Phototropic Responses in Seedlings. Geo. N. Hoffer. The purpose of this apparatus is to determine the minimum (piantity of light, acting as a lateral stimulus, that will produce a curvature response in seedlings of various kinds as well as some of the fungi, such as Fhj/comyccs and PUoJxAuh. Any kind of light may lie used, Iiut in the comparative studies I use direct sunlight. The <iuantity of liglit is regulated by opening and closing an iris diaphragm with various-sized apertures for definite lengths of time. The apparatus is made from a microscope carrying case. As shown in the photograph, Fig. 1, the outside attachments are the drawtube and rack and pinion of a microscope removed from the base and attached to one side of the box. Tlie tube works through a hole in the side of the box. The opening is made light proof by a velvet collar. Fig. III. \(\ glued to the rim and held to the tube of the scope by rubber I)ands. Into anotlu'r hole is Gttid a hemispheric, revolving iris diaphragm. Fig. Ill, I. This is on the adjacent side of the box close to the microscope and en the same level with the objective of the microscope. A mirror is at- tached to the box to reflect light directly into it through the iris and onto the plant. A micrometer eyepiece in tlie microscope is the index by which all of the readings are made. The illumination for the readings is supplied by the light which passes through the bottle, Fig. -
EXTRACTING DNA (DNA = Deoxyribonucleic Acid) from COMMON FOOD INGREDIENTS
ACTIVITY: EXTRACTING DNA (DNA = deoxyribonucleic acid) FROM COMMON FOOD INGREDIENTS DNA Extraction – Onion method #1: Ingredients: Isopropyl alcohol* Ice/water bath ½ onion distilled water ¼ tsp sodium chloride (table salt) (1.5 g) 1 mL ¾ tsp sodium hydrogen carbonate (baking soda) (5 g) 4 mL 1 tsp name brand dish soap or liquid detergent 5 mL *traditional experiments recommend 99%, but this is not readily available; 70% is readily available from most pharmacies Materials: 1 paring knife 1 cutting board Ice bucket or container for ice solution Measuring cups or 125 mL and 250 mL Erlenmeyer flasks Strainer or funnel Paper towels or small coffee filters Glass stirring rods or wooden stir sticks Clear bowls or test tubes 1. Place isopropyl alcohol in ice/water bath or in the freezer to cool thoroughly. 2. Buffer solution: 125 mL of water (distilled water, if available) ½ cup 1 mL (1.5 grams) of sodium chloride (table salt) ¼ tsp 4 mL (5.0 grams) baking soda (sodium hydrogen carbonate) ¾ tsp 5 mL of good quality liquid laundry detergent, 1 tsp Make the buffer solution by pouring placing all the ingredients into a clean 250 mL Erlenmeyer flask or clean container. Chill the buffer solution by placing the flask in a larger beaker filled with crushed ice and water. Note: buffer solutions are used in this lab for several reasons. • the saltiness and acidity (pH) of the solution is very close to that in living things; as a result, the DNA will like to dissolve into this solution. • the detergent is added to help break down cell walls in the onion cells. -
Laboratory Equipment AP
\ \\ , f ?7-\ Watch glass 1 Crucible and cover Evaporating dish Pneumatlo trough Beaker Safety goggles Florence Wide-mouth0 Plastic wash Dropper Funnel flask collecting bottle pipet Edenmeyer Rubber stoppers bottle flask € ....... ">. ÿ ,, Glass rod with niohrome wire Scoopula (for flame re,sting) CruoiNe tongs Rubber ubing '1 ,v .... Test-tube brush square Wire gau ÿ "\ file Burner " Tripod Florence flask: glass; common sizes are 125 mL, 250 mL, 500 .d Beaker: glass or plastic; common sizes are 50 mL, mL; maybe heated; used in making and for storing solutions. 100 mL, 250 mL, 400 mL; glass beakers maybe heated. oÿ Buret: glass; common sizes are 25 mL and 50 mL; used to Forceps: metal; used to hold or pick up small objects. Funnel: glass or plastic; common size holds 12.5-cm diameter measure volumes of solutions in titrafions. Ceramic square: used under hot apparatus or glassware. filter paper. Gas burner: constructed of metal; connected to a gas supply Clamps" the following types of clamps may be fastened to with rubber tubing; used to heat chemicals (dry or in solution) support apparatus: buret/test-tube clamp, clamp holder, double buret clamp, ring clamp, 3-pronged jaw clamp. in beakers, test tubes, and crucibles. Gas collecting tube: glass; marked in mL intervals; used to 3: Clay triangle: wire frame with porcelain supports; used to o} support a crucible. measure gas volumes. Glass rod with nichrome wire: used in flame tests. Condenser: glass; used in distillation procedures. Q. Crucible and cover: porcelain; used to heat small amounts of Graduated cylinder: glass or plastic; common sizes are 10 mL, 50 mL, 100 mL; used to measure approximate volumes; must solid substances at high temperatures. -
NI\5/\ I1\L111'1 'I\L IIII \Lll' 11'1' '11\L IIIII '1'1 L\Ll NF02634 NASA CONTRACTOR REPORT 166375
NASA CONTRACTOR REPORT 166375 NASA-CR-166375 19820023067 ,, Algal Culture Studies Related to a Closed Ecological Life Support System (CELSS) 1 J. '" ,,, '- ./ R. Radmer O. OllInger A. Venables E. Fernandez tt3~~n'l copy l:~ 1 1 1982 ~ I I U\NGL EY R::-SEARlt-' ctNTER L:3RARY N!\SA Ht..~',oTON, V'RGIN'A CONTRACT NAS2-10969 July 1982 NI\5/\ I1\l111'1 'I\l IIII \lll' 11'1' '11\l IIIII '1'1 l\ll NF02634 NASA CONTRACTOR REPORT 166375 Algal Culture Studles Related to a Closed Ecologlcal Llfe Support System (CELSS) R. Radmer o. 0111nger A. Venables E. FeYJ1 andez Martln Marletta Laboratorles 1450 South Rolllng Road Ba1tlmore, MD 21227 Prepared for Ames Research Center under Contract NAS2-10969 NI\S/\ National Aeronautics and Space Administration Ames Research Center Moflett Field California 94035 TABLE OF CONTENTS Page I. INTRODUCTION 1 II. DESCRIPTION OF THE CONSTANT CELL DENSITY APPARATUS (CCDA) FOR CONTINUOUS CULTURE OF ALGAE 2 III. CCDA OPERATING CHARACTERISTICS 4 IV. EXCRETION OF ALGAL BY-PRODUCTS 6 V. NITROGEN UTILIZATION AND EXCRETION 7 VI. FINALE 10 VII. REFERENCES 11 APPENDIX A - ANALYTICAL PROCEDURES A-I APPENDIX B - SAMPLE PREPARATION B-1 BIBLIOGRAPHY OF CELSS REPORTS C-l I. INTRODUCTION During the past year, we have studied several aspects of the con tinuous culture of the green alga Scenedesmus obliquus (Gaffron strain D3). Our primary goals were to 1) set up and maintain continuous cultures, 2) monitor the cultures to determine culture stability, biomass produc tion, and by-product production, and 3) determine the efficiency of nitro gen utilization and the possible production of nitrogen by-products, such as N20.