Uppermost Cambrian and Lowest Ordovician Cowodont and Trilobite Biostratigraphy in Northwestern Virginia

Total Page:16

File Type:pdf, Size:1020Kb

Uppermost Cambrian and Lowest Ordovician Cowodont and Trilobite Biostratigraphy in Northwestern Virginia May 1988 No. 2 UPPERMOST CAMBRIAN AND LOWEST ORDOVICIAN COWODONT AND TRILOBITE BIOSTRATIGRAPHY IN NORTHWESTERN VIRGINIA Randall C. Orndotffl, John F. Taylor2, and Richard W. Traut2 The Shenandoah Valley in Virginia is part of the ex- tensive Great Valley section of the Valley and Ridge physiographic province. The Great Valley is eroded, folded Cambrian through Middle Ordovician carbonate rocks and Upper Ordovician fine-grained siliciclastic lithologies. Studies by Sando (1957, 1958) established the stratigraphic position of the Cambrian-Ordovician boundary in the Great Valley carbonates of south-cen- tral Pennsylvania and western Maryland, but the po- sition of this systemic boundary in Virginia has not been documented. The preliminary results of a biostrati- graphic study utilizing conodont and trilobite faunas to determine more precisely the position of the Cambrian- Ordovician boundary in the northwestern Virginia area are reported. This is a joint study and researchers are listed alphabetically; Orndorff is responsible for the conodont work, and Taylor and Traut are responsible for the trilobites. Two sections in the Shenandoah Valley were mea- sured and sampled (Figure l).Conodonts and trilobites were recovered from a section along Narrow Passage Creek, 3 km southwest of Woodstock, Shenandoah lDepartment of Geological Sciences, Old Dominion Uni- @ versity, Norfolk, Virginia 23508; present address: U.S. Geological Survey, E-501 U.S. National Museum, Wash- Figure 1. Generalized geologic map of part of north- ington, D.C. 20560. western Virginia showing the location of sections stud- 2Geoscience Department, Indiana University of Penn- ied: NPC-Narrow Passage Creek, T-Tirnberville (mod- sylvania, Indiana, Pennsylvania 15705. itied from Hack, 1965). 14 VIRGINIA DIVISION OF MINERAL RESOURCES Vol. 34 County. A second section along Honey Run, 4 km north- are insufficient to establish firmly whether the occur- west of Timberville, Rockingham County, was sampled rence of the thick-bedded limestones in northern Vir- for conodonts; no trilobites were collected. Structurally, ginia is approximately the same stratigraphic level as the sections lie west of the Massanutten synclinorium the base of the massive limestones in Maryland and and east of the North Mountain fault. The Narrow Pas- Pennsylvania. It is possible, perhaps even likely, that sage Creek section is on the east limb of the Mount the thick-bedded lithology is a biohermal facies that has Jackson anticline. The Timberville section is eastward- its lowest occurrence at significantly different strati- dipping strata on the hanging wall of the North Moun- graphic levels in different areas within the Great Valley. tain fault. Our objectives were to determine the lithostrati- graphic position of the Cambrian-Ordovician boundary BIOSTRATIGRAPHY in northwestern Virginia and to document the succes- sion of conodont and trilobite faunas through the bound- Figure 2 shows the conodont- and trilobite-based ary interval in this region for comparison with the biostratigraphic units recognized in upper most Cam- successions observed elsewhere in North America. brian and Early Ordovician strata in North America. Conodont Conodont Trilobite Trilobite Series zones subzones subzones zones LITHOSTRATIGRAPHY Bellefontia chsrnberlaini I .-5 The strata sampled in this investigation represent the .-m Bellefontia 2 upper part of the Conococheague Formation and the 0 ,o 2 m coiiieana lower part of the Stonehenge Formation. The lithologi- c 2 g a -o X m Xenostegiurn pp cally heterogeneous Conococheague Formation in- Y cludes limestone, dolostone, sandstone, and siltstone. tranklinense I Symphysurina These lithologies occur in 5- to 12-meter-thick cycles z woosteri interpreted to represent progressively shallower-water Q: 0 m Syrnphysurina environments. Subtidal carbonates, including oolitic > m 0 m Upper Part c C butboss .-.- lime grainstone, intraclastic lime grainstone ("edgewise n a a a (O - a conglomerate"), and thrombolitic or stromatolitic lime 0 Y Lower part h C u P boundstone, occur low in the cycles. Laminated dolo- Clavohamulus mite andlor sandstone representing peritidal conditions Syrnphysurina 5 hintzei cn cap the cycles (Demicco and Mitchell, 1982). S a* a Laminated dolomite and oolitic lime grainstone and > Hirsutodontus m brevispicata sandstone common in the Conococheague Formation 2 simplex a are rare to absent in the lower part of the Stonehenge a Clavoharnulus a .-(0 in the Great Valley. A lithology common in the Stone- 'FI elongatus Mis~isquoia 0 0 a - 0 henge, but not present in the Conococheague, is thick- ,, Fryxellodontus 0 typicalis .-0 to very thick-bedded gray to dark gray limestone with .- inornatus a 0 a 0 .- Missisquoia crinkly siliceous laminations. Small algal bioherms sep- Hirsutodontus I arated by channels filled with skeletal and intraclastic depressa lime grainstone are common within the thick-bedded hirsutus Eurekia apopsis Carnbrooistodus lithology. We tentatively place the Conococheague- Z Saukiella serotina Stonehenge contact in our sections at the base of the minutus lowest interval of thick-bedded limestone with crinkly Eoconodontus siliceous laminations. This occurs 108 meters above the notchpeakensis Saukiella junia U) base of the Narrow Passage Creek section and 82 me- Proconodontus W 0 ters above the base of the Timberville section. Sando 2 rnuelieri (1957) similarly utilized the base of the "massive algal n P ~roconod~nt~~Rasettia mama beds" as the base of the Stonehenge in mapping the Great Valley in Maryland, although he subsequently posterocostatus (Sando, 1958) lowered this contact, adding approxi- v mately 61 meters of thin-bedded, impure limestone to Figure 2. Conodont and trilobite biostratigraphic zones the base of the formation as the Stoufferstown Member. in the Upper Cambrian and Lower Ordovician of North The limited biostratigraphic data available at present America (after Miller and others, 1982). No. 2 VIRGINIA MINERALS 15 @ Ross (1951) and Hintze (1952) described Lower Ordo- Proconodontus Zone: Conodont collections from the vician trilobite faunas from the Basin and Range Prov- Proconodontus Zone characteristically contain species ince of the western U.S. and placed the Cambrian- of Proconodontus and Cambrooistodus, two genera Ordovician boundary at the base of the Symphysurina that do not range upward into the C. proavus Zone or Zone. Subsequently, Winston and Nicholls (1967) re- younger strata. A possible exception is Proconodontus ported an older Ordovician fauna from central Texas muelleri Miller which, in a few instances, has been re- and lowered the systemic boundary to the base of the ported in association with C. proavus faunas (J. F. newly defined Missisquoia Zone. This horizon pres- Miller, written communication, 1986). Proconodontus ently is used as the Cambrian-Ordovician boundary in serratus Miller and species of Cambrooistodus do not North America (Stitt, 1971, 1977; Taylor and Halley, occur in rocks younger than the Proconodontus Zone. 1974; Miller and others, 1982). Fortey (1983) proposed Conodont collections from the Narrow Passage Creek that Missisquoia Shaw is a junior synonymy of Par- section (NPC) allow recognition of the two youngest akoldinioidia Endo. Westrop (1986), however, consid- subzones of the Proconodontus Zone. Samples from ered this synonymy premature given the limited infor- NPC-5 to NPC-58 (5 to 58 meters above the base of the mation presently available concerning morphologic section) yielded conodonts characteristic of the Eocon- variability within Parakoldinioidia. We share Wes- odontus notchpeakensis Subzone of the Proconodontus trop's opinion that a decision regarding the relationship Zone (Figure 3). The lowest occurrence of Cambroois- of Parakoldinioidia and Missisquoia should be de- todus minutus (Miller) at NPC-58.5 marks the local ferred pending additional study of type material of Par- base of the overlying Cambrooistodus minutus Sub- akoldinioidia. Consequently, we employ the more fa- zone. The C. minutus Subzone is at least 4.5 meters miliar name, Missisquoia, for the genus in question and thick at Narrow Passage Creek. the biostratigraphic units characterized by species of that genus. Cordylodus proavus Zone: The lowest occurrence of As shown in Figure 2, the base of the trilobite Mis- Cordylodus proavus Muller, Hirsutodontus hirsutus sisquoia Zone falls within the lowest subzone of the Miller, or both, defines the base of the C.' proavus Zone. conodont Cordylodus proavus Zone. The base of the C. The base of the C. proavus Zone in the Narrow Passage proavus Zone, which corresponds with the base of the Creek section occurs 64 meters above the base of the Eurekia apopsis trilobite Subzone, provides a good ap- section, 44 meters below the Conococheague-Stone- proximation of the Cambrian-Ordovician boundary in henge contact as defined in this study. Conodonts from sections or intervals where trilobites are scarce or lack- the base of the Timberville section, 75 meters below the ing. Similarly, the base of the Hirsutodontus simplex Conococheague-Stonehenge contact, include H. hirsu- Subzone of the C. proavus Zone is only slightly younger tus indicating that the base of the Cordylodus proavus than the base of the Symphysurina Zone. We use the Zone lies below the base of that section. lowest occurrence of Utahconus utahensis (Miller), a Miller (1978, 1980) recognized five subzones within conodont species that does not occur below the base of the C. proavus Zone. The small size of many collections
Recommended publications
  • Tremadocian ,Conodonts of the North Atlantic Provi
    ACT A PAL A EON T 0 LOG ICA POLONICA Vol. 25 1980 NO.1 HUBERT SZANIAWSKI CONODONTS FROM THE TREMADOCIAN CHALCEDONY BEDS, HOLY CROSS MOUNTAINS (POLAND) SZANIAWSKI H.: Conodonts from the Tremadocian chalcedony beds, Holy Cross Mts. - Acta Palaeont. Polonica, 25, 1, 101-121, May, 1980. Conodonts extracted by means of hydrofluoric acid from the Upper Tremadocian chalcedony beds of the Holy Cross Mts. are described. Two multlelemental sim­ ple-cone apparatuses are recognized: Drepanoistodus deLtijer pristinus (Viira) and Acodus? sp. Drepanoistodus deltijer (= Paltodus deLtijer) Zone is subdivided into D. deltijer pristinus and D. deltijer deltijer Subzones. Correlation of the subzones over northern Europe, and approximate intercontinental correlation, are esta­ blished. Possible differences in internal structure are recognized between the Tremadocian cordylodids and simple cones. Key W 0 r d s: conOdonts, stratigraphy, Ordovician, Tremadocian, Poland. Hubert Szaniawski, Polska Akademia Nauk, Zaklad Paleobiologit, AI. ZWirki i Wigury 93, 02-089 Warszawa, Poland. Received: September, 1979. INTRODUCTION Tremadocian ,conodonts of the North Atlantic Province are !known fwm a few locaLities ~n the Balt'oscandian area (Pander 1856; Lindstrom 1955, 1971, Sergeeva 1966; Viira 1966, 1970, 1974; Van Wamel 1974; Magi and Viira 1976). However, the Tremadoc~an sequence is nowhere at those localities complete and hence, the pre1sent knowledge of oonodonts of this age is far from suff,tcd:ent. The ilnvestigated 'conodiont assemblage from the Holy Cross Mts. is also derd:ved from merely a part of the Tre­ madocian and dJt includes mOIStly forms known to soielme. Nonetheless, it contrihutes to the reoonstruction 'of two multielemental pr,imitiivesim­ pIe-cone apparatuses and to refinement of the conodont biostratigraphy.
    [Show full text]
  • Lee-Riding-2018.Pdf
    Earth-Science Reviews 181 (2018) 98–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Marine oxygenation, lithistid sponges, and the early history of Paleozoic T skeletal reefs ⁎ Jeong-Hyun Leea, , Robert Ridingb a Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA ARTICLE INFO ABSTRACT Keywords: Microbial carbonates were major components of early Paleozoic reefs until coral-stromatoporoid-bryozoan reefs Cambrian appeared in the mid-Ordovician. Microbial reefs were augmented by archaeocyath sponges for ~15 Myr in the Reef gap early Cambrian, by lithistid sponges for the remaining ~25 Myr of the Cambrian, and then by lithistid, calathiid Dysoxia and pulchrilaminid sponges for the first ~25 Myr of the Ordovician. The factors responsible for mid–late Hypoxia Cambrian microbial-lithistid sponge reef dominance remain unclear. Although oxygen increase appears to have Lithistid sponge-microbial reef significantly contributed to the early Cambrian ‘Explosion’ of marine animal life, it was followed by a prolonged period dominated by ‘greenhouse’ conditions, as sea-level rose and CO2 increased. The mid–late Cambrian was unusually warm, and these elevated temperatures can be expected to have lowered oxygen solubility, and to have promoted widespread thermal stratification resulting in marine dysoxia and hypoxia. Greenhouse condi- tions would also have stimulated carbonate platform development, locally further limiting shallow-water cir- culation. Low marine oxygenation has been linked to episodic extinctions of phytoplankton, trilobites and other metazoans during the mid–late Cambrian.
    [Show full text]
  • Version 4.Cdr
    THE GEOMAGNETIC POLARITY TIME SCALE FOR EARY PALEOZOIC: DATA AND SYNTHESE 1 2 1 Vladimir Pavlov and Yves Gallet 2 Institute of Physics of the Earth, Institut de Physique Russian Academy of Sciences INTRODUCTION EARLY CAMBRIAN: Kirschvink and LONG STANDING CONROVERSY: Constructing the Geomagnetic Polarity Time Scale (GPTS) through the geological history is of crucial importance to address Rozanov, 1984 TWO PRIMARY POLES FOR ONE SIBERIAN PLATFORM? several major issues in Earth sciences, as for instance the long-term evolution of the geodynamo. The GPTS is also an Khramov et al., 1982 important chronological tool allowing one to decipher the age and duration of various geological processes. Moreover, GPTS 509 Ma is widely used in prospecting for commercial minerals and in petroleum geology Kirschvink’s direction OR Khramov’s direction? Series Regiostage . N N The chronology of the geomagnetic polarity reversals since the Upper Jurassic is rather well known thanks to the magnetic Kirschvink and Pisarevsky anomalies recorded in the sea floor. For more ancient epochs our knowledge of the GPTS is still very fragmentary and much Rozanov, 1984 et al., 1997 more uncertain. However significant information has been obtained for several time intervals, in particular for the Triassic and the beginning of the Phanerozoic. Hirnantian Khondelen We will focus our presentation on recent developments made in the determination of the GPTS during the Early Paleozoic P-T Botoma - Toyon Botoma - Botoma - Toyon Botoma - 516 Ma (Siberia) (Cambrian and Ordovician). Siberian APWP Ashgill Epoch 2 Epoch 2 D3-C1 экватор E30° Е90° Е150° Botmoynak Dolborian (Tianshan) Late Ediacarian - Hyperactivity of the Earth magnetic field? Early Cambrian Kirschvink’s pole Early Cambrian O2-O3 Cm3-O1 Khramov’s pole S30° Moyero N Cm2 N N Low (very low?) reversal frequency (Siberia) Pavlov et al., Pavlov et al., 2018 S60° unpubl.
    [Show full text]
  • No Late Cambrian Shoreline Ice in Laurentia
    Comment & Reply COMMENTS AND REPLIES Minnesota clasts; Runkel et al., 2010), or early cement may remain GSA Today soft after burial and be deformed. After burial, the soft clasts Online: , Comments and Replies could be burrowed by trace producers. Published Online: April 2011 Runkel et al. (2010) note that the Jordan sandstone is essentially uncemented with loss of an original cement. Unknown cement/ matrix composition (carbonate/evaporitic, cyanobacterial binding?) make conclusions of ice cementation and cold climate speculative. Without evidence for grounded ice after the Early Cambrian (Landing and MacGabhann, 2010) and subsequent very high No Late Cambrian shoreline ice eustatic levels (Landing, 2007b), the Late Cambrian ocean likely lacked cold water and a thermocline (Landing, 2007b). Thus, an in Laurentia interpretation of Middle–Late Cambrian extinctions by cold water onlap (Runkel et al., 2010) is unlikely; the role of strong regressive- Ed Landing, New York State Museum, 222 Madison Avenue, transgressive couplets and transgressive low oxygen masses Albany, New York, 12230, USA; [email protected] should be considered (e.g., Hallam and Wignall, 1999; Zhuravlev and Wood, 1996). The appearance of marginal trilobites (likely dysoxia adapted) after Cambrian extinctions should be compared Runkel et al. (2010) propose that Late Cambrian cooling led to Cretaceous faunal replacements at non-glacial times with onlap to shoreline ice development in the upper Mississippi River of hypoxic slope water onto platforms (e.g., Jenkyns, 1991). valley. This cooling then led to latest Cambrian biotic turnover and onset of the Ordovician Diversification. (“Lower”/“Early,” Extinction at the Cordylodus proavus (conodont) Zone base is “Middle”/“Middle,” and “Upper”/“Upper” Cambrian are proposed not the onset of the Ordovician Radiation (i.e., Runkel et al., 2010).
    [Show full text]
  • Ediacaran and Cambrian Stratigraphy in Estonia: an Updated Review
    Estonian Journal of Earth Sciences, 2017, 66, 3, 152–160 https://doi.org/10.3176/earth.2017.12 Ediacaran and Cambrian stratigraphy in Estonia: an updated review Tõnu Meidla Department of Geology, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; [email protected] Received 18 December 2015, accepted 18 May 2017, available online 6 July 2017 Abstract. Previous late Precambrian and Cambrian correlation charts of Estonia, summarizing the regional stratigraphic nomenclature of the 20th century, date back to 1997. The main aim of this review is updating these charts based on recent advances in the global Precambrian and Cambrian stratigraphy and new data from regions adjacent to Estonia. The term ‘Ediacaran’ is introduced for the latest Precambrian succession in Estonia to replace the formerly used ‘Vendian’. Correlation with the dated sections in adjacent areas suggests that only the latest 7–10 Ma of the Ediacaran is represented in the Estonian succession. The gap between the Ediacaran and Cambrian may be rather substantial. The global fourfold subdivision of the Cambrian System is introduced for Estonia. The lower boundary of Series 2 is drawn at the base of the Sõru Formation and the base of Series 3 slightly above the former lower boundary of the ‘Middle Cambrian’ in the Baltic region, marked by a gap in the Estonian succession. The base of the Furongian is located near the base of the Petseri Formation. Key words: Ediacaran, Cambrian, correlation chart, biozonation, regional stratigraphy, Estonia, East European Craton. INTRODUCTION The latest stratigraphic chart of the Cambrian System in Estonia (Mens & Pirrus 1997b, p.
    [Show full text]
  • The Natural History of Pikes Peak State Park, Clayton County, Iowa ______
    THE NATURAL HISTORY OF PIKES PEAK STATE PARK, CLAYTON COUNTY, IOWA ___________________________________________________ edited by Raymond R. Anderson Geological Society of Iowa ______________________________________ November 4, 2000 Guidebook 70 Cover photograph: Photograph of a portion of the boardwalk trail near Bridal Veil Falls in Pikes Peak State Park. The water falls over a ledge of dolomite in the McGregor Member of the Platteville Formation that casts the dark shadow in the center of the photo. THE NATURAL HISTORY OF PIKES PEAK STATE PARK CLAYTON COUNTY, IOWA Edited by: Raymond R. Anderson and Bill J. Bunker Iowa Department Natural Resources Geological Survey Bureau Iowa City, Iowa 52242-1319 with contributions by: Kim Bogenschutz William Green John Pearson Iowa Dept. Natural Resources Office of the State Archaeologist Parks, Rec. & Preserves Division Wildlife Research Station 700 Clinton Street Building Iowa Dept. Natural Resources 1436 255th Street Iowa City IA 52242-1030 Des Moines, IA 50319 Boone, IA 50036 Richard Langel Chris Schneider Scott Carpenter Iowa Dept. Natural Resources Dept. of Geological Sciences Department of Geoscience Geological Survey Bureau Univ. of Texas at Austin The University of Iowa Iowa City, IA 52242-1319 Austin, TX 78712 Iowa City, IA 52242-1379 John Lindell Elizabeth Smith Norlene Emerson U.S. Fish & Wildlife Service Department of Geosciences Dept. of Geology & Geophysics Upper Mississippi Refuge University of Massachusetts University of Wisconsin- Madison McGregor District Office Amherst, MA 01003 Madison WI 53706 McGregor, IA 52157 Stephanie Tassier-Surine Jim Farnsworth Greg A. Ludvigson Iowa Dept. Natural Resources Parks, Rec. & Preserves Division Iowa Dept. Natural Resources Geological Survey Bureau Iowa Dept.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis arxi dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing In this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI NOTE TO USERS This reproduction is the best copy available. UMI Stratigraphy, Conodont Taxonomy and Biostratigraphy of Upper Cambrian to Lower Silurian Platform to Basin Facies, Northern British Columbia by Leanne Pyle B. Sc., University of Saskatchewan, 1994 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the School of Earth and Ocean Sciences We accept this dissertation as conforming to the required standard , Supervisor (School of Earth and Ocean Sciences) Dr.
    [Show full text]
  • The Upper Ordovician Glaciation in Sw Libya – a Subsurface Perspective
    J.C. Gutiérrez-Marco, I. Rábano and D. García-Bellido (eds.), Ordovician of the World. Cuadernos del Museo Geominero, 14. Instituto Geológico y Minero de España, Madrid. ISBN 978-84-7840-857-3 © Instituto Geológico y Minero de España 2011 ICE IN THE SAHARA: THE UPPER ORDOVICIAN GLACIATION IN SW LIBYA – A SUBSURFACE PERSPECTIVE N.D. McDougall1 and R. Gruenwald2 1 Repsol Exploración, Paseo de la Castellana 280, 28046 Madrid, Spain. [email protected] 2 REMSA, Dhat El-Imad Complex, Tower 3, Floor 9, Tripoli, Libya. Keywords: Ordovician, Libya, glaciation, Mamuniyat, Melaz Shugran, Hirnantian. INTRODUCTION An Upper Ordovician glacial episode is widely recognized as a significant event in the geological history of the Lower Paleozoic. This is especially so in the case of the Saharan Platform where Upper Ordovician sediments are well developed and represent a major target for hydrocarbon exploration. This paper is a brief summary of the results of fieldwork, in outcrops across SW Libya, together with the analysis of cores, hundreds of well logs (including many high quality image logs) and seismic lines focused on the uppermost Ordovician of the Murzuq Basin. STRATIGRAPHIC FRAMEWORK The uppermost Ordovician section is the youngest of three major sequences recognized widely across the entire Saharan Platform: Sequence CO1: Unconformably overlies the Precambrian or Infracambrian basement. It comprises the possible Upper Cambrian to Lowermost Ordovician Hassaouna Formation. Sequence CO2: Truncates CO1 along a low angle, Type II unconformity. It comprises the laterally extensive and distinctive Lower Ordovician (Tremadocian-Floian?) Achebayat Formation overlain, along a probable transgressive surface of erosion, by interbedded burrowed sandstones, cross-bedded channel-fill sandstones and mudstones of Middle Ordovician age (Dapingian-Sandbian), known as the Hawaz Formation, and interpreted as shallow-marine sediments deposited within a megaestuary or gulf.
    [Show full text]
  • Conodont Bioapatite Resembles Vertebrate Enamel by XRD Properties
    Estonian Joumal of Earth Sciences, 2012, 61, 3, 191-192 doi: 10.3176/earth.2012.3.05 SHORT COMMUNICATION Conodont bioapatite resembles vertebrate enamel by XRD properties Jiiri Nemliher and Toivo Kallaste Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected], [email protected] Received 25 July 2012, accepted 6 August 2012 Abstract. XRD properties of Phanerozoic conodont apatite material were studied. It was found out that in terms of crystallinity the apatite resembles the enamel tissue of modem vertebrates. In terms of crystal lattice, apatite of conodonts is independent of taxa on the one hand and of chemistry ofthe surrounding rock type on the other hand. Key words: Palaeozoic, conodont apatite, XRD. The observable properties of conodont apparatus carry a rock material; only euconodonts (CAI = 1) were analysed. variety of features permitting assignment of these higher A whole-pattem fitting procedure was applied to XRD taxa into different branches of Metazoa. Considering the pattems, according to the calculation model by Kallaste & information possibly saved into conodont apatite, the Nemliher (2005). For both component phases, the strains composition of conodonts was first recognized as calcium varied independently in both directions, i.e. asymmetrically. phosphate (Harley 1861), later as having the structure of The following species were identified. apatite (Ellisson 1944) with lattice parameters a = 9.37Â KONOl: Ozarkodina roopaensis, Oulodus siluricus and c = 6.91 Â (Pietzner et al. 1968). Recent studies have and Panderodus sp. (Silurian, Ozarkodina snajdri Biozone, revealed two apatite types of different composition in carbonate rock matrix).
    [Show full text]
  • The Cambrian System in Northwestern Argentina: Stratigraphical and Palaeontological Framework Geologica Acta: an International Earth Science Journal, Vol
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Aceñolaza, G. F. The Cambrian System in Northwestern Argentina: stratigraphical and palaeontological framework Geologica Acta: an international earth science journal, vol. 1, núm. 1, 2003, pp. 23-39 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50510104 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.1, Nº1, 2003, 23-39 Available online at www.geologica-acta.com The Cambrian System in Northwestern Argentina: stratigraphical and palaeontological framework G. F. ACEÑOLAZA INSUGEO – CONICET. Facultad de Ciencias Naturales e I.M.L., Universidad Nacional de Tucumán Miguel Lillo 205, 4000 Tucumán, Argentina. E-mail: [email protected] ABSTRACT Cambrian sequences are widespread in the early Paleozoic of the Central Andean Basin. Siliciclastic sediments dominate these sequences although several minor occurrences of carbonates and volcanic rocks have been observed. The rocks assigned to the Cambrian System in NW Argentina are recognized in the Puna, Eas- tern Cordillera, Subandean Ranges and the Famatina System. This paper gives a general overview of the Cam- brian formations outcropping in the northern provinces of Jujuy, Salta, Tucumán, Catamarca and La Rioja. Spe- cial emphasis has been given to the stratigraphical and biostratigraphical framework of the sequences. Late Precambrian-Early Cambrian thick sedimentary wackes dominate the basal Puncoviscana Formation (s.l.), cha- racterized by a varied ichnofauna that includes the Precambrian-Cambrian transitional levels.
    [Show full text]
  • Please Scroll Down for Article
    This article was downloaded by: [Macquarie University] On: 10 November 2008 Access details: Access Details: [subscription number 778261146] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Alcheringa: An Australasian Journal of Palaeontology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t770322720 Middle Cambrian to Lower Ordovician faunas from the Chingiz Mountain Range, central Kazakhstan T.Ju. Tolmacheva a; K. E. Degtyarev a; J. Samuelsson a; L. E. Holmer a a A.P. Karpinskii, Russian Geological Research Institute, Sredny pr. 74, 199106 St. Petersburg, Russia Online Publication Date: 01 December 2008 To cite this Article Tolmacheva, T.Ju., Degtyarev, K. E., Samuelsson, J. and Holmer, L. E.(2008)'Middle Cambrian to Lower Ordovician faunas from the Chingiz Mountain Range, central Kazakhstan',Alcheringa: An Australasian Journal of Palaeontology,32:4,443 — 463 To link to this Article: DOI: 10.1080/03115510802418099 URL: http://dx.doi.org/10.1080/03115510802418099 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources.
    [Show full text]
  • Author-Title Index
    AUTHOR-TITLE INDEX A ___. Paleoecology of cyclic sediments of the lower Green River Formation, central Utah. 1969. 16(1):3- Ahlborn, R. C. Mesozoic-Cenozoic structural develop­ 95. ment of the Kern Mountains, eastern Nevada-western Utah. 1977. 24(2):117-131. ___ and J. K. Rigby. Studies for students no. 10: Ge­ ologic guide to Provo Canyon and Weber Canyon, Alexander, D. W. Petrology and petrography of the Bridal Veil Limestone Member of the Oquirrh Formation at central Wasatch Mountains, Utah. 1980. 27(3):1-33. Cascade Mountain, Utah. 1978. 25(3):11-26. ___. See Chamberlain, C. K. 1973. 20(1):79-94. Anderson, R. E. Quaternary tectonics along the inter­ ___. See George, S. E. 1985. 32(1):39-61. mountain seismic belt south of Provo, Utah. 1978. ___. See Johnson, B. T. 1984. 31(1):29-46. 25(1):1-10. ___. See Young, R. B. 1984. 31(1):187-211. Anderson, S. R. Stratigraphy and structure of the Sunset Bagshaw, L. H. Paleoecology of the lower Carmel Forma- Peak area near Brighton, Utah. 1974. 21(1):131-150. tion of the San Rafael Swell, Emery County, Utah. Anderson, T. C. Compound faceted spurs and recurrent 1977. 24(2):51-62. movement in the Wasatch fault zone, north central Bagshaw, R. L. Foraminiferal abundance related to bento­ Utah. 1977. 24(2):83-101. nitic ash beds in the Tununk Member of the Mancos Armstrong, R. M. Environmental geology of the Provo­ Shale (Cretaceous) in southeasternUtah. 1977. Orem area. 1975. 22(1):39-67. 24(2):33-49.
    [Show full text]