The Effect of Lighting and Temperature on the Eggs and Hatchlings of Olive Ridley Turtles at Rushikulya, India a Thesis Submitte

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Lighting and Temperature on the Eggs and Hatchlings of Olive Ridley Turtles at Rushikulya, India a Thesis Submitte The effect of lighting and temperature on the eggs and hatchlings of olive ridley turtles at Rushikulya, India A Thesis Submitted to The Manipal University In partial fulfillment for the degree of Master of Science in Wildlife Biology and Conservation 2008 By Divya Karnad Post-Graduate Program in Wildlife Biology & Conservation Centre for Wildlife Studies and National Centre for Biological Sciences UAS-GKVK Campus Bangalore – 500 065 ii iii To those who teach by example, especially my family, Arun and Sashirekha. iv EXECUTIVE SUMMARY The olive ridley turtle (Lepidochelys olivacea) nests both sporadically and en masse along the Indian Coast. Of the three mass nesting sites along the East coast of India, the Rushikulya rookery may currently have the most regular nesting population of olive ridley turtles and is therefore likely to play a key role in maintaining the Indian Ocean population of the species. The sporadic nesting site of Chennai is completely altered by human activity and represents a set of conditions completely different from those in Rushikulya. Olive ridley turtles in India are protected and have been studied for several years but detailed studies on factors affecting nesting and hatching have not been conducted. The present study examines the effect of temperature and lighting on egg and hatchling survival of the olive ridley turtle. The response of the hatchlings to different lighting regimes on the beach, as well as to specific combinations of wavelength and intensity of light was studied. Hatchlings responded to both intense point sources of light at Rushikulya as well as glows from hidden point sources. A mixed age plantation of Casuarina equisetifolia proved to be an effective light barrier that prevented disorientation of hatchlings. Preference for light of lower wavelength and higher intensity was observed, although hatchlings responded differently to light in the violet band depending on its intensity. Olive ridley hatchlings were indifferent to red light indicating that the use of this wavelength could be recommended as a photo pollution management measure. Incubation temperature and hatching success of selected nests were monitored within hatcheries at both sites. Incubation temperature did not have a significant influence on mortality in nests; however, based on these temperatures, female biased sex ratios of hatchlings at both sites were predicted. v Acknowledgements My advisor Kartik Shanker allowed me the freedom to pursue this research at my own pace, put up with a fair amount of indecision and provided much needed support through this whole process. Ajith Kumar, my course director has been an unending source of inspiration, with his breadth of knowledge and enthusiasm. I would not have achieved half as much without his motivation, kindness and humour. Kavita Isvaran with her kindness and patience is someone I can go to for advice or help. She has helped mould this idea and many others before it. My classmates have been the most important part of my two years here and it is hard to think of a better set of people to be stuck with for that long. I thank them for helping me learn much about wildlife, music, philosophy, acceptable dinner-time conversation, teamwork, forgiveness, adventure and most of all having fun! In particular I treasure the moments of sanity with Kiran; a true friend, philosopher and guide, of insanity with Umesh, Nandini, Dharma, Dipti and Swapna, of thought-filled discussion with Kulu and general discussion with Robin, of laughter and tears with Aathira and of comfort and friendship with Priya, Priyanka, Nachiket and Kaavya. I am grateful to the Centre for Wildlife Studies (CWS) and the Centre for Ecological Studies (IISc) for funding this work, to Manipal Academy of Higher Education (MAHE) and the National Centre for Biological Sciences (NCBS) for providing the framework for this course, as well as the Forest Department for Orissa for its co-operation and support, in particular Mr B.K. Patnaik (PCCF Wildlife), Dr CS Kar and Mr Ajay Jena (DFO, Berhampur). A number of local conservation bodies including the Rushikulya Sea Turtle Protection Committee (RSTPC) vi and the Students Sea Turtle Conservation Network (SSTCN) provided logistic and other support. I am thankful to the generosity of those organisations and their volunteers. Rabindranath Sahu, Ganapathy Sahu, Somanath Rao, Simhadri and Mohendra Naik in Orissa, as well as Shreya Bhat, Madhavan, Asha, Shravan Krishnan, Karunakaran, Akhila and Arun V. in Chennai helped me with field work. A number of others including including Samjukta Sahu, Coralie D’lima and especially Suresh Kumar helped with logistics, advice and suggestions. Devcharan Jathanna, Rashid Raza, Suhel Quader, Nibedita Mukherjee, Geoff Hyde and Chaitanya Krishna added valuable comments and inputs that helped shape my thesis. I am grateful to all these people for the time and effort they spared for me. My parents, grandmothers and brother have long supported my decisions and encouraged my work. That I have come this far is due credit to them and their love. vii CONTENTS INTRODUCTION ....................................................................................................................2 BACKGROUND ..................................................................................................................4 LITERATURE CITED ..........................................................................................................6 ORIENTATION OF OLIVE RIDLEY TURTLE HATCHLINGS IN RESPONSE TO LIGHT IN RUSHIKULYA, ORISSA.......................................................................................................10 ABSTRACT .......................................................................................................................10 INTRODUCTION...............................................................................................................11 METHODOLOGY..............................................................................................................14 Study area.....................................................................................................................14 Experiment 1: Impact of photic regions on the beach ...................................................15 Experiment 2: Testing light quality ................................................................................16 Model of expected orientation .......................................................................................17 Analysis.........................................................................................................................18 RESULTS..........................................................................................................................18 Experiment 1 .................................................................................................................18 Experiment 2 .................................................................................................................19 Orientation model..........................................................................................................22 DISCUSSION....................................................................................................................23 LITERATURE CITED ........................................................................................................27 TEMPERATURE DEPENDANT EFFECTS ON THE EGGS AND HATCHLINGS OF OLIVE RIDLEY TURTLES ALONG THE EAST COAST OF INDIA ................................................31 ABSTRACT .......................................................................................................................31 INTRODUCTION...............................................................................................................32 METHODOLOGY..............................................................................................................34 Study area.....................................................................................................................34 Field methods................................................................................................................36 Analysis.........................................................................................................................37 RESULTS..........................................................................................................................38 DISCUSSION....................................................................................................................43 LITERATURE CITED ........................................................................................................47 CONCLUSION......................................................................................................................52 1 INTRODUCTION There are seven species of sea turtles found across the world – the leatherback (Dermochelys coriacea), green (Chelonia mydas), loggerhead (Caretta caretta), hawksbill (Eretmochelys imbricata), Kemp’s ridley (Lepidochelys kempii), olive ridley (Lepidochelys olivacea) and Australian flatback (Natator depressus) (Frazier 2002). The study of factors affecting the mortality of these species is important since they are all threatened species (IUCN 2007). Of the five that are known to inhabit the coastal waters of India, the olive ridley sea turtle is the most common. It nests along much of the Indian coast, but is most numerous along the east coast (Shanker and Choudury
Recommended publications
  • Large Scale Multiplication of Casuarina Junghuhniana Miq
    Journal of Agricultural Science and Technology B 10 (2020) 98-105 doi: 10.17265/2161-6264/2020.02.005 D DAVID PUBLISHING Large Scale Multiplication of Casuarina junghuhniana Miq. Clonal Plants through Mini-cutting Technique Chezhian Palanisamy, Seenivasan Ramanathan, Selvakrishnan Palanisamy and Suresh Kumar Ganesan Department of Plantation, Tamil Nadu Newsprint and Papers Limited, Kagithapurm, Karur, Tamil Nadu 639 136, India Abstract: The modern concept of meeting the customer’s requirements in better products at low costs in a sustainable manner is possible only through innovative methods. The nodal cutting technique is the most widely used method for large scale propagation of Casuarina, Eucalyptus and other pulpwood species in India. Tamil Nadu Newsprint and Papers Limited (TNPL) has started large scale multiplication of Casuarina junghuhniana Miq. using mini-cutting technique from indoor clonal mini hedges raised in sand beds. When compared to stem/nodal cuttings, indoor clonal mini hedges raised in sand beds improve the rooting potential, quality of root systems and are time- and cost-saving. The productivity of cuttings is increased five times in indoor clonal hedge orchard than conventional stem/nodal cutting. The rooting percentage also improved to 90% without rooting hormone whereas the same is only 50% in stem cutting. The plant developed through mini-cutting technique has more lateral root system which helps the plants/trees to withstand during heavy winds. Replacing such stump derived stock plants by intensively managing indoor sand bed clonal mini hedges resulted in a noticeable enhancement of cutting capacity for adventitious rooting as well as the overall quality of the plants produced in much shorter period with easier and cheaper maintenance.
    [Show full text]
  • Nesting Site Studies of White-Bellied Sea Eagle (Haliaeetus Leucogaster Gmelin, 1788) Along Konkan Coast, Dist
    Eco. Env. & Cons. 27 (February Suppl. Issue) : 2021; pp. (S108-S115) Copyright@ EM International ISSN 0971–765X Nesting site studies of White-bellied Sea Eagle (Haliaeetus leucogaster Gmelin, 1788) along Konkan Coast, Dist. Ratnagiri, M. S., India Aditi S. Neema1, B. Anjan Kumar Prusty2, Nikunj B. Gajera3 and Poonam N. Kurve4 1,4Department of Biodiversity, Wildlife Conservation and Management BN Bandodkar College of Science, Thane (Univ. of Mumbai), Building 6, Jnanadweepa, Chendani Bunder Road, Thane West, Thane 400 601, Maharashtra 2,3Environmental Impact Assessment Division, Gujarat Institute of Desert Ecology (GUIDE), Bhuj 370 040, Gujarat, India (Received 25 April, 2020; Accepted 12 August, 2020) ABSTRACT Nesting behaviour of White-bellied Sea Eagle has been meagerly studied though; the raptor is widely distributed along the coast of Maharashtra. Present study was carried out by conducting surveys for locating their nesting sites along coast of Ratnagiri district and 12 nests of White-bellied Sea Eagle Haliaeetus leucogaster at different sites along Velas to Dabhol were studied. Various ecological parameters such as nesting tree species, nesting tree height, nesting tree GBH, nest height, geo-coordinates, distance from coast, disturbance level were considered. WBSE was found to be most abundantly nesting (N =12) on Casuarina equisetifolia tree which, accounts to 83% of the total nesting trees and only 02 nests, just 17% of the total nesting trees studied, were on Sterculia foetida. In most cases, it was observed that WBSEs prefer nest trees with larger GBH as compared to same tree species of smaller girth. Location of nest from the supratidal mark was measured to study nesting preference about distance from the sea and we found that, the nearest nest was 30 m away from the coast and the farthest one was at a distance of around 900 m.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Performance of Mesophytic Species Planted in the Coast of Char Kashem, Patuakhali, Bangladesh
    Bangladesh J. Bot. 39(2): 245-247, 2010 (December) - Short communication PERFORMANCE OF MESOPHYTIC SPECIES PLANTED IN THE COAST OF CHAR KASHEM, PATUAKHALI, BANGLADESH MD GOLAM MOULA Bangladesh Forest Research Institute, Post Box No. 273, Chittagong 4000, Bangladesh Key words: Mesophytes, Coastal afforestation, Growth performance, Bangladesh Abstract Mesophytic species such as Acacia nilotica, Albizia labeck, Albizia procera, Casuarina equisetifolia, Pithocellobium dulche, Samanea saman and Thespesia populnea were raised in the western coast of Char Kashem under Patuakhali district of Bangladesh. After seven years of planting highest survivability was found in A. labeck followed by P. dulche, C. equisetifolia, S. saman, A. procera, A. nilotica and T. populnea. The mean maximum diameter at breast height was found in S. saman followed by C. equisetifolia, A. procera, A. labeck, P. dulche, A. nilotica and T. populnea. The maximum plant height was found in C. equisetifolia followed by S. saman, A. procera, T. populnea, A. nilotica, A. labeck and P. dulche indicating suitability of all the seven species for plantation at Char Kashem. Coastal afforestation in 1966 was primarily initiated to save lives and properties of the coastal dwellers from the devastating cyclones and tidal surges (Das and Siddiqi 1985) and secondarily to (i) reclamation and stabilization of newly accreted land and acceleration of further accretion, (ii) production of timber and fuel wood and (iii) creation of employment opportunity in the coastal areas (Saenger 1987). The coastal afforestation programme gained a momentum with the involvement of World Bank in 1975 (Imam 1982). Up to 2001 a total of 1,48,526 hectares of mangrove plantation has been established under different projects.
    [Show full text]
  • Evaluation of International Provenance Trials of Casuarina Equisetifolia
    ACRC100.book Page 1 Wednesday, June 23, 2004 1:42 PM Evaluation of International Provenance Trials of Casuarina equisetifolia K. Pinyopusarerk, A. Kalinganire, E.R. Williams and K.M. Aken Australian Tree Seed Centre CSIRO Forestry and Forest Products PO Box E4008 Kingston ACT 2604 Australia Australian Centre for International Agricultural Research Canberra 2004 Evaluation of international provenance trials of Casuarina equisetifolia K. Pinyopusarerk, A. Kalinganire, E.R. Williams and K.M. Aken ACIAR Technical Reports No 58e (printed version published in 2004) ACRC100.book Page 2 Wednesday, June 23, 2004 1:42 PM The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing coun- tries and to commission collaborative research between Australia and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR TECHNICAL REPORTS SERIES This series of publications contains technical information resulting from ACIAR-supported programs, projects and workshops (for which proceedings are not being published), reports on Centre-supported fact-finding studies, or reports on other useful topics resulting from ACIAR activities. Publications in the series are distributed internationally to a selected audience. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601 K. Pinyopusarerk, A. Kalinganire, E.R. Williams and K.M. Aken 2004. Evaluation of international provenance trials of Casuarina equisetifolia. ACIAR Technical Report No. 58, 106p. ISBN 1 86320 440 7 (printed) ISBN 1 86320 441 5 (online) Cover design: Design One Solutions Cover photo by K.
    [Show full text]
  • Thespesia Populnea (Milo) Left: Newly Opened Flower
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Thespesia populnea (milo) Malvaceae (mallow family) badrirt (Palau); banalo (Northern Marianas); bang-beng (Yap); kilulo (Guam); mi‘o (Marquesas); milo (Hawai‘i, Mar- shall Islands, Samoa, Tonga); miro (Pitcairn Island); miro, ‘amae (Rarotonga, Society Islands); mulomulo (Fiji); panu (Kosrae); polo (Chuuk); pone (Pohnpei); purau (Tahiti); portia tree, seaside mahoe, Pacific rosewood, Indian tulip tree, cork tree, umbrella tree (English) J. B. Friday and Dana Okano photo: J. B. Friday B. J. photo: Milo tree on a beach in Lahaina, Maui, Hawai‘i. IN BRIEF Growth rate Moderate, 0.6–1 m/yr (2–3 ft/yr) for the first Distribution Coastal areas of the Indian and Pacific few years. Oceans; throughout Oceania. Main agroforestry uses Soil stabilization, windbreak. Size Small tree typically 6–10 m (20–33 ft) at maturity. Main uses Craftwood, ornamental. Habitat Tropical and warm subtropical, usually found at Yields Heartwood in 30+ years. sea level to 150 m (500 ft). Intercropping Compatible with many coastal species, al- Vegetation Associated with a wide range of coastal spe- though it requires full sun. cies. Invasive potential Has potential to become an invasive Soils Thrives on sandy coastal soils as well as volcanic, weed—should not be introduced into new areas. limestone, and rocky soils. INTRODUCTION Current distribution Milo (Thespesia populnea) is one of the most important trees Milo has been planted throughout the tropics and is natu- to Pacific Island peoples. The rich, dark wood is carved into ralized in tropical climates throughout the world from the beautiful bowls, tools, small canoes, and figures.
    [Show full text]
  • Casuarina Spp.), an Invader of Coastal Florida, U.S.A
    Journal of Coastal Research 27 3 485–492 West Palm Beach, Florida May 2011 Ecology and Management of Sheoak (Casuarina spp.), an Invader of Coastal Florida, U.S.A. G.S. Wheeler{, G.S. Taylor{, J.F. Gaskin1, and M.F. Purcell{{ www.cerf-jcr.org {USDA Agricultural Research {Australian Centre for 1USDA Agricultural Research {{USDA Agricultural Research Service Evolutionary Biology and Service Service Invasive Plant Research Biodiversity Northern Plains Agricultural Australian Biological Control Laboratory and School of Earth and Research Laboratory Laboratory 3225 College Avenue Environmental Sciences 1500 North Central Avenue CSIRO Entomology Fort Lauderdale, FL 33314, The University of Adelaide Sidney, MT 59270, U.S.A. 120 Meiers Road U.S.A. North Terrace, Adelaide, SA Indooroopilly, QLD 4068, 5005, Australia Australia ABSTRACT WHEELER, G.S.; TAYLOR, G.S.; GASKIN, J.F., and PURCELL, M.F., 2011. Ecology and management of sheoak (Casuarina spp.), an invader of coastal Florida, U.S.A. Journal of Coastal Research, 27(3), 485–492. West Palm Beach (Florida), ISSN 0749-0208. The Casuarina spp. are invasive plants in Florida that threaten biological diversity and beach integrity of coastal habitats. The trees include three species and their hybrids that aggressively invade riverine and coastal areas. Of the three species, C. equisetifolia and C. glauca are highly salt tolerant and widespread in coastal areas. The third species, C. cunninghamiana, invades riverine habitats. These species pose dangers to both the environment and public safety. The environmental damage includes interfering with nesting by endangered sea turtles, American crocodiles, and the rare swallow-tailed kite. Additionally, allelochemical leachates reduce germination and establishment of native vegetation.
    [Show full text]
  • Wake Island Grasses Gra Sse S
    Wake Island Grasses Gra sse s Common Name Scientific Name Family Status Sandbur Cenchrus echinatus Poaceae Naturalized Swollen Fingergrass Chloris inflata Poaceae Naturalized Bermuda Grass Cynodon dactylon Poaceae Naturalized Beach Wiregrass Dactyloctenium aegyptium Poaceae Naturalized Goosegrass Eleusine indica Poaceae Naturalized Eustachys petraea Poaceae Naturalized Fimbristylis cymosa Poaceae Indigenous Dactyloenium Aegyptium Lepturus repens Poaceae Indigenous Manila grass Zoysia matrella Poaceae Cultivated Cenchrus echinatus Chloris inlfata Fimbristylis cymosa Lepturus repens Zoysia matrella Eustachys petraea Wake Island Weeds Weeds Common Name Scientific Name Family Status Spanish Needle Bidens Alba Asteraceae Naturalized Hairy Spurge Chamaesyce hirta Euphorbiaceae Naturalized Wild Spider Flower Cleome gynandra Capparidaceae Naturalized Purslane Portulaca oleracea Portulaceaceae Naturalized Puncture Vine Tribulus cistoides Zygophyllaceae Indigenous Coat Buttons Tridax procumbens Asteraceae Naturalized Tridax procumbens Uhaloa Waltheria Indica Sterculiacae Indigenous Bidens alba Chamaesyce hirta Cleome gynandra Portulaca oleracea Tribulus cistoides Waltheria indica Wake Island Vines Vines Common Name Scientific Name Family Status Beach Morning Glory Ipomoea pes-caprae Convolvulaceae Indigenous Beach Moonflower Ipomoea violacea Convolvulaceae Indigenous Passion fruit Passiflora foetida Passifloraceae Naturalized Ipomoea violacea Ipomoea pes-caprae Passiflora foetida Wake Island Trees Trees Common Name Scientific Name Family Status
    [Show full text]
  • Frugivory by Introduced Black Rats (Rattus Rattus) Promotes Dispersal of Invasive Plant Seeds
    CHAPTER FIVE: FRUGIVORY BY INTRODUCED BLACK RATS (RATTUS RATTUS) PROMOTES DISPERSAL OF INVASIVE PLANT SEEDS Aaron B. Shiels Department of Botany University of Hawaii at Manoa 3190 Maile Way Honolulu, HI. 96822 148 Abstract Oceanic islands have been colonized by numerous non-native and invasive plants and animals. An understanding of the degree to which introduced rats (Rattus spp.) may be spreading or destroying seeds of invasive plants can improve our knowledge of plant- animal interactions, and assist efforts to control invasive species. Feeding trials in which fruits and seeds were offered to wild-caught rats were used to assess the effects of the most common rat, the black rat (R. rattus), on 25 of the most problematic invasive plant species in the Hawaiian Islands. Rats ate pericarps (fruit tissues) and seeds of most species, and the impacts on these plants ranged from potential dispersal of small-seeded (≤ 1.5 mm length) species via gut passage (e.g., Clidemia hirta, Buddleia asiatica, Ficus microcarpa, Miconia calvescens, Rubus rosifolius) to predation where < 15% of the seeds survived (e.g., Bischofia javanica, Casuarina equisetifolia, Prosopis pallida, Setaria palmifolia). Rats consumed proportionally more seed mass of the smaller fruits and seeds than the larger ones, but fruit and seed size did not predict seed survival following rat interactions. Although invasive rat control efforts focus on native species protection, non-native plant species, especially those with small seeds that may pass internally through rats, also deserve rat control in order to help limit the spread of such seeds. Black rats may be facilitating the spread of many of the most problematic invasive plants through frugivory and seed dispersal in Hawaii and in other ecosystems where rats and plants have been introduced.
    [Show full text]
  • Effect of Casuarina Plantations Inoculated with Arbuscular Mycorrhizal Fungi and Frankia on the Diversity of Herbaceous Vegetati
    diversity Article Effect of Casuarina Plantations Inoculated with Arbuscular Mycorrhizal Fungi and Frankia on the Diversity of Herbaceous Vegetation in Saline Environments in Senegal Pape Ibrahima Djighaly 1,2,3,4,* , Daouda Ngom 5, Nathalie Diagne 1,3,4,*, Dioumacor Fall 1,3, Mariama Ngom 1,5,6, Diégane Diouf 7, Valerie Hocher 6, Laurent Laplaze 1 , Antony Champion 8, Jill M. Farrant 9 and Sergio Svistoonoff 6,8 1 Laboratoire Commun de Microbiologie (LCM) Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal; [email protected] (D.F.); [email protected] (M.N.); [email protected] (L.L.) 2 Département d’Agroforesterie, Université Assane Seck de Ziguinchor, Ziguinchor BP 523, Senegal 3 Centre National de Recherches Agronomiques (ISRA/CNRA), Bambey BP 53, Senegal 4 Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal 5 Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, Dakar BP 5005, Senegal; [email protected] 6 Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), (IRD/INRA/CIRAD/Université de Montpellier/Supagro), IRD TA A-82/J, Campus International de Baillarguet, 34398 Montpellier CEDEX 5, France; [email protected] (V.H.); sergio.svistoonoff@ird.fr (S.S.) 7 UFR Environnement, Biodiversité et Développement Durable, Université du Sine Saloum
    [Show full text]
  • Australian Pine
    FACT SHEET: AUSTRALIAN PINE Australian Pine Casuarina equisetifolia L. Beefwood family (Casuarinaceae) NATIVE RANGE Malaysia, southern Asia, Oceania and Australia DESCRIPTION Australian pine is a deciduous tree with a soft, wispy, pine-like appearance that can grow to 100 feet or more in height. Also known as ironwood, beefwood, she oak and horsetail tree, it bears a superficial resemblance to the conifer genus Pinus because of its small, round, cone-like fruits and its branchlets of scale-like leaves that look like pine needles. Its flowers are tiny, brown and wind-pollinated. The fruit is a nutlet about ½ inch in diameter that contains winged seeds. ECOLOGICAL THREAT Australian pine is fast-growing (5-10 feet per year), produces dense shade and a thick blanket of leaves and hard, pointed fruits, that completely covers the ground beneath it. Dense thickets of Australian pine displace native dune and beach vegetation, including mangroves and many other resident, beach-adapted species. Because its roots are capable of producing nitrogen through microbial associations, Australian pine can colonize nutrient-poor soils. Once established, it radically alters the light, temperature, and soil chemistry regimes of beach habitats, as it outcompetes and displaces native plant species and destroys habitat for native insects and other wildlife. Chemicals in the leaves of Australian pine may inhibit the growth of other plants underneath it. The ground below Australian pine trees becomes ecologically sterile and lacking in food value for native wildlife. Unlike native shrubbery, the thick, shallow roots of Australian pine make it much more susceptible to blow-over during high wind events, leading to increased beach and dune erosion and interference with the nesting activities of sea turtles.
    [Show full text]
  • Research Article CASUARINA
    Available Online at http://www.recentscientific.com International Journal of CODEN: IJRSFP (USA) Recent Scientific International Journal of Recent Scientific Research Research Vol. 11, Issue, 11 (C), pp. 40162-40168, November, 2020 ISSN: 0976-3031 DOI: 10.24327/IJRSR Research Article CASUARINA- A POTENTIAL TREE CROP FOR KARNATAKA *Ravi N1., Shilpa Shenoy1., Hegde R2., Durai M.V1 and Shettepanavar V.S1 1Institute of Wood Science and Technology, (ICFRE), Malleswaram, Bangalore, Karnataka -560003 2College of Forestry, Ponnampet, UAHS Shivamogga, Karnataka-571216 DOI: http://dx.doi.org/10.24327/ijrsr.2020.1111.5639 ARTICLE INFO ABSTRACT Casuarina are multipurpose trees that can be grown in a wide range of environmental conditions. Article History: After its introduction in India, there has been remarkable progress in the field of Casuarina tree Received 06th August, 2020 improvement which is focused on improving tree growth, yield, and form. This led to its extensive Received in revised form 14th adoption in various tree-based systems, by the farmers and various other stakeholders mainly in the September, 2020 states of Tamil Nadu and Andhra Pradesh. In Karnataka, the improved hybrids are not tested fully Accepted 23rd October, 2020 thus lacking in its likely wide planting. The current tree-based systems in which it is grown have Published online 28th November, 2020 been presented in this article. The article also discusses the potential of Casuarina as a substitute for Eucalyptus and its scope as a host for Sandalwood, in Karnataka. Key Words: Casuarina, tree breeding, agroforestry, host Copyright © Ravi N et al, 2020, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
    [Show full text]