Research Article CASUARINA

Total Page:16

File Type:pdf, Size:1020Kb

Research Article CASUARINA Available Online at http://www.recentscientific.com International Journal of CODEN: IJRSFP (USA) Recent Scientific International Journal of Recent Scientific Research Research Vol. 11, Issue, 11 (C), pp. 40162-40168, November, 2020 ISSN: 0976-3031 DOI: 10.24327/IJRSR Research Article CASUARINA- A POTENTIAL TREE CROP FOR KARNATAKA *Ravi N1., Shilpa Shenoy1., Hegde R2., Durai M.V1 and Shettepanavar V.S1 1Institute of Wood Science and Technology, (ICFRE), Malleswaram, Bangalore, Karnataka -560003 2College of Forestry, Ponnampet, UAHS Shivamogga, Karnataka-571216 DOI: http://dx.doi.org/10.24327/ijrsr.2020.1111.5639 ARTICLE INFO ABSTRACT Casuarina are multipurpose trees that can be grown in a wide range of environmental conditions. Article History: After its introduction in India, there has been remarkable progress in the field of Casuarina tree Received 06th August, 2020 improvement which is focused on improving tree growth, yield, and form. This led to its extensive Received in revised form 14th adoption in various tree-based systems, by the farmers and various other stakeholders mainly in the September, 2020 states of Tamil Nadu and Andhra Pradesh. In Karnataka, the improved hybrids are not tested fully Accepted 23rd October, 2020 thus lacking in its likely wide planting. The current tree-based systems in which it is grown have Published online 28th November, 2020 been presented in this article. The article also discusses the potential of Casuarina as a substitute for Eucalyptus and its scope as a host for Sandalwood, in Karnataka. Key Words: Casuarina, tree breeding, agroforestry, host Copyright © Ravi N et al, 2020, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. INTRODUCTION C. equisetifolia was introduced to India from Australia in the second half of nineteenth century mainly to fuel the steam Casuarinas are a versatile group of plants with wide-ranging locomotives. It was originally planted in Karwar during 1868- adaptability to grow in different environments and provide 69 (Kaikini, 1937), Nilgiris of the then Madras Presidency multiple end uses and services. They are extensively planted in (Kondas, 1983) and Chengalpet and South Arcot districts of the tropics, subtropics and Mediterranean countries because of Tamil Nadu state (Gurumurthi and Subramanian, 1998). The their ready adaptability to a variety of environmental conditions species later spread along the coasts to different parts of Tamil and also for their rapid growth performance (Warrier et al., Nadu, Andhra Pradesh, Orissa, West Bengal and was also 2014). introduced in the coastal areas of Kerala, Maharashtra and Casuarina thrives well in areas having an annual rainfall Karnataka. Due to its versatility to grow in different ranging from 250 to 2,500 mm, maximum temperature as high environments, the plant is grown in many parts of India and as 48°C and tolerates cold up to 0°C, on altitudes up to 1,200 m almost all states in peninsular India. It is now estimated to be or upto 1500m (Kumar, 2011). It is a light demanding tree and under cultivation in around half a million hectares mainly in the grows in almost all types of soil and is highly tolerant to soil Peninsular region. Farmers cultivate it extensively in West salinity (Anon, 1985). Heavy, clayey soils and soils with poor coasts and Northern dry zone of Karnataka, East coasts of drainage are detrimental to its growth. Good plantations can be Tamil Nadu, Andhra Pradesh and Orissa (Chavan et al., 2011) seen on laterite soils and well drained sandy loams. Casuarinas and India is the largest producer of Casuarina in the world. though do not belong to leguminosae they have the ability to Uses of Casuarina fix atmospheric nitrogen through a symbiotic association with the actinomycetes microorganism, Frankia, thus able to survive Fuel on poor soils. The soil on which it can thrive includes coastal Casuarina wood, is called the best firewood in the world and sand, shifting sterile sand, river alluvium, sandy loam with high fuel is its most universal use. Its branches and brushwood are water table, red loam, red gravelly loam and hard laterite etc. also used for fuel, and the needles and cones burn well. Wood Topography ranges from coastal flats to very gently undulating is very dense, with a specific gravity ranging from 0.8 to 1.2. It terrain (Kumar, 2016). Casuarina wood with a high calorific is easy to split, has a high calorific value (about 5,000 kcal per value is a renowned fuel wood in the tropics. kg). It also can be burned when green, an important advantage *Corresponding author: Ravi N Institute of Wood Science and Technology, (ICFRE), Malleswaram, Bangalore, Karnataka -560003 International Journal of Recent Scientific Research Vol. 11, Issue, 11 (C), pp. 40162-40168, November, 2020 in fuel- short areas. Casuarina wood is excellent for charcoal Fodder making. While domestic animals will graze seedlings and suckers of Wood casuarinas, the foliage is high in tannin and is astringent and constipating and may interfere with the animal's ability to The wood of most casuarinas are not good source of lumber utilize protein (Anon, 1984). because of its hard, heavy nature and tendency to split, crack, and warp as it dries. Nevertheless, its wood is useful as round Developmental activities in Casuarina wood for fencing, tool handles, pilings, beams, and rafters; as Casuarina improvement programme is focused on improving split wood for fencing, pilings, and roofing shingles; In India it tree growth, yield and form. The tree improvement activity in is used for scaffolding and structural members for buildings, as Casuarina consisted of establishment of seed orchards, seed well as for masts for country fishing boats. The wood of production area, vegetative multiplication garden, seedling seed Casuarina equisetifolia has been found to make a good paper orchard, development of hybrids and clones. India commenced pulp through use of the neutral sulfite semichemical process. implementation of a breeding plan of C. equisetifolia in 1997 But, the difficulty of breaking up this extremely hard wood setting up large breeding populations in three States complicates pulping. (Nicodemus et al., 2011). IFGTB (Institute of Forest Genetics Shelterbelts and Tree Breeding), Coimbatore, Tamil Nadu is considered as a focal point for Casuarina research in India. One generation of C. equisetifolia is often planted as a windbreak in North Africa, breeding has yielded 13-28% gain in wood production (K. West Africa, Yemen, Somalia, the Middle East, India, and Pinyopusarerk and A. Nicodemus, 2014).Presently 229 clones South China. The abundance of highly branched twigs on of C. equisetifolia are available in the clone bank of IFGTB casuarinas absorbs wind energy amazingly well. In addition to which includes selections by other stakeholders also. The their wind firmness casuarinas have desirable characteristics for newly introduced C. junghuhniana was found to be fast shelterbelts: adaptability to many soils and climates, self- growing and more drought and disease tolerant compared to sufficiency for nitrogen, rapid early growth, adequate height C. equisetifolia, and tested superior clones are also now and longevity, dense crown, and useful wood. It is most available. Intra and interspecific hybrid families of the two unusual for a single tree to have all of these attributes; to reduce species were produced through control pollination. The wind adequately; shelterbelts normally require two or more breeding program in India has progressed to second generation species. which consists of genetic material from the first generation. Erosion Control The best inter-specific hybrid family showed 35 to 53% better height growth than local seedlot and 17 to 21% over orchard Casuarinas are known to reduce soil erosion by reducing wind progenies (Warrier et al., 2014). Seed orchards contribute erosion, and also do it with their network of fine subsurface greatly to the production of quality planting stock of the desired roots and by building up a litter of intertwined needles that species. Seeds from IFGTB seed orchards provided 13% more protects against rain and wind. wood under rainfed conditions and 28% with irrigation than C. equisetifolia is much used for stabilizing sandy soils and unimproved local seed (Warrier et al., 2014). C.cunninghamiana is valued for protecting riverbanks. The Further, it (IFGTB) established three clonal tests of copious root suckering of species such as Casuarina glauca C. equisetifolia in the year 2000 with 124 entries (115 clones could be useful in erosion control due to the trees spread and and 9 seedling controls). Four clonal entries viz., IFGTB-CE-1, hold down the land, especially on severe slopes or washed IFGTB-CE-2, IFGTB-CE-3 and IFGTB-CE-4 were found to be areas. In addition, the litter from the trees blows over the bare superior in their growth performance over the seeds of control ground, protecting it from erosion and providing a good clones and the above clones were released as most suitable seedbed for natural reproduction. clones for the States of Tamil Nadu and Karnataka and the Sand Dune Stabilization Union Territory of Puducherry. Five productive clones of C. junghuhniana viz. IFGTB-WBC-6, IFGTB-WBC-8, IFGTB- Due its salt- and drought-tolerant nature and capacity to grow WBC-9, IFGTB-WBC-17 and IFGTB-WBC-18 exclusively and reproduce in sand, C. equisetifolia is used to control suitable for windbreak agroforestry system were identified erosion along coastlines and estuaries. (Warrier et al., 2014). Tanning Growth of orchard progeny from IFGTB was better than that of The bark of C. equisetifolia contains 6-18 percent tannin and the local unimproved seedlot in all planting sites. In the coastal has been used extensively in Madagascar for tanning purposes.
Recommended publications
  • The Effect of Lighting and Temperature on the Eggs and Hatchlings of Olive Ridley Turtles at Rushikulya, India a Thesis Submitte
    The effect of lighting and temperature on the eggs and hatchlings of olive ridley turtles at Rushikulya, India A Thesis Submitted to The Manipal University In partial fulfillment for the degree of Master of Science in Wildlife Biology and Conservation 2008 By Divya Karnad Post-Graduate Program in Wildlife Biology & Conservation Centre for Wildlife Studies and National Centre for Biological Sciences UAS-GKVK Campus Bangalore – 500 065 ii iii To those who teach by example, especially my family, Arun and Sashirekha. iv EXECUTIVE SUMMARY The olive ridley turtle (Lepidochelys olivacea) nests both sporadically and en masse along the Indian Coast. Of the three mass nesting sites along the East coast of India, the Rushikulya rookery may currently have the most regular nesting population of olive ridley turtles and is therefore likely to play a key role in maintaining the Indian Ocean population of the species. The sporadic nesting site of Chennai is completely altered by human activity and represents a set of conditions completely different from those in Rushikulya. Olive ridley turtles in India are protected and have been studied for several years but detailed studies on factors affecting nesting and hatching have not been conducted. The present study examines the effect of temperature and lighting on egg and hatchling survival of the olive ridley turtle. The response of the hatchlings to different lighting regimes on the beach, as well as to specific combinations of wavelength and intensity of light was studied. Hatchlings responded to both intense point sources of light at Rushikulya as well as glows from hidden point sources.
    [Show full text]
  • Large Scale Multiplication of Casuarina Junghuhniana Miq
    Journal of Agricultural Science and Technology B 10 (2020) 98-105 doi: 10.17265/2161-6264/2020.02.005 D DAVID PUBLISHING Large Scale Multiplication of Casuarina junghuhniana Miq. Clonal Plants through Mini-cutting Technique Chezhian Palanisamy, Seenivasan Ramanathan, Selvakrishnan Palanisamy and Suresh Kumar Ganesan Department of Plantation, Tamil Nadu Newsprint and Papers Limited, Kagithapurm, Karur, Tamil Nadu 639 136, India Abstract: The modern concept of meeting the customer’s requirements in better products at low costs in a sustainable manner is possible only through innovative methods. The nodal cutting technique is the most widely used method for large scale propagation of Casuarina, Eucalyptus and other pulpwood species in India. Tamil Nadu Newsprint and Papers Limited (TNPL) has started large scale multiplication of Casuarina junghuhniana Miq. using mini-cutting technique from indoor clonal mini hedges raised in sand beds. When compared to stem/nodal cuttings, indoor clonal mini hedges raised in sand beds improve the rooting potential, quality of root systems and are time- and cost-saving. The productivity of cuttings is increased five times in indoor clonal hedge orchard than conventional stem/nodal cutting. The rooting percentage also improved to 90% without rooting hormone whereas the same is only 50% in stem cutting. The plant developed through mini-cutting technique has more lateral root system which helps the plants/trees to withstand during heavy winds. Replacing such stump derived stock plants by intensively managing indoor sand bed clonal mini hedges resulted in a noticeable enhancement of cutting capacity for adventitious rooting as well as the overall quality of the plants produced in much shorter period with easier and cheaper maintenance.
    [Show full text]
  • Nesting Site Studies of White-Bellied Sea Eagle (Haliaeetus Leucogaster Gmelin, 1788) Along Konkan Coast, Dist
    Eco. Env. & Cons. 27 (February Suppl. Issue) : 2021; pp. (S108-S115) Copyright@ EM International ISSN 0971–765X Nesting site studies of White-bellied Sea Eagle (Haliaeetus leucogaster Gmelin, 1788) along Konkan Coast, Dist. Ratnagiri, M. S., India Aditi S. Neema1, B. Anjan Kumar Prusty2, Nikunj B. Gajera3 and Poonam N. Kurve4 1,4Department of Biodiversity, Wildlife Conservation and Management BN Bandodkar College of Science, Thane (Univ. of Mumbai), Building 6, Jnanadweepa, Chendani Bunder Road, Thane West, Thane 400 601, Maharashtra 2,3Environmental Impact Assessment Division, Gujarat Institute of Desert Ecology (GUIDE), Bhuj 370 040, Gujarat, India (Received 25 April, 2020; Accepted 12 August, 2020) ABSTRACT Nesting behaviour of White-bellied Sea Eagle has been meagerly studied though; the raptor is widely distributed along the coast of Maharashtra. Present study was carried out by conducting surveys for locating their nesting sites along coast of Ratnagiri district and 12 nests of White-bellied Sea Eagle Haliaeetus leucogaster at different sites along Velas to Dabhol were studied. Various ecological parameters such as nesting tree species, nesting tree height, nesting tree GBH, nest height, geo-coordinates, distance from coast, disturbance level were considered. WBSE was found to be most abundantly nesting (N =12) on Casuarina equisetifolia tree which, accounts to 83% of the total nesting trees and only 02 nests, just 17% of the total nesting trees studied, were on Sterculia foetida. In most cases, it was observed that WBSEs prefer nest trees with larger GBH as compared to same tree species of smaller girth. Location of nest from the supratidal mark was measured to study nesting preference about distance from the sea and we found that, the nearest nest was 30 m away from the coast and the farthest one was at a distance of around 900 m.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Performance of Mesophytic Species Planted in the Coast of Char Kashem, Patuakhali, Bangladesh
    Bangladesh J. Bot. 39(2): 245-247, 2010 (December) - Short communication PERFORMANCE OF MESOPHYTIC SPECIES PLANTED IN THE COAST OF CHAR KASHEM, PATUAKHALI, BANGLADESH MD GOLAM MOULA Bangladesh Forest Research Institute, Post Box No. 273, Chittagong 4000, Bangladesh Key words: Mesophytes, Coastal afforestation, Growth performance, Bangladesh Abstract Mesophytic species such as Acacia nilotica, Albizia labeck, Albizia procera, Casuarina equisetifolia, Pithocellobium dulche, Samanea saman and Thespesia populnea were raised in the western coast of Char Kashem under Patuakhali district of Bangladesh. After seven years of planting highest survivability was found in A. labeck followed by P. dulche, C. equisetifolia, S. saman, A. procera, A. nilotica and T. populnea. The mean maximum diameter at breast height was found in S. saman followed by C. equisetifolia, A. procera, A. labeck, P. dulche, A. nilotica and T. populnea. The maximum plant height was found in C. equisetifolia followed by S. saman, A. procera, T. populnea, A. nilotica, A. labeck and P. dulche indicating suitability of all the seven species for plantation at Char Kashem. Coastal afforestation in 1966 was primarily initiated to save lives and properties of the coastal dwellers from the devastating cyclones and tidal surges (Das and Siddiqi 1985) and secondarily to (i) reclamation and stabilization of newly accreted land and acceleration of further accretion, (ii) production of timber and fuel wood and (iii) creation of employment opportunity in the coastal areas (Saenger 1987). The coastal afforestation programme gained a momentum with the involvement of World Bank in 1975 (Imam 1982). Up to 2001 a total of 1,48,526 hectares of mangrove plantation has been established under different projects.
    [Show full text]
  • Evaluation of International Provenance Trials of Casuarina Equisetifolia
    ACRC100.book Page 1 Wednesday, June 23, 2004 1:42 PM Evaluation of International Provenance Trials of Casuarina equisetifolia K. Pinyopusarerk, A. Kalinganire, E.R. Williams and K.M. Aken Australian Tree Seed Centre CSIRO Forestry and Forest Products PO Box E4008 Kingston ACT 2604 Australia Australian Centre for International Agricultural Research Canberra 2004 Evaluation of international provenance trials of Casuarina equisetifolia K. Pinyopusarerk, A. Kalinganire, E.R. Williams and K.M. Aken ACIAR Technical Reports No 58e (printed version published in 2004) ACRC100.book Page 2 Wednesday, June 23, 2004 1:42 PM The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing coun- tries and to commission collaborative research between Australia and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR TECHNICAL REPORTS SERIES This series of publications contains technical information resulting from ACIAR-supported programs, projects and workshops (for which proceedings are not being published), reports on Centre-supported fact-finding studies, or reports on other useful topics resulting from ACIAR activities. Publications in the series are distributed internationally to a selected audience. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601 K. Pinyopusarerk, A. Kalinganire, E.R. Williams and K.M. Aken 2004. Evaluation of international provenance trials of Casuarina equisetifolia. ACIAR Technical Report No. 58, 106p. ISBN 1 86320 440 7 (printed) ISBN 1 86320 441 5 (online) Cover design: Design One Solutions Cover photo by K.
    [Show full text]
  • Thespesia Populnea (Milo) Left: Newly Opened Flower
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Thespesia populnea (milo) Malvaceae (mallow family) badrirt (Palau); banalo (Northern Marianas); bang-beng (Yap); kilulo (Guam); mi‘o (Marquesas); milo (Hawai‘i, Mar- shall Islands, Samoa, Tonga); miro (Pitcairn Island); miro, ‘amae (Rarotonga, Society Islands); mulomulo (Fiji); panu (Kosrae); polo (Chuuk); pone (Pohnpei); purau (Tahiti); portia tree, seaside mahoe, Pacific rosewood, Indian tulip tree, cork tree, umbrella tree (English) J. B. Friday and Dana Okano photo: J. B. Friday B. J. photo: Milo tree on a beach in Lahaina, Maui, Hawai‘i. IN BRIEF Growth rate Moderate, 0.6–1 m/yr (2–3 ft/yr) for the first Distribution Coastal areas of the Indian and Pacific few years. Oceans; throughout Oceania. Main agroforestry uses Soil stabilization, windbreak. Size Small tree typically 6–10 m (20–33 ft) at maturity. Main uses Craftwood, ornamental. Habitat Tropical and warm subtropical, usually found at Yields Heartwood in 30+ years. sea level to 150 m (500 ft). Intercropping Compatible with many coastal species, al- Vegetation Associated with a wide range of coastal spe- though it requires full sun. cies. Invasive potential Has potential to become an invasive Soils Thrives on sandy coastal soils as well as volcanic, weed—should not be introduced into new areas. limestone, and rocky soils. INTRODUCTION Current distribution Milo (Thespesia populnea) is one of the most important trees Milo has been planted throughout the tropics and is natu- to Pacific Island peoples. The rich, dark wood is carved into ralized in tropical climates throughout the world from the beautiful bowls, tools, small canoes, and figures.
    [Show full text]
  • Casuarina Spp.), an Invader of Coastal Florida, U.S.A
    Journal of Coastal Research 27 3 485–492 West Palm Beach, Florida May 2011 Ecology and Management of Sheoak (Casuarina spp.), an Invader of Coastal Florida, U.S.A. G.S. Wheeler{, G.S. Taylor{, J.F. Gaskin1, and M.F. Purcell{{ www.cerf-jcr.org {USDA Agricultural Research {Australian Centre for 1USDA Agricultural Research {{USDA Agricultural Research Service Evolutionary Biology and Service Service Invasive Plant Research Biodiversity Northern Plains Agricultural Australian Biological Control Laboratory and School of Earth and Research Laboratory Laboratory 3225 College Avenue Environmental Sciences 1500 North Central Avenue CSIRO Entomology Fort Lauderdale, FL 33314, The University of Adelaide Sidney, MT 59270, U.S.A. 120 Meiers Road U.S.A. North Terrace, Adelaide, SA Indooroopilly, QLD 4068, 5005, Australia Australia ABSTRACT WHEELER, G.S.; TAYLOR, G.S.; GASKIN, J.F., and PURCELL, M.F., 2011. Ecology and management of sheoak (Casuarina spp.), an invader of coastal Florida, U.S.A. Journal of Coastal Research, 27(3), 485–492. West Palm Beach (Florida), ISSN 0749-0208. The Casuarina spp. are invasive plants in Florida that threaten biological diversity and beach integrity of coastal habitats. The trees include three species and their hybrids that aggressively invade riverine and coastal areas. Of the three species, C. equisetifolia and C. glauca are highly salt tolerant and widespread in coastal areas. The third species, C. cunninghamiana, invades riverine habitats. These species pose dangers to both the environment and public safety. The environmental damage includes interfering with nesting by endangered sea turtles, American crocodiles, and the rare swallow-tailed kite. Additionally, allelochemical leachates reduce germination and establishment of native vegetation.
    [Show full text]
  • Wake Island Grasses Gra Sse S
    Wake Island Grasses Gra sse s Common Name Scientific Name Family Status Sandbur Cenchrus echinatus Poaceae Naturalized Swollen Fingergrass Chloris inflata Poaceae Naturalized Bermuda Grass Cynodon dactylon Poaceae Naturalized Beach Wiregrass Dactyloctenium aegyptium Poaceae Naturalized Goosegrass Eleusine indica Poaceae Naturalized Eustachys petraea Poaceae Naturalized Fimbristylis cymosa Poaceae Indigenous Dactyloenium Aegyptium Lepturus repens Poaceae Indigenous Manila grass Zoysia matrella Poaceae Cultivated Cenchrus echinatus Chloris inlfata Fimbristylis cymosa Lepturus repens Zoysia matrella Eustachys petraea Wake Island Weeds Weeds Common Name Scientific Name Family Status Spanish Needle Bidens Alba Asteraceae Naturalized Hairy Spurge Chamaesyce hirta Euphorbiaceae Naturalized Wild Spider Flower Cleome gynandra Capparidaceae Naturalized Purslane Portulaca oleracea Portulaceaceae Naturalized Puncture Vine Tribulus cistoides Zygophyllaceae Indigenous Coat Buttons Tridax procumbens Asteraceae Naturalized Tridax procumbens Uhaloa Waltheria Indica Sterculiacae Indigenous Bidens alba Chamaesyce hirta Cleome gynandra Portulaca oleracea Tribulus cistoides Waltheria indica Wake Island Vines Vines Common Name Scientific Name Family Status Beach Morning Glory Ipomoea pes-caprae Convolvulaceae Indigenous Beach Moonflower Ipomoea violacea Convolvulaceae Indigenous Passion fruit Passiflora foetida Passifloraceae Naturalized Ipomoea violacea Ipomoea pes-caprae Passiflora foetida Wake Island Trees Trees Common Name Scientific Name Family Status
    [Show full text]
  • Frugivory by Introduced Black Rats (Rattus Rattus) Promotes Dispersal of Invasive Plant Seeds
    CHAPTER FIVE: FRUGIVORY BY INTRODUCED BLACK RATS (RATTUS RATTUS) PROMOTES DISPERSAL OF INVASIVE PLANT SEEDS Aaron B. Shiels Department of Botany University of Hawaii at Manoa 3190 Maile Way Honolulu, HI. 96822 148 Abstract Oceanic islands have been colonized by numerous non-native and invasive plants and animals. An understanding of the degree to which introduced rats (Rattus spp.) may be spreading or destroying seeds of invasive plants can improve our knowledge of plant- animal interactions, and assist efforts to control invasive species. Feeding trials in which fruits and seeds were offered to wild-caught rats were used to assess the effects of the most common rat, the black rat (R. rattus), on 25 of the most problematic invasive plant species in the Hawaiian Islands. Rats ate pericarps (fruit tissues) and seeds of most species, and the impacts on these plants ranged from potential dispersal of small-seeded (≤ 1.5 mm length) species via gut passage (e.g., Clidemia hirta, Buddleia asiatica, Ficus microcarpa, Miconia calvescens, Rubus rosifolius) to predation where < 15% of the seeds survived (e.g., Bischofia javanica, Casuarina equisetifolia, Prosopis pallida, Setaria palmifolia). Rats consumed proportionally more seed mass of the smaller fruits and seeds than the larger ones, but fruit and seed size did not predict seed survival following rat interactions. Although invasive rat control efforts focus on native species protection, non-native plant species, especially those with small seeds that may pass internally through rats, also deserve rat control in order to help limit the spread of such seeds. Black rats may be facilitating the spread of many of the most problematic invasive plants through frugivory and seed dispersal in Hawaii and in other ecosystems where rats and plants have been introduced.
    [Show full text]
  • Effect of Casuarina Plantations Inoculated with Arbuscular Mycorrhizal Fungi and Frankia on the Diversity of Herbaceous Vegetati
    diversity Article Effect of Casuarina Plantations Inoculated with Arbuscular Mycorrhizal Fungi and Frankia on the Diversity of Herbaceous Vegetation in Saline Environments in Senegal Pape Ibrahima Djighaly 1,2,3,4,* , Daouda Ngom 5, Nathalie Diagne 1,3,4,*, Dioumacor Fall 1,3, Mariama Ngom 1,5,6, Diégane Diouf 7, Valerie Hocher 6, Laurent Laplaze 1 , Antony Champion 8, Jill M. Farrant 9 and Sergio Svistoonoff 6,8 1 Laboratoire Commun de Microbiologie (LCM) Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal; [email protected] (D.F.); [email protected] (M.N.); [email protected] (L.L.) 2 Département d’Agroforesterie, Université Assane Seck de Ziguinchor, Ziguinchor BP 523, Senegal 3 Centre National de Recherches Agronomiques (ISRA/CNRA), Bambey BP 53, Senegal 4 Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal 5 Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, Dakar BP 5005, Senegal; [email protected] 6 Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), (IRD/INRA/CIRAD/Université de Montpellier/Supagro), IRD TA A-82/J, Campus International de Baillarguet, 34398 Montpellier CEDEX 5, France; [email protected] (V.H.); sergio.svistoonoff@ird.fr (S.S.) 7 UFR Environnement, Biodiversité et Développement Durable, Université du Sine Saloum
    [Show full text]
  • Australian Pine
    FACT SHEET: AUSTRALIAN PINE Australian Pine Casuarina equisetifolia L. Beefwood family (Casuarinaceae) NATIVE RANGE Malaysia, southern Asia, Oceania and Australia DESCRIPTION Australian pine is a deciduous tree with a soft, wispy, pine-like appearance that can grow to 100 feet or more in height. Also known as ironwood, beefwood, she oak and horsetail tree, it bears a superficial resemblance to the conifer genus Pinus because of its small, round, cone-like fruits and its branchlets of scale-like leaves that look like pine needles. Its flowers are tiny, brown and wind-pollinated. The fruit is a nutlet about ½ inch in diameter that contains winged seeds. ECOLOGICAL THREAT Australian pine is fast-growing (5-10 feet per year), produces dense shade and a thick blanket of leaves and hard, pointed fruits, that completely covers the ground beneath it. Dense thickets of Australian pine displace native dune and beach vegetation, including mangroves and many other resident, beach-adapted species. Because its roots are capable of producing nitrogen through microbial associations, Australian pine can colonize nutrient-poor soils. Once established, it radically alters the light, temperature, and soil chemistry regimes of beach habitats, as it outcompetes and displaces native plant species and destroys habitat for native insects and other wildlife. Chemicals in the leaves of Australian pine may inhibit the growth of other plants underneath it. The ground below Australian pine trees becomes ecologically sterile and lacking in food value for native wildlife. Unlike native shrubbery, the thick, shallow roots of Australian pine make it much more susceptible to blow-over during high wind events, leading to increased beach and dune erosion and interference with the nesting activities of sea turtles.
    [Show full text]