Mouse Tlr6 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Tlr6 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Tlr6 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tlr6 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tlr6 gene (NCBI Reference Sequence: NM_011604 ; Ensembl: ENSMUSG00000051498 ) is located on Mouse chromosome 5. 2 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 2 (Transcript: ENSMUST00000062315). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tlr6 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-249H4 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Inactivation of this gene results in abnormal macrophage function. Exon 2 covers 100.0% of the coding region. Start codon is in exon 2, and stop codon is in exon 2. The size of effective cKO region: ~2722 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele T gRNA region G 5' A 3' 1 2 Targeting vector T G A Targeted allele T G A Constitutive KO allele (After Cre recombination) Legends Exon of mouse Tlr6 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(8418bp) | A(27.8% 2340) | C(22.51% 1895) | T(29.25% 2462) | G(20.44% 1721) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr5 - 64955563 64958562 3000 browser details YourSeq 72 38 159 3000 86.8% chr16 - 37421120 37421246 127 browser details YourSeq 68 38 267 3000 81.0% chr10 + 95204714 95204931 218 browser details YourSeq 56 38 164 3000 84.2% chr10 - 72598726 72598852 127 browser details YourSeq 56 28 112 3000 79.8% chrX + 9745894 9745968 75 browser details YourSeq 47 38 104 3000 94.4% chr1 - 65614754 65614827 74 browser details YourSeq 44 52 159 3000 92.4% chr2 - 68616855 68616962 108 browser details YourSeq 44 38 162 3000 90.8% chr12 + 46520264 46520392 129 browser details YourSeq 35 83 130 3000 97.3% chr4 - 136967279 136967865 587 browser details YourSeq 34 27 80 3000 92.5% chr3 - 127223105 127223160 56 browser details YourSeq 34 14 63 3000 77.8% chr1 - 21870525 21870571 47 browser details YourSeq 32 103 162 3000 83.0% chr2 - 125446771 125446829 59 browser details YourSeq 30 108 162 3000 94.0% chr2 - 72695602 72695659 58 browser details YourSeq 25 40 65 3000 100.0% chr8 + 103590253 103590280 28 browser details YourSeq 24 1066 1097 3000 87.5% chr1 - 60318691 60318722 32 browser details YourSeq 24 291 320 3000 96.2% chr18 + 43689301 43689332 32 browser details YourSeq 22 1155 1182 3000 89.3% chr3 - 85608070 85608097 28 browser details YourSeq 22 2594 2618 3000 95.9% chr18 - 33724071 33724097 27 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr5 - 64950145 64953144 3000 browser details YourSeq 54 1308 1369 3000 93.6% chr17 + 25288765 25288826 62 browser details YourSeq 53 2553 2899 3000 68.5% chr12 + 73963270 73963410 141 browser details YourSeq 45 1310 1369 3000 88.4% chr11 + 49860254 49860315 62 browser details YourSeq 45 1310 1369 3000 94.2% chr10 + 19431476 19431537 62 browser details YourSeq 44 1310 1369 3000 86.7% chr1 - 104472848 104472907 60 browser details YourSeq 43 2450 2529 3000 80.3% chr10 - 91357353 91357433 81 browser details YourSeq 43 1310 1369 3000 97.8% chr3 + 96460986 96461047 62 browser details YourSeq 41 2559 2606 3000 95.6% chr9 - 113866560 113866608 49 browser details YourSeq 41 1311 1369 3000 93.7% chr7 - 82545221 82545281 61 browser details YourSeq 41 2531 2585 3000 80.0% chr12 - 39235288 39235335 48 browser details YourSeq 41 1310 1369 3000 85.0% chr10 - 128749666 128749727 62 browser details YourSeq 41 1329 1369 3000 100.0% chr18 + 37839197 37839237 41 browser details YourSeq 40 2414 2459 3000 93.5% chr2 - 116944363 116944408 46 browser details YourSeq 38 1332 1369 3000 100.0% chr13 - 93445405 93445442 38 browser details YourSeq 38 1328 1365 3000 100.0% chr12 - 4921905 4921942 38 browser details YourSeq 38 1332 1369 3000 100.0% chr8 + 106712395 106712432 38 browser details YourSeq 38 1332 1369 3000 100.0% chr7 + 27578270 27578307 38 browser details YourSeq 38 1332 1369 3000 100.0% chr2 + 132493570 132493607 38 browser details YourSeq 38 1332 1369 3000 100.0% chr15 + 12508625 12508662 38 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Tlr6 toll-like receptor 6 [ Mus musculus (house mouse) ] Gene ID: 21899, updated on 24-Sep-2019 Gene summary Official Symbol Tlr6 provided by MGI Official Full Name toll-like receptor 6 provided by MGI Primary source MGI:MGI:1341296 See related Ensembl:ENSMUSG00000051498 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Expression Broad expression in spleen adult (RPKM 3.6), colon adult (RPKM 1.8) and 17 other tissues See more Orthologs human all Genomic context Location: 5 C3.1; 5 33.54 cM See Tlr6 in Genome Data Viewer Exon count: 5 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 5 NC_000071.6 (64952030..64970942, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 5 NC_000071.5 (65344334..65351273, complement) Chromosome 5 - NC_000071.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 2 transcripts Gene: Tlr6 ENSMUSG00000051498 Description toll-like receptor 6 [Source:MGI Symbol;Acc:MGI:1341296] Location Chromosome 5: 64,952,031-64,960,097 reverse strand. GRCm38:CM000998.2 About this gene This gene has 2 transcripts (splice variants), 187 orthologues, 23 paralogues, is a member of 1 Ensembl protein family and is associated with 9 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Tlr6-201 ENSMUST00000062315.5 3677 806aa ENSMUSP00000062096.4 Protein coding CCDS19303 Q3UV88 TSL:1 GENCODE basic APPRIS P1 Tlr6-202 ENSMUST00000201307.1 446 113aa ENSMUSP00000143865.1 Protein coding - A0A0J9YTV4 CDS 3' incomplete TSL:1 28.07 kb Forward strand 64.95Mb 64.96Mb 64.97Mb Genes Fam114a1-201 >protein coding (Comprehensive set... Contigs < AC161757.5 Genes (Comprehensive set... < Tlr6-201protein coding < Tlr6-202protein coding Regulatory Build 64.95Mb 64.96Mb 64.97Mb Reverse strand 28.07 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000062315 < Tlr6-201protein coding Reverse strand 8.02 kb ENSMUSP00000062... Transmembrane heli... Superfamily SSF52058 Toll/interleukin-1 receptor homology (TIR) domain superfamily SMART Leucine-rich repeat, typical subtype Toll/interleukin-1 receptor homology (TIR) domain Cysteine-rich flanking region, C-terminal Prints PR01537 Pfam Leucine-rich repeat Toll/interleukin-1 receptor homology (TIR) domain PROSITE profiles Leucine-rich repeat Toll/interleukin-1 receptor homology (TIR) domain PIRSF PIRSF037595 PANTHER Toll-like receptor 6 PTHR24365 Gene3D Leucine-rich repeat domain superfamily Toll/interleukin-1 receptor homology (TIR) domain superfamily All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 80 160 240 320 400 480 560 640 720 806 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • Genetic Susceptibility for Cow's Milk Allergy in Dutch Children
    Henneman et al. Clin Transl Allergy (2016) 6:7 DOI 10.1186/s13601-016-0096-9 Clinical and Translational Allergy RESEARCH Open Access Genetic susceptibility for cow’s milk allergy in Dutch children: the start of the allergic march? Peter Henneman1*†, Nicole C. M. Petrus2†, Andrea Venema1, Femke van Sinderen1, Karin van der Lip1, Raoul C. Hennekam1, Marcel Mannens1† and Aline B. Sprikkelman2† Abstract Background: Cow’s milk allergy (CMA) is the most common allergic disease in infancy. It is not clear, whether infants with CMA have an increased risk of developing other allergic diseases later in life, the so-called “allergic march”. We aimed to detect genetic associations of CMA using reported single nucleotide polymorphisms (SNP) in other allergic diseases and genetic mutations within the filaggrin (FLG) gene. Both to investigate possible causes of CMA, which also suggests an “allergic march”. Methods: Thirty children from the Dutch EuroPrevall birth cohort study with CMA in infancy and twenty-three healthy controls were studied. Six candidate SNPs were selected (minor allele frequency 10–50 % combined with a large effect) based on the literature. Thirteen FLG candidate mutations were selected spread over repeats 1, 3, 4, 5, 6, 7, 9 and 10 respectively. Results: We found two SNP’s, rs17616434 (P 0.002) and rs2069772 (P 0.038), significantly associated with CMA. One is located near the toll like receptor 6 (TLR6)= gene, which functionally= interacts with toll-like receptor 2, and is associated with an increased risk of other allergic diseases. One is located at the Interleukin 2 (IL2) locus. Twelve FLG amplicons were analyzed, but showed no significant enrichment.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • A Cross-Laboratory Database of Brain Cell-Type Expression Profiles with Applications to Marker Gene Identification and Bulk Brain Tissue Transcriptome Interpretation
    bioRxiv preprint doi: https://doi.org/10.1101/089219; this version posted November 22, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. NeuroExpresso: A cross-laboratory database of brain cell-type expression profiles with applications to marker gene identification and bulk brain tissue transcriptome interpretation B. Ogan Mancarci1,2,3, Lilah Toker2,3, Shreejoy Tripathy2,3, Brenna Li2,3, Brad Rocco4,5, Etienne Sibille4,5, Paul Pavlidis2,3* 1Graduate Program in Bioinformatics, University of British Columbia, Vancouver, Canada 2Department of Psychiatry, University of British Columbia, Vancouver, Canada 3Michael Smith Laboratories, University of British Columbia, Vancouver, Canada 4Campbell Family Mental Health Research Institute of CAMH 5Department of Psychiatry and the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. Address correspondence to; Paul Pavlidis, PhD 177 Michael Smith Laboratories 2185 East Mall University of British Columbia Vancouver BC V6T1Z4 604 827 4157 [email protected] Ogan Mancarci: [email protected] Lilah Toker: [email protected] Shreejoy Tripathy: [email protected] Brenna Li: [email protected] Brad Rocco: [email protected] Etienne Sibille: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/089219; this version posted November 22, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk Tissue Data
    Methods/New Tools Novel Tools and Methods Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk Tissue Data B. Ogan Mancarci,1,2,3 Lilah Toker,2,3 Shreejoy J. Tripathy,2,3 Brenna Li,2,3 Brad Rocco,4,5 Etienne Sibille,4,5 and Paul Pavlidis2,3 DOI:http://dx.doi.org/10.1523/ENEURO.0212-17.2017 1Graduate Program in Bioinformatics, University of British Columbia, Vancouver V6T 1Z4, Canada, 2Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada, 3Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada, 4Campbell Family Mental Health Research Institute of CAMH, and 5Department of Psychiatry and the Department of Pharmacology and Toxicology, University of Toronto, Vancouver M5S 1A8, Canada Visual Abstract November/December 2017, 4(6) e0212-17.2017 1–20 Methods/New Tools 2 of 20 Significance Statement Cell type markers are powerful tools in the study of the nervous system that help reveal properties of cell types and acquire additional information from large scale expression experiments. Despite their usefulness in the field, known marker genes for brain cell types are few in number. We present NeuroExpresso, a database of brain cell type-specific gene expression profiles, and demonstrate the use of marker genes for acquiring cell type-specific information from whole tissue expression. The database will prove itself as a useful resource for researchers aiming to reveal novel properties of the cell types and aid both laboratory and computational scientists to unravel the cell type-specific components of brain disorders. Establishing the molecular diversity of cell types is crucial for the study of the nervous system.
    [Show full text]
  • Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
    Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis Ugo Ala1., Rosario Michael Piro1., Elena Grassi1, Christian Damasco1, Lorenzo Silengo1, Martin Oti2, Paolo Provero1*, Ferdinando Di Cunto1* 1 Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy, 2 Department of Human Genetics and Centre for Molecular and Biomolecular Informatics, University Medical Centre Nijmegen, Nijmegen, The Netherlands Abstract Background: Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings: We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion: Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. Citation: Ala U, Piro RM, Grassi E, Damasco C, Silengo L, et al.
    [Show full text]
  • Variation in the TLR10/TLR1/TLR6 Locus Is the Major Genetic Determinant of Interindividual Difference in TLR1/2-Mediated Responses
    Genes and Immunity (2013) 14, 52–57 & 2013 Macmillan Publishers Limited All rights reserved 1466-4879/13 www.nature.com/gene ORIGINAL ARTICLE Variation in the TLR10/TLR1/TLR6 locus is the major genetic determinant of interindividual difference in TLR1/2-mediated responses C Mikacenic1, AP Reiner2, TD Holden1, DA Nickerson3 and MM Wurfel1 Toll-like receptor (TLR)-mediated innate immune responses are important in early host defense. Using a candidate gene approach, we previously identified genetic variation within TLR1 that is associated with hyper-responsiveness to a TLR1/2 agonist in vitro and with death and organ dysfunction in patients with sepsis. Here we report a genome-wide association study (GWAS) designed to identify genetic loci controlling whole blood cytokine responses to the TLR1/2 lipopeptide agonist, Pam3CSK4 (N-palmitoyl-S- À 27 dipalmitoylglyceryl Cys-Ser-(Lys)4) ex vivo. We identified a very strong association (Po1 Â 10 ) between genetic variation within the TLR10/1/6 locus on chromosome 4, and Pam3CSK4-induced cytokine responses. This was the predominant association explaining over 35% of the population variance for this phenotype. Notably, strong associations were observed within TLR10, suggesting that genetic variation in TLR10 may influence bacterial lipoprotein-induced responses. These findings establish the TLR10/1/6 locus as the dominant common genetic factor controlling interindividual variability in Pam3CSK4-induced whole blood responses in the healthy population. Genes and Immunity (2013) 14, 52–57; doi:10.1038/gene.2012.53; published online 15 November 2012 Keywords: TLR; polymorphism; genomics; innate immunity INTRODUCTION variability is attributable to common genetic variants.
    [Show full text]
  • Analysis of Immunological Resistance to Primary Mycobacterium Tuberculosis Infection In
    bioRxiv preprint doi: https://doi.org/10.1101/551432; this version posted February 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Analysis of immunological resistance to primary Mycobacterium tuberculosis infection in humans January Weiner III1, Teresa Domaszewska1, Simon Donkor2, Philip C. Hill2, 3, Jayne S. Sutherland2 1. Max Planck Institute for Infection Biology, Berlin, Germany 2. Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia 3. Otago University, Otago, New Zealand Corresponding author: Dr. Jayne Sutherland, MRC Unit, PO Box 273, Banjul, The Gambia. Phone: +220 3170701. Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/551432; this version posted February 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background: Despite recent advances in diagnosis and treatment, tuberculosis (TB) remains a major infectious disease killer in resource-poor settings. Strategies to prevent Mycobacterium tuberculosis (Mtb) infection are urgently required. By characterising natural protective immunity to Mtb infection we aimed to identify correlates of protection to guide vaccine development and other immune based therapies. Methods: Two groups of Mtb-exposed contacts of TB patients were recruited in The Gambia and assessed for Mtb infection status using either tuberculin skin test (TST) reactivity at baseline and 3 months or QuantiFERON (QFT) reactivity at baseline and 6 months. For both groups, converters were defined as having a negative test at baseline and a positive one at follow-up, while those with a negative test at both time-points were defined as non-converters (Mtb resisters).
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • A Community-Based Transcriptomics Classification and Nomenclature Of
    COMMENT | FOCUS comment | FOCUS A community-based transcriptomics classifcation and nomenclature of neocortical cell types To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unifed taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the frst time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defned by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classifcation should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic defnition of a cell type and incorporate data from diferent approaches, developmental stages and species. A community-based classifcation and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classifcation, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body. Rafael Yuste, Michael Hawrylycz, Nadia Aalling, Argel Aguilar-Valles, Detlev Arendt, Ruben Armananzas Arnedillo, Giorgio A. Ascoli, Concha Bielza, Vahid Bokharaie, Tobias Borgtoft Bergmann, Irina Bystron, Marco Capogna, Yoonjeung Chang, Ann Clemens, Christiaan P. J. de Kock, Javier DeFelipe, Sandra Esmeralda Dos Santos, Keagan Dunville, Dirk Feldmeyer, Richárd Fiáth, Gordon James Fishell, Angelica Foggetti, Xuefan Gao, Parviz Ghaderi, Natalia A.
    [Show full text]
  • A Network Inference Approach to Understanding Musculoskeletal
    A NETWORK INFERENCE APPROACH TO UNDERSTANDING MUSCULOSKELETAL DISORDERS by NIL TURAN A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy College of Life and Environmental Sciences School of Biosciences The University of Birmingham June 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Musculoskeletal disorders are among the most important health problem affecting the quality of life and contributing to a high burden on healthcare systems worldwide. Understanding the molecular mechanisms underlying these disorders is crucial for the development of efficient treatments. In this thesis, musculoskeletal disorders including muscle wasting, bone loss and cartilage deformation have been studied using systems biology approaches. Muscle wasting occurring as a systemic effect in COPD patients has been investigated with an integrative network inference approach. This work has lead to a model describing the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. This model has shown for the first time that oxygen dependent changes in the expression of epigenetic modifiers and not chronic inflammation may be causally linked to muscle dysfunction.
    [Show full text]
  • Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk
    bioRxiv preprint doi: https://doi.org/10.1101/089219; this version posted May 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Cross-laboratory analysis of brain cell type transcriptomes with applications to interpretation of bulk 2 tissue data 3 B. Ogan Mancarci1,2,3, Lilah Toker2,3, Shreejoy J Tripathy2,3, Brenna Li2,3, Brad Rocco4,5, Etienne 4 Sibille4,5, Paul Pavlidis2,3* 5 1Graduate Program in Bioinformatics, University of British Columbia, Vancouver, Canada 6 2Department of Psychiatry, University of British Columbia, Vancouver, Canada 7 3Michael Smith Laboratories, University of British Columbia, Vancouver, Canada 8 4Campbell Family Mental Health Research Institute of CAMH 9 5Department of Psychiatry and the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. 10 11 Address correspondence to; 12 Paul Pavlidis, PhD 13 177 Michael Smith Laboratories 2185 East Mall 14 University of British Columbia Vancouver BC V6T1Z4 15 604 827 4157 [email protected] 16 17 Ogan Mancarci: [email protected] 18 Lilah Toker: [email protected] 19 Shreejoy Tripathy: [email protected] 20 Brenna Li: [email protected] 21 Brad Rocco: [email protected] 22 Etienne Sibille: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/089219; this version posted May 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Brain Sciences
    brain sciences Article High and Low Levels of an NTRK2-Driven Genetic Profile Affect Motor- and Cognition-Associated Frontal Gray Matter in Prodromal Huntington’s Disease Jennifer A. Ciarochi 1 ID , Jingyu Liu 2, Vince Calhoun 2,3, Hans Johnson 4 ID , Maria Misiura 5, H. Jeremy Bockholt 2, Flor A. Espinoza 2, Arvind Caprihan 2, Sergey Plis 2, Jessica A. Turner 1,5,*, Jane S. Paulsen 4,6,7 ID and the PREDICT-HD Investigators and Coordinators of the Huntington Study Group † 1 Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA; [email protected] 2 The Mind Research Network, Albuquerque, NM 87106, USA; [email protected] (J.L.); [email protected] (V.C.); [email protected] (H.J.B.); [email protected] (F.A.E.); [email protected] (A.C.); [email protected] (S.P.) 3 Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA 4 Iowa Mental Health Clinical Research Center, Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; [email protected] (H.J.); [email protected] (J.S.P.) 5 Department of Psychology, Georgia State University, Atlanta, GA 30302, USA; [email protected] 6 Department of Neurology, University of Iowa, Iowa City, IA 52242, USA 7 Department of Psychology, University of Iowa, Iowa City, IA 52242, USA * Correspondence: [email protected]; Tel.: +1-404-413-6211 † Detailed information in Author Contribution part. Received: 16 May 2018; Accepted: 20 June 2018; Published: 22 June 2018 Abstract: This study assessed how BDNF (brain-derived neurotrophic factor) and other genes involved in its signaling influence brain structure and clinical functioning in pre-diagnosis Huntington’s disease (HD).
    [Show full text]