Human Energy Requirements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Association Between Basal Metabolic Rate and Handgrip Strength in Older Koreans
International Journal of Environmental Research and Public Health Article Association between Basal Metabolic Rate and Handgrip Strength in Older Koreans 1, 1, 2 3 1, Sung-Kwan Oh y, Da-Hye Son y , Yu-Jin Kwon , Hye Sun Lee and Ji-Won Lee * 1 Department of Family Medicine, Yonsei University College of Medicine, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea; [email protected] (S.-K.O.); [email protected] (D.-H.S.) 2 Department of Family Medicine, Yong-In Severance Hospital, 23 Yongmunno (405 Yeokbuk-dong), Gyeonggi 17046, Korea; [email protected] 3 Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Korea; [email protected] * Correspondence: [email protected] These authors contributed equally to this paper. y Received: 16 October 2019; Accepted: 8 November 2019; Published: 9 November 2019 Abstract: We investigated the relationship between the basal metabolic rate (BMR) and muscle strength through measurement of handgrip strength. We conducted a cross-sectional study of a population representative of older Korean from the 2014–2016 Korean National Health and Nutrition Examination Survey. A total of 2512 community-dwelling men and women aged 65 years and older were included. The BMR was calculated with the Singapore equation and handgrip strength was measured using a digital dynamometer. The patients were categorized into handgrip strength quartiles and a weighted one-way analysis of variance (ANOVA) for continuous variables and a weighted chi-squared test for categorical variables were performed. Pearson, Spearman correlation analysis, univariate, and multivariate linear regression were performed. -
Cardiac Basal Metabolism
Japanese Journal of Physiology, 51, 399–426, 2001 REVIEW Cardiac Basal Metabolism C. L. GIBBS and D. S. LOISELLE* Department of Physiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, PO Box 13F, Monash University, Victoria 3800, Australia; and *Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand Abstract: We endeavor to show that the me- usage remain unresolved. We consider many of tabolism of the nonbeating heart can vary over the physiological factors that can alter the basal an extreme range: from values approximating metabolic rate, stressing the importance of sub- those measured in the beating heart to values of strate supply. We point out that the protective ef- only a small fraction of normal—perhaps mimick- fect of hypothermia may be less than is com- ing the situation of nonflow arrest during cardiac monly assumed in the literature and suggest that bypass surgery. We discuss some of the techni- hypoxia and ischemia may be able to regulate cal issues that make it difficult to establish the basal metabolic rate, thus making an important magnitude of basal metabolism in vivo. We con- contribution to the phenomenon of cardiac hiber- sider some of the likely contributors to its magni- nation. [Japanese Journal of Physiology, 51, tude and point out that the biochemical reasons 399–426, 2001] for a sizable fraction of the heart’s basal ATP Key words: whole hearts, isolated preparations, biochemical contributors, modifiers, species differ- ence, temperature, substrate, hypoxia. heart operations are performed on arrested hearts I. Definition and Introduction worldwide each year, it would seem imperative that The cardiac basal metabolism is the rate of energy we understand the cellular mechanisms that can expenditure of the quiescent myocardium. -
Energetics of Free-Ranging Seabirds
University of San Diego Digital USD Biology: Faculty Scholarship Department of Biology 2002 Energetics of Free-Ranging Seabirds Hugh I. Ellis University of San Diego Geir Wing Gabrielsen Follow this and additional works at: https://digital.sandiego.edu/biology_facpub Part of the Biology Commons, Ecology and Evolutionary Biology Commons, Ornithology Commons, and the Physiology Commons Digital USD Citation Ellis, Hugh I. and Gabrielsen, Geir Wing, "Energetics of Free-Ranging Seabirds" (2002). Biology: Faculty Scholarship. 20. https://digital.sandiego.edu/biology_facpub/20 This Book Chapter is brought to you for free and open access by the Department of Biology at Digital USD. It has been accepted for inclusion in Biology: Faculty Scholarship by an authorized administrator of Digital USD. For more information, please contact [email protected]. Energetics of Free-Ranging Seabirds Disciplines Biology | Ecology and Evolutionary Biology | Ornithology | Physiology Notes Original publication information: Ellis, H.I. and G.W. Gabrielsen. 2002. Energetics of free-ranging seabirds. Pp. 359-407 in Biology of Marine Birds (B.A. Schreiber and J. Burger, eds.), CRC Press, Boca Raton, FL. This book chapter is available at Digital USD: https://digital.sandiego.edu/biology_facpub/20 Energetics of Free-Ranging 11 Seabirds Hugh I. Ellis and Geir W. Gabrielsen CONTENTS 11.1 Introduction...........................................................................................................................360 11.2 Basal Metabolic Rate in Seabirds........................................................................................360 -
Life Cycle Assessment on Electric Moped Scooter Sharing
sustainability Article Life Cycle Assessment on Electric Moped Scooter Sharing Nora Schelte 1,*, Semih Severengiz 1 , Jaron Schünemann 1, Sebastian Finke 1, Oskar Bauer 1 and Matthias Metzen 2 1 Laboratory for Sustainability in Technology, Department of Electrical Engineering and Computer Sciences, Bochum University of Applied Sciences, 44801 Bochum, Germany; [email protected] (S.S.); [email protected] (J.S.); sebastian.fi[email protected] (S.F.); [email protected] (O.B.) 2 e-bility GmbH, 53424 Remagen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-234-32-10376 Abstract: Due to their small size and low energy demand, light electric vehicles (LEVs), such as electric moped scooters, are considered as a space efficient and eco-friendly alternative for mobility in cities. However, the growth of electric moped scooter sharing services raises the question of how environmentally friendly this business model is, considering the entire lifecycle. Due to the dynamic market and insufficient availability of public data on the business processes of sharing services only a few studies on the impact of shared electric mopeds are available. Especially there is a lack of research on the impacts of key operational logistic parameters of the sharing system. This paper aims to fill this gap by conducting a life cycle assessment using the example of an electric moped scooter manufactured and used in sharing services in Germany, based on different operating scenarios. The results show that e-moped sharing has a similar environmental impact on global warming potential, in terms of passenger kilometers, as public transport, especially if long product lifetimes as well as efficient operation logistics are realized. -
The Effect and Dependency of L-Thyroxine Treatment on The
THE EFFECT AND DEPENDENCY OF L-THYROXINE TREATMENT ON THE BASAL METABOLIC RATE OF POST-METAMORPHIC XENOPUS LAEVIS. A Report of a Senior Study by Angie M. Castle Major: Biology Maryville College Spring, 2007 Date Approved _____________, by ________________________ Faculty Supervisor Date Approved _____________, by ________________________ Editor ii ABSTRACT One function of thyroid hormones is stimulating both the anabolic and catabolic reactions that make up an organism’s metabolism. However, the thyroid may not function properly resulting in hypothyroidism. One side effect of hypothyroidism is a declination in metabolic rate. This study investigated if the thyroid hormone l-thyroxine (T4) could significantly increase the metabolic rate of Xenopus laevis frogs. It was hypothesized that the thyroxine treated Xenopus would demonstrate an increased metabolic rate and decreases in mass. Further, it was hypothesized that after treatment was halted, the experimental group was expected to demonstrate a decrease in metabolic rate and an increase in mass. Twenty-two Xenopus tadpoles were treated with 1mg of l-thyroxine per liter of water for 21 days, and treatment was withdrawn for 21 days. Similarly, twenty- one control tadpoles were treated with 1%NaOH for 21 days. Throughout the 42-day period, the whole body and mass specific metabolic rate was measured using gas exchange respirometry. There was significant increase (p=0.04) in whole body metabolic rate of T4 treated animals, but the increase was not restricted to the treatment period (p=0.12). There was no significant increase in mass specific metabolic rate. Also, there was no significant difference in mass between the final control and the final thyroxine treated (p=0.16). -
Popular Sweeteners and Their Health Effects Based Upon Valid Scientific Data
Popular Sweeteners and Their Health Effects Interactive Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science By __________________________________ Ivan Lebedev __________________________________ Jayyoung Park __________________________________ Ross Yaylaian Date: Approved: __________________________________ Professor Satya Shivkumar Abstract Perceived health risks of artificial sweeteners are a controversial topic often supported solely by anecdotal evidence and distorted media hype. The aim of this study was to examine popular sweeteners and their health effects based upon valid scientific data. Information was gathered through a sweetener taste panel, interviews with doctors, and an on-line survey. The survey revealed the public’s lack of appreciation for sweeteners. It was observed that artificial sweeteners can serve as a low-risk alternative to natural sweeteners. I Table of Contents Abstract .............................................................................................................................................. I Table of Contents ............................................................................................................................... II List of Figures ................................................................................................................................... IV List of Tables ................................................................................................................................... -
The Identification of Key Foods for Food Composition Research
JOURNAL OF FOOD COMPOSITION AND ANALYSIS (2002) 15, 183–194 doi:10.1006/jfca.2001.1046 Available online at http://www.idealibrary.comon ORIGINAL ARTICLE The Identification of Key Foods for Food Composition Research D. B. Haytowitz1, P. R. Pehrsson, and J. M. Holden Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, B-005, Rm. 307A, BARC-West Beltsville, MD 20705, U.S.A. Received January 3, 2001, and in revised formNovember16, 2001 The United States Department of Agriculture’s (USDA) National Food and Nutrient Analysis Program(NFNAP) was initiated to update existing component values and to add data on new foods and components to reflect today’s marketplace and needs for data. The USDA Nutrient Database for Standard Reference contains data for about 6040 foods for over 100 compounds. To develop a full nutrient profile for each food costs approximately $12 000 (six analytical samples  $2000 per sample). To determine food sampling priorities, the Nutrient Data Laboratory (NDL) has used the Key Foods approach to generate a list of 666 foods. This method utilizes existing nutrient profiles and nationally representative food consumption survey data collected by USDA in the Continuing Survey of Food Intakes by Individuals 1994–1996 (CSFII) and by The U.S. Department of Health and Human Services (USDHHS) in the National Health and Nutrition Examination Survey (NHANES). One premise of the project is that more samples will be collected and prepared for those foods which provide important amounts of nutrients of public health significance to the diet and not every sample will be analyzed for all the nutrients currently in NDL’s nutrient databases. -
Resting Metabolic Rate and Diet-Induced Thermogenesis During Each Phase of the Menstrual Cycle in Healthy Young Women Summary Th
J. Clin. Biochem. Nutr., 25, 97-107, 1998 Resting Metabolic Rate and Diet-Induced Thermogenesis during Each Phase of the Menstrual Cycle in Healthy Young Women Tatsuhiro MATSUO,1 * Shinichi SAITOH,2 and Masashige SUZUKI,2 1 Division of Nutrition and Biochemistry, Sanyo Women's College, Hatsukaichi 738-8504, Japan 2 Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8576, Japan (Received June 20, 1998) Summary The effects of the menstrual cycle on resting metabolic rate (RMR) and diet-induced thermogenesis (DIT) were studied in nine healthy young women aged 18-19 years. All subjects were eumenorrheic, with regular menstrual cycles ranging from 28 to 32 days. RMR and DIT were measured in the mid follicular phase and in the mid luteal phase. On the experimental days, subjects fasted overnight; then the RMR was measured by indirect calorimetry. For the measurement of DIT, subjects were fed a meal containing a uniform amount of energy (2.53 MJ) eaten within 15 min, and then indirect calorimetry was performed during rest for 180 min. The RMR was significantly higher in the luteal phase than in the follicular phase (67.0 vs. 62.5 J/kg/min, p<0.01). DIT was also significantly higher in the luteal phase (4.0 vs. 3.2 kJ/kg/3 h, p<0.01). The postprandial respiratory exchange ratio was slightly lower in the luteal phase than in the follicular phase (0.78 vs. 0.81). These results suggest that the menstrual cycle phase affects both the RMR and DIT. Higher postprandial energy expenditure and fat utilization in the luteal phase may be related to sympathetic and endocrinal actions. -
Cost-Saving Energy Solutions for Food Businesses
Cost-Saving Energy Solutions for Food Businesses Restaurants, coffee shops and grocery stores serve as hubs of commerce and social activity in many downtown commercial districts and can be a key ingredient for a viable rural community. Many of these businesses have a substantial opportunity to Adjusting the defrost lower overhead costs and increase their profit margins by replacing equipment and cycle of refrigeration reducing energy costs. Making changes like sourcing locally, re-using food waste and considering renewable energy are also possible solutions for long-term sustainability. equipment can result in a significant energy and cost savings. Energy Efficiencies One restaurant owner Intensity with Replacing was able to save $800 annually by of Food and Operating shortening the defrost Businesses Equipment cycle from 70 minutes Food-based businesses are energy-intensive Energy savings can be achieved simply through to 15 minutes. businesses, using large amounts of electricity operation and management changes of and natural gas for cooking, food processing and equipment. Higher upfront costs for upgrading refrigeration. For example, about 24 percent of to more energy efficient equipment can be a energy in restaurants is used for cooking. deterrent for business owners on a tight budget. However, federal, state and utility incentives Virtually every aspect of running a food-based can often offset or exceed the up-front cost of business is affected by energy and energy prices. high-efficiency equipment. In addition to cost, They face high energy costs due to electricity reliability is a key requirement in both restaurants and gas demand from griddles, fryers, steam and grocery stores. -
The Effect of Sucrose- and Aspartame- Sweetened Drinks on Energy Intake, Hunger and Food Choice of Female, Moderately Restrained Eaters
International Journal of Obesity (1997) 21, 37±42 ß 1997 Stockton Press All rights reserved 0307±0565/97 $12.00 The effect of sucrose- and aspartame- sweetened drinks on energy intake, hunger and food choice of female, moderately restrained eaters JH Lavin, SJ French and NW Read Centre for Human Nutrition, Northern General Hospital, Herries Road, Shef®eld S5 7AU, UK Objective: To compare the effects of aspartame-sweetened and sucrose-sweetened soft drinks on food intake and appetite ratings of female restrained eaters. Subjects: Fourteen female students, shown to have eating restraint. Methods: Subjects were given four drinks (330 ml) of aspartame-sweetened lemonade, sucrose-sweetened lemonade and carbonated mineral water on three separate days. Seven of the subjects were informed of the drink type they were consuming on each occasion. Measurements: Appetite ratings were recorded and energy and macronutrient intakes were measured during the study day and day after leaving the department. Results: During the ®rst study day energy intake was lower whilst drinking the sucrose-sweetened lemonade compared with the aspartame-sweetened lemonade, although neither differed signi®cantly from energy intakes during the day they drank water. When the calories from the sucrose-sweetened lemonade were included (1381 kJ, 330 Kcal) energy intake did not differ between treatments. The following day energy intake was signi®cantly higher after the aspartame-sweetened lemonade compared with both sucrose-sweetened lemonade and the water due to an increase in the amount of carbohydrate consumed and resulted in a higher total energy intake over the two days studied. Knowledge of the drink types had no effect on energy intake or macronutrient intake. -
Incorporating Away-From-Home Foods Into a Healthy Eating Plan
Incorporating Away–From–Home Food into a Healthy Eating Plan Summary Much of this brief is based upon a In our often time-pressed society, convenience is a recently published way of life for many individuals. Foods and meals report: The prepared outside of the home are an increasingly Keystone Forum 1, 2 important part of the American diet. This is a on Away-From- trend that has coincided with a dramatic rise in the Home Foods: prevalence of obesity. While food, wherever prepared, Opportunities for is not the only factor affecting body weight, away- Preventing Weight from-home food should be an important consideration Gain and Obesity.3 for people aiming to maintain or lose weight. A The report resulted growing body of literature indicates that the eating from consensus of away-from-home food can be a factor influencing building workshops energy intake. Informed choices pertaining to away- which included from-home food could help reduce calorie over participants from consumption and aid in weight management. the private sector, nongovernmental The objectives of this brief are to: organizations, Summarize environmental and societal changes academia, and government to “identify the state of that may contribute to the increased consumption of the evidence, as well as, important knowledge gaps, away-from-home food. regarding obesity and weight gain prevention and away-from-home foods.” Review the properties of away-from-home-food that may facilitate the over-consumption of energy. In this brief, away-from-home food refers to food Examine studies investigating the relationship of prepared and purchased outside of the home. -
The Relation of Metabolic Rate to Body Weight and Organ Size
Pediat.Res. 1: 185-195 (1967) Metabolism basal metabolic rate growth REVIEW kidney glomerular filtration rate body surface area body weight oxygen consumption organ growth The Relation of Metabolic Rate to Body Weight and Organ Size A Review M.A. HOLLIDAY[54J, D. POTTER, A.JARRAH and S.BEARG Department of Pediatrics, University of California, San Francisco Medical Center, San Francisco, California, and the Children's Hospital Medical Center, Oakland, California, USA Introduction Historical Background The relation of metabolic rate to body size has been a The measurement of metabolic rate was first achieved subject of continuing interest to physicians, especially by LAVOISIER in 1780. By 1839 enough measurements pediatricians. It has been learned that many quanti- had been accumulated among subjects of different tative functions vary during growth in relation to sizes that it was suggested in a paper read before the metabolic rate, rather than body size. Examples of Royal Academy of France (co-authored by a professor these are cardiac output, glomerular filtration rate, of mathematics and a professor of medicine and oxygen consumption and drug dose. This phenomenon science) that BMR did not increase as body weight may reflect a direct cause and effect relation or may be increased but, rather, as surface area increased [42]. a fortuitous parallel between the relatively slower in- In 1889, RICHET [38] observed that BMR/kg in rab- crease in metabolic rate compared to body size and the bits of varying size decreased as body weight increased; function in question. RUBNER [41] made a similar observation in dogs. Both The fact that a decrease in metabolism and many noted that relating BMR to surface area provided re- other measures of physiological function in relation to a sults that did not vary significantly with size.