User-Friendly Workflows in Quantum Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
User-friendly workflows in quantum chemistry Prof. Dr. Sonja Herres-Pawlis Ludwig-Maximilians-Universität München Akos BALASKO, Georg BIRKENHEUER, André BRINKMANN, Sandra GESING, Richard GRUNZKE, Alexander HOFFMANN, Peter KACSUK, Jens KRÜGER, Lars PACKSCHIES, Gabor TERSTYANSKY, and Noam WEINGARTEN International Workshop on Science Gateways 3.06.2013, Zürich Motivation • Excellent simulation codes available for all chemical domains • Huge amount of computational resources • Time consuming access even for experienced users • Impassable obstacle for beginners www.mosgrid.de Aims of MoSGrid • Enabling easier access to HPC (high-performance computing) facilities • Allowing inexperienced scientists to run molecular simulations on DCIs • Offering an intuitive user interface (gateway) • Enabling easy access to recipes, workflows, data repositories www.mosgrid.de 3 Molecular Simulation Grid www.mosgrid.de MoSGrid Science Gateway • Portal framework: Liferay • Versatile configuration possibilities • Allows to provide a user-friendly portal • Certificate Portlet • Easy Management of access to DCIs • Submission of chemical calculations via gUSE • High-level middleware: WS-PGRADE • Middleware: UNICORE • Resources: Wide range of German D-Grid resources (in the future also European DCIs) www.mosgrid.de 5 Molecular Simulation Grid • Start in 2008: 50 associated chemical work groups • October 2010: Mailing list with 100 addressees as MoSGrid Community • December 2011: after the community meeting increase to 120 interested chemists from all three domains • Community serves as pool for requirements analyses. • Today: 20 real expert users 40 standard users www.mosgrid.de Use of Workflows in Domains • Domains • Quantum chemistry • Molecular dynamics • Docking • Identifying standard recipes • Modelling of suited workflows • Goals: • For Power Users • Possibility to design own Workflows • For Novices • Offer standard workflows www.mosgrid.de Use of Workflows in Domains • Quantum Chemical Calculations • based on approximated solutions of the Schrödinger equation • Average scalability • Gaussian, NWChem, Turbomole, … • Molecular Dynamics • based on forcefields describing molecular interactions • Good scalability • Gromacs, NWChem, Amber, … • Docking • Based on simplified forcefields • Excellent scalability • CADDSuite, FlexX, … www.mosgrid.de Basic Workflow User- Grid Portal Input Resource Job Meta- Definition processing Job Application Submission Input Execution Post- Application Output processing Output www.mosgrid.de The QC Portlet @ MoSGrid.de - Specialised interface for quantum chemistry software (Gaussian, Turbomole, NWChem) - Basic workflows - Easy Generation or Uploading of Input Files - Parsing of result files www.mosgrid.de 10 Example: Parameter Sweep Parameter pes file range • Parameter Sweep • Input Converter • Molecular structure • Scan of a potential • Parameter X-ray energy surface (PES) X-ray • Parameter range (ins XFile)-ray (ins XFile)-ray • Change of one (ins(insInput File) File) file • First step • automatic generation of parameters crucial Inputfiles for theoretical QC code • Second step analysis • Submission into the XX-ray-ray (ins XFile)X-ray-ray Grid • Reaction path (ins(ins File) File) Output(ins File) file • Third step analysis • Plotting of obtained • Pre-defined steps Postprocessor energies against the chosen parameter X-ray XX-ray-ray (ins(ins File) XFile)-ray (insResult File) plot (ins File) www.mosgrid.de Example: High Throughput XX-ray-ray (insX XFile)-ray-ray (ins(ins XFile) File)-ray • Native X-ray format (ins(ins File) File) • Input • X-ray data needs to be Converter converted into a • First step X-ray computational X-ray • Conversion into mol (ins XFile)-ray (ins XFile)-ray file readable mol file. (ins(insMol File) File) file • Second step • Time-consuming Converter • Conversion into job process of manual file with pre-defined X-ray job parameters conversion can be X-ray (ins XFile)-ray (ins XFile)-ray (functional, basis set) transferred into the (ins(insInput File) File) file portlet. • Third step • Submission into the QC code Grid X-ray XX-ray-ray (ins(ins File) XFile)-ray (insOutput(ins File) File) file www.mosgrid.de Example: Transition State Analysis • Zinc complex reacting with lactide E [kJ/mol] 135 111 0 www.mosgrid.de Example: Transition State Analysis TS Input file • Input • Transition state job QC code file (e.g. QST3 file) • First step TS • Calculation of TS geometry geometry Converter • Second step • Conversion into job Frequency IRC Input files for frequency Input file file and IRC calculations QC code QC code • Third step • Calculation of Frequency frequency and IRC Output Output reaction path www.mosgrid.de Example: Spectroscopic Analysis Structure Time-dependent DFT for UV/Vis prediction / nm 1200900 600 300 BP86 PW91 TPSSh 8.0x104 B3LYP PBE0 CAM-B3LYP wB97xd BHLYP 4.0x104 0.0 2 4 6 E / eV Orbital analysis (LMCT) www.mosgrid.de Example: Spectroscopic Analysis www.mosgrid.de Example: Spectroscopic Opt Analysis Input QM code Output file Job Creator Job Creator Job Creator Job Creator TD-DFT Popul. Solvation Freq input input input input QM code QM code QM code QM code Freq TD-DFT Popul. Solvation Output Output Output Output www.mosgrid.de Example: Opt WF Spectroscopic Opt Analysis Input QM code Output file Job Creator Job Creator Job Creator Job Creator TD-DFT Popul. Solvation Freq input input input input QM code QM code QM code QM code Freq TD-DFT Popul. Solvation Output Output Output Output Freq WF TD WF Pop WF Solv WF www.mosgrid.de Example: Spectroscopic Analysis Opt WF Freq WF TD WF Pop WF Solv WF www.mosgrid.de Workflows in Quantum chemistry Application at the QC codes implemented in MoSGrid: Gaussian Turbomole NWChem • Great Help for User (via standard recipes in the repository) • Possibility to generate own complex workflows • Facilitation of data extraction and postprocessing • Meta-workflows allow re-use of basic workflows! www.mosgrid.de 20 Acknowledgement Köln, RRZK • Lars Packschies • Martin Kruse Tübingen, Bioinformatics • Oliver Kohlbacher MTA SZTAKI, Computer and • Jens Krüger Automation Research Institute, Budapest Berlin, Zuse Institut • Thomas Steinke Centre for Parallel Computing, • Patrick Schäfer University of Westminster, London Dresden, ZIH • Ralf Müller-Pfefferkorn • Richard Grunzke www.mosgrid.de .