Organic & Biomolecular Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Organic & Biomolecular Chemistry Organic & Biomolecular Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/obc Page 1 of 6 CREATED USING THE RSC ARTICLEOrganic TEMPLATE & Biomolecular (VER. 3.0 OOo) - SEE WWW.RSC.ORG/ELECTRONICFILESChemistry FOR DETAILS www.rsc.org/xxxxxx | XXXXXXXX Expanding DP4: Application to drug compounds and automation Kristaps Ermanis,a Kevin E. B. Parkes,b Tatiana Agbackb and Jonathan M. Goodman*c Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X First published on the web Xth XXXXXXXXX 200X DOI: 10.1039/b00000000x The DP4 parameter, which provides a confidence level for NMR assignment, has been widely used to help assign the structures of many stereochemically-rich molecules. We present an improved version of the procedure, which can be downloaded as Python script instead of running within a web-browser, and which analyses output from open-source molecular modelling programs (TINKER and NWChem) in addition to being able to use output from commercial Manuscript packages (Schrodinger's Macromodel and Jaguar; Gaussian). The new open-source workflow incorporates a method for the automatic generation of diastereomers using InChI strings and has been tested on a range of new structures. This improved workflow permits the rapid and convenient computational elucidation of structure and relative stereochemistry. Introduction characterized by higher number of heteroatoms and aromatic systems. While DP4 should in principle be applicable to any Computational methods for the prediction of NMR spectra are organic compound, its performance in drug compounds is all Accepted well established and have become an invaluable tool in the but untested. structure elucidation.1 When DFT calculations are used to So far in our investigations we have been using predict the NMR spectra of candidate structures, the next step MacroModel6 for conformational searches and Jaguar7 or is to decide which of the predictions match the experimental Gaussian8 for DFT and GIAO calculations. However, there NMR data best. Many different ways to quantitatively exist open-source alternatives for both conformational search evaluate goodness of fit have been developed, including mean and for DFT calculations. Incorporation and validation of this absolute error, corrected mean absolute error and correlation software in the DP4 process would significantly increase its coefficient. In addition to these, we have developed CP3 and accessibility. DP4 statistical parameters which help choosing the correct Chemistry structure when several sets or just one set of experimental Results and discussion NMR data are available, respectively.2,3 Both of these parameters generally appear to give higher confidence in the Application to drug molecules correct structure than other parameters. DP4 in particular has seen wide use in structure elucidation of many complex DP4 was originally developed with a focus on natural natural products4 and also synthetic compounds.5 products and their fragments.3 We wanted to explore the A typical NMR prediction process starts with a application of the DP4 workflow in a less familiar chemical conformational search on all of the isomers. DFT GIAO space. Drug compounds occupy one such region – in general, calculations are then run on all low-energy conformers, the they contain less stereocentres, but more heteroatoms and predicted shifts are combined using Boltzmann weighing and aromatic systems when compared to natural products. A large finally, the DP4 analysis is employed to decide which portion of drug compounds also contain basic nitrogen atoms structure is the most likely to be correct. DP4 analysis or systems with several possible tautomeric states, which can achieves this by first empirically scaling all the predicted make the prediction of NMR spectra challenging. For this Biomolecular chemical shifts to remove any systematic errors. Errors are study a selection of stereochemically rich drug compounds then calculated for each of the signals. Then, assuming that from the Top100 drugs was chosen (Figure 1).9 The selected & each error follows a normal or t distribution with known compounds all had 2-64 plausible diastereomers and had a parameters, the probability of encountering each error in a well defined tautomeric state. Nucleoside analogs in particular correct structure is calculated. Next, all of the probabilities for were not included in this study because of the potential signals in a candidate structure are multiplied to give the tautomeric and protonated states. overall absolute probability, that the candidate structure is the The compounds and their diastereomers were submitted to correct one. Finally, these resulting probabilities are converted MacroModel conformational search, all conformers with to a set of relative probabilities that each candidate structure is energy less than 10 kJ/mol relative to the global minimum Organic the correct one using Bayes' theorem. were then submitted to DFT single point calculation and NMR DP4 was originally developed for the elucidation of the GIAO calculation10 using Gaussian Quantum chemistry relative stereochemistry of natural products. Drug compounds software. Our earlier studies demonstrated that this protocol is another other class of compounds that also exhibit diverse provides an effective balance of precision and speed.3 Finally, stereochemistry. They inhabit a distinct chemical space the predicted NMR shifts were submitted to DP4 analysis. For This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00 | 1 Organic & Biomolecular Chemistry Page 2 of 6 Manuscript Fig. 1 Stereochemically rich drug molecules selected for DP4 study. Diastereomer count shown. Diastereomers labelled with letters a-bl, a being the Accepted correct diastereomer. Configuration was varied at chiral centres marked with '*'. solvent in the DFT calculations reduced the errors of the chemical shift prediction and improved the identification of the correct diastereomer. Therefore the PCM solvent model11 was used for all NMR GIAO calculations. In most cases DP4 is able to correctly determine the relative stereochemistry of these compounds with good confidence and shows the generality and robustness of the DP4 approach. Even highly flexible structures like rosuvastatin, 2, and formoterol, 1, Chemistry were correctly identified. In the case of ezetimibe, 8, however DP4 favoured the structure epimeric at the remote OH centre as the most likely with 98% confidence, with the correct structure as a remote second most likely candidate. Similarly in the case of darunavir, 6, the most likely structure was Fig. 2 Overall DP4 probabilities assigned to drug compound identified as the one with epimeric OH centre. However, the diastereomers using MacroModel and Gaussian. Only diastereomers with relative stereochemistry of the remaining four stereocentres probabilities greater than 0.1% shown. was identified correctly, despite the flexible nature of the molecule. The case of simvastatin, 5, was particulary mometasone, 4, and testosterone, 3, only the structures challenging as this compound is Quite flexible and has six diastereomeric at the peripheral stereocentres were stereocentres and 64 possible diastereomers. Unfortunately considered. In the case of tiotropium, 7, the epoxide chiral this particular problem appears to be too complex for the Biomolecular centres were varied in concert, as the trans isomers would be current DP4 methodology and the diastereomers identified as too strained to exist. For the rest of the compounds all & likely candidates were completely different from the correct possible diastereomers were considered. The results of this structure. However, the DP4 conclusion that four study are shown in Figure 2. diastereomers have significant probability may suggest the Ideally, the DP4 parameter will give 100 % confidence for challenge of this highly flexible structure to the user and thus the correct diastereoisomer, but all certainty beyond a random would likely not lead to incorrect conclusions. selection is useful, and certainty on some stereocentres is Several of our previous studies have shown that helpful. In the figure, the colours correspond to the utility of optimization of the geometries at the DFT level provides only the assignment. Dark blue is the probability of the completely limited improvement at high computational cost. We decided Organic correct structure. The other colours relate to the utility – six to test if this still holds true on the compounds in the current out of seven
Recommended publications
  • 20 Years of Polarizable Force Field Development
    20 YEARS OF POLARIZABLE FORCEFIELDDEVELOPMENTfor biomolecular systems thor van heesch Supervised by Daan P. Geerke and Paola Gori-Giorg 1 contents 2 1 Introduction 3 2contentsForce fields: Basics, Caveats and Extensions 4 2.1 The Classical Approach . 4 2.2 The caveats of point-charge electrostatics . 8 2.3 Physical phenomenon of polarizability . 10 2.4 Common implementation methods of electronic polarization . 11 2.5 Accounting for anisotropic interactions . 14 3 Knitting the reviews and perspectives together 17 3.1 Polarizability: A smoking gun? . 17 3.2 New branches of electronic polarization . 18 3.3 Descriptions of electrostatics . 19 3.4 Solvation and polarization . 20 3.5 The rise of new challenges . 21 3.6 Parameterization or polarization? . 22 3.7 Enough response: how far away? . 23 3.8 The last perspectives . 23 3.9 A new hope: the next-generation force fields . 29 4 Learning with machines 29 4.1 Replace the functional form with machine learned force fields . 31 4.2 A different take on polarizable force fields . 33 4.3 Are transferable parameters an universal requirement? . 33 4.4 The difference between derivation and prediction . 34 4.5 From small molecules to long range interactions . 36 4.6 Enough knowledge to fold a protein? . 37 4.7 Boltzmann generators, a not so hypothetical machine anymore . 38 5 Summary: The Red Thread 41 introduction 3 In this literature study we aimed to answer the following question: What has changedabstract in the outlook on polarizable force field development during the last 20 years? The theory, history, methods, and applications of polarizable force fields have been discussed to address this question.
    [Show full text]
  • Integrated Tools for Computational Chemical Dynamics
    UNIVERSITY OF MINNESOTA Integrated Tools for Computational Chemical Dynamics • Developpp powerful simulation methods and incorporate them into a user- friendly high-throughput integrated software su ite for c hem ica l d ynami cs New Models (Methods) → Modules → Integrated Tools UNIVERSITY OF MINNESOTA Development of new methods for the calculation of potential energy surface UNIVERSITY OF MINNESOTA Development of new simulation methods UNIVERSITY OF MINNESOTA Applications and Validations UNIVERSITY OF MINNESOTA Electronic Software structu re Dynamics ANT QMMM GCMC MN-GFM POLYRATE GAMESSPLUS MN-NWCHEMFM MN-QCHEMFM HONDOPLUS MN-GSM Interfaces GaussRate JaguarRate NWChemRate UNIVERSITY OF MINNESOTA Electronic Structure Software QMMM 1.3: QMMM is a computer program for combining quantum mechanics (QM) and molecular mechanics (MM). MN-GFM 3.0: MN-GFM is a module incorporating Minnesota DFT functionals into GAUSSIAN 03. MN-GSM 626.2:MN: MN-GSM is a module incorporating the SMx solvation models and other enhancements into GAUSSIAN 03. MN-NWCHEMFM 2.0:MN-NWCHEMFM is a module incorporating Minnesota DFT functionals into NWChem 505.0. MN-QCHEMFM 1.0: MN-QCHEMFM is a module incorporating Minnesota DFT functionals into Q-CHEM. GAMESSPLUS 4.8: GAMESSPLUS is a module incorporating the SMx solvation models and other enhancements into GAMESS. HONDOPLUS 5.1: HONDOPLUS is a computer program incorporating the SMx solvation models and other photochemical diabatic states into HONDO. UNIVERSITY OF MINNESOTA DiSftDynamics Software ANT 07: ANT is a molecular dynamics program for performing classical and semiclassical trajjyectory simulations for adiabatic and nonadiabatic processes. GCMC: GCMC is a Grand Canonical Monte Carlo (GCMC) module for the simulation of adsorption isotherms in heterogeneous catalysts.
    [Show full text]
  • An Efficient Hardware-Software Approach to Network Fault Tolerance with Infiniband
    An Efficient Hardware-Software Approach to Network Fault Tolerance with InfiniBand Abhinav Vishnu1 Manoj Krishnan1 and Dhableswar K. Panda2 Pacific Northwest National Lab1 The Ohio State University2 Outline Introduction Background and Motivation InfiniBand Network Fault Tolerance Primitives Hybrid-IBNFT Design Hardware-IBNFT and Software-IBNFT Performance Evaluation of Hybrid-IBNFT Micro-benchmarks and NWChem Conclusions and Future Work Introduction Clusters are observing a tremendous increase in popularity Excellent price to performance ratio 82% supercomputers are clusters in June 2009 TOP500 rankings Multiple commodity Interconnects have emerged during this trend InfiniBand, Myrinet, 10GigE …. InfiniBand has become popular Open standard and high performance Various topologies have emerged for interconnecting InfiniBand Fat tree is the predominant topology TACC Ranger, PNNL Chinook 3 Typical InfiniBand Fat Tree Configurations 144-Port Switch Block Diagram Multiple leaf and spine blocks 12 Spine Available in 144, 288 and 3456 port Blocks combinations 12 Leaf Blocks Multiple paths are available between nodes present on different switch blocks Oversubscribed configurations are becoming popular 144-Port Switch Block Diagram Better cost to performance ratio 12 Spine Blocks 12 Spine 12 Spine Blocks Blocks 12 Leaf 12 Leaf Blocks Blocks 4 144-Port Switch Block Diagram 144-Port Switch Block Diagram Network Faults Links/Switches/Adapters may fail with reduced MTBF (Mean time between failures) Fortunately, InfiniBand provides mechanisms to handle
    [Show full text]
  • Computer-Assisted Catalyst Development Via Automated Modelling of Conformationally Complex Molecules
    www.nature.com/scientificreports OPEN Computer‑assisted catalyst development via automated modelling of conformationally complex molecules: application to diphosphinoamine ligands Sibo Lin1*, Jenna C. Fromer2, Yagnaseni Ghosh1, Brian Hanna1, Mohamed Elanany3 & Wei Xu4 Simulation of conformationally complicated molecules requires multiple levels of theory to obtain accurate thermodynamics, requiring signifcant researcher time to implement. We automate this workfow using all open‑source code (XTBDFT) and apply it toward a practical challenge: diphosphinoamine (PNP) ligands used for ethylene tetramerization catalysis may isomerize (with deleterious efects) to iminobisphosphines (PPNs), and a computational method to evaluate PNP ligand candidates would save signifcant experimental efort. We use XTBDFT to calculate the thermodynamic stability of a wide range of conformationally complex PNP ligands against isomeriation to PPN (ΔGPPN), and establish a strong correlation between ΔGPPN and catalyst performance. Finally, we apply our method to screen novel PNP candidates, saving signifcant time by ruling out candidates with non‑trivial synthetic routes and poor expected catalytic performance. Quantum mechanical methods with high energy accuracy, such as density functional theory (DFT), can opti- mize molecular input structures to a nearby local minimum, but calculating accurate reaction thermodynamics requires fnding global minimum energy structures1,2. For simple molecules, expert intuition can identify a few minima to focus study on, but an alternative approach must be considered for more complex molecules or to eventually fulfl the dream of autonomous catalyst design 3,4: the potential energy surface must be frst surveyed with a computationally efcient method; then minima from this survey must be refned using slower, more accurate methods; fnally, for molecules possessing low-frequency vibrational modes, those modes need to be treated appropriately to obtain accurate thermodynamic energies 5–7.
    [Show full text]
  • Melissa Gajewski & Jonathan Mane
    Melissa Gajewski & Jonathan Mane Molecular Mechanics (MM) Methods Force fields & potential energy calculations Example using noscapine Molecular Dynamics (MD) Methods Ensembles & trajectories Example using 18-crown-6 Quantum Mechanics (QM) Methods Schrödinger’s equation Semi-empirical (SE) Wave Functional Theory (WFT) Density Functional Theory (DFT) Hybrid QM/MM & MD Methods Comparison of hybrid methods 2 3 Molecular Mechanics (MM) Methods Force fields & potential energy calculations Example using noscapine Molecular Dynamics (MD) Methods Ensembles & trajectories Example using 18-crown-6 Quantum Mechanics (QM) Methods Schrödinger’s equation Semi-empirical (SE) Wave Functional Theory (WFT) Density Functional Theory (DFT) Hybrid QM/MM & MD Methods Comparison of hybrid methods 4 Useful for all system size ◦ Small molecules, proteins, material assemblies, surface science, etc … ◦ Based on Newtonian mechanics (classical mechanics) d F = (mv) dt ◦ The potential energy of the system is calculated using a force field € 5 An atom is considered as a single particle Example: H atom Particle variables: ◦ Radius (typically van der Waals radius) ◦ Polarizability ◦ Net charge Obtained from experiment or QM calculations ◦ Bond interactions Equilibrium bond lengths & angles from experiment or QM calculations 6 All atom approach ◦ Provides parameters for every atom in the system (including hydrogen) Ex: In –CH3 each atom is assigned a set of data MOLDEN MOLDEN (Radius, polarizability, netMOLDENMOLDENMOLDENMOLDENMOLDEN charge,
    [Show full text]
  • BOSS, Version 4.6 Biochemical and Organic Simulation System User’S Manual for UNIX, Linux, and Windows
    BOSS, Version 4.6 Biochemical and Organic Simulation System User’s Manual for UNIX, Linux, and Windows William L. Jorgensen Department of Chemistry, Yale University P. O. Box 208107 New Haven, Connecticut 06520-8107 Phone: (203) 432-6278 Fax: (203) 432-6299 Internet: [email protected] January 2004 Contents Page Introduction 4 1 Can’t Wait to Start – Use the x Scripts 6 2 Statistical Mechanics Simulation – Theory 6 3 Energy and Free Energy Evaluation 7 4 New Features 9 5 Operating Systems 14 6 Installation 14 7 Files 14 8 Command or bat File Input 16 9 Parameter File Input 18 10 Z-matrix File Input 26 10.1 Atom Input 29 10.2 Geometry Variations 29 10.3 Bond Length Variations 29 10.4 Additional Bonds 30 10.5 Harmonic Restraints 30 10.6 Bond Angle Variations 30 10.7 Additional Bond Angles 31 10.8 Dihedral Angle Variations 31 10.9 Additional Dihedral Angles 33 10.10 Domain Definitions 34 10.11 Conformational Searching 34 10.12 Sample Z-matrix 34 10.13 Z-matrix Input for Custom Solvents 35 11 PDB Input 37 12 Coordinate Input in Mind Format and Reaction Path Following 38 13 Pure Liquid Simulations 39 14 Cluster Simulations 39 2 15 Solventless and Molecular Mechanics Calculations 40 15.1 Continuum Simulations 40 15.2 Energy Minimizations 41 15.3 Dihedral Angle Driving 42 15.4 Potential Surface Scanning 42 15.5 Normal Coordinate Analysis 43 15.6 Conformational Searching 45 16 Available Solvent Boxes 48 17 Ewald Summation for Long-Range Electrostatics 50 18 Test Jobs 51 19 Output 56 19.1 Some Variable Definitions 58 20 Contents of the Distribution Files 59 21 Appendix – No.
    [Show full text]
  • Dr. David Danovich
    Dr. David Danovich ! 14 January 2021 (h-index: 34; 124 publications) Personal Information Name: Contact information Danovich David Private: Nissan Harpaz st., 4/9, Jerusalem, Date of Birth: 9371643 Israel June 29, 1959 Mobile: +972-54-4768669 E-mail: [email protected] Place of Birth: Irkutsk, USSR Work: Institute of Chemistry, The Hebrew Citizenship: University, Edmond Safra Campus, Israeli Givat Ram, 9190401 Jerusalem, Israel Marital status: Phone: +972-2-6586934 Married +2 FAX: +972-2-6584033 E-mail: [email protected] Current position 1992- present: Senior computational chemist and scientific programmer in the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel Scientific skills Very experienced scientific researcher with demonstrated ability to implement ab initio molecular electronic structure and valence bond calculations for obtaining insights into physical and chemical properties of molecules and materials. Extensive expertise in implementation of Molecular Orbital Theory based on ab initio methods such as Hartree-Fock theory (HF), Density Functional Theory (DFT), Moller-Plesset Perturbation theory (MP2-MP5), Couple Cluster theories [CCST(T)], Complete Active Space (CAS, CASPT2) theories, Multireference Configuration Interaction (MRCI) theory and modern ab initio valence bond theory (VBT) methods such as Valence Bond Self Consistent Field theory (VBSCF), Breathing Orbital Valence Bond theory (BOVB) and its variants (like D-BOVB, S-BOVB and SD-BOVB), Valence Bond Configuration Interaction theory (VBCI), Valence Bond Perturbation theory (VBPT). Language skills Advanced Conversational English, Russian Hebrew Academic background 1. Undergraduate studies, 1978-1982 Master of Science in Physics, June 1982 Irkutsk State University, USSR Dr. David Danovich ! 2. Graduate studies, 1984-1989 Ph.
    [Show full text]
  • Tinker-HP : Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using Gpus and Multi-Gpus Systems
    Tinker-HP : Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields using GPUs and Multi-GPUs systems Olivier Adjoua,y Louis Lagardère*,y,z Luc-Henri Jolly,z Arnaud Durocher,{ Thibaut Very,x Isabelle Dupays,x Zhi Wang,k Théo Jaffrelot Inizan,y Frédéric Célerse,y,? Pengyu Ren,# Jay W. Ponder,k and Jean-Philip Piquemal∗,y,# ySorbonne Université, LCT, UMR 7616 CNRS, F-75005, Paris, France zSorbonne Université, IP2CT, FR2622 CNRS, F-75005, Paris, France {Eolen, 37-39 Rue Boissière, 75116 Paris, France xIDRIS, CNRS, Orsay, France kDepartment of Chemistry, Washington University in Saint Louis, USA ?Sorbonne Université, CNRS, IPCM, Paris, France. #Department of Biomedical Engineering, The University of Texas at Austin, USA E-mail: [email protected],[email protected] arXiv:2011.01207v4 [physics.comp-ph] 3 Mar 2021 Abstract We present the extension of the Tinker-HP package (Lagardère et al., Chem. Sci., 2018,9, 956-972) to the use of Graphics Processing Unit (GPU) cards to accelerate molecular dynamics simulations using polarizable many-body force fields. The new high-performance module allows for an efficient use of single- and multi-GPUs archi- 1 tectures ranging from research laboratories to modern supercomputer centers. After de- tailing an analysis of our general scalable strategy that relies on OpenACC and CUDA , we discuss the various capabilities of the package. Among them, the multi-precision possibilities of the code are discussed. If an efficient double precision implementation is provided to preserve the possibility of fast reference computations, we show that a lower precision arithmetic is preferred providing a similar accuracy for molecular dynamics while exhibiting superior performances.
    [Show full text]
  • Multiscale Friction Simulation of Dry Polymer Contacts: Reaching Experimental Length Scales by Coupling Molecular Dynamics and Contact Mechanics
    Multiscale Friction Simulation of Dry Polymer Contacts: Reaching Experimental Length Scales by Coupling Molecular Dynamics and Contact Mechanics Daniele Savio ( [email protected] ) Freudenberg Technology Innovation SE & Co. KG https://orcid.org/0000-0003-1908-2379 Jannik Hamann Fraunhofer Institute for Mechanics of Materials: Fraunhofer-Institut fur Werkstoffmechanik IWM Pedro A. Romero Freudenberg Technology Innovation SE & Co. KG Christoph Klingshirn Freudenberg FST GmbH Ravindrakumar Bactavatchalou Freudenberg Technology Innovation SE & Co. KG Martin Dienwiebel Fraunhofer Institute for Mechanics of Materials: Fraunhofer-Institut fur Werkstoffmechanik IWM Michael Moseler Fraunhofer Institute for Mechanics of Materials: Fraunhofer-Institut fur Werkstoffmechanik IWM Research Article Keywords: Coupling Molecular Dynamics, Contact Mechanics, Multiscale Friction Posted Date: February 23rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223573/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Multiscale friction simulation of dry polymer contacts: reaching experimental length scales by coupling molecular dynamics and contact mechanics Daniele Savio1*, Jannik Hamann2, Pedro A. Romero1, Christoph Klingshirn3, Ravindrakumar Bactavatchalou1, Martin Dienwiebel2,4, Michael Moseler2,5 1 Freudenberg Technology Innovation SE & Co. KG, Weinheim, Germany 2 µTC Microtribology Center, Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany 3 Freudenberg FST GmbH, Weinheim, Germany 4 Karlsruhe Institute of Technology, Institute for Applied Materials, IAM-CMS, Karlsruhe, Germany 5 Institute of Physics, University of Freiburg, Freiburg, Germany *Corresponding author: [email protected] Abstract This work elucidates friction in Poly-Ether-Ether-Ketone (PEEK) sliding contacts through multiscale simulations. At the nanoscale, non-reactive classical molecular dynamics (MD) simulations of dry and water-lubricated amorphous PEEK-PEEK interfaces are performed.
    [Show full text]
  • Quantum Chemistry (QC) on Gpus Feb
    Quantum Chemistry (QC) on GPUs Feb. 2, 2017 Overview of Life & Material Accelerated Apps MD: All key codes are GPU-accelerated QC: All key codes are ported or optimizing Great multi-GPU performance Focus on using GPU-accelerated math libraries, OpenACC directives Focus on dense (up to 16) GPU nodes &/or large # of GPU nodes GPU-accelerated and available today: ACEMD*, AMBER (PMEMD)*, BAND, CHARMM, DESMOND, ESPResso, ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS, GAMESS- Folding@Home, GPUgrid.net, GROMACS, HALMD, HOOMD-Blue*, UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS, MOPAC2012, LAMMPS, Lattice Microbes*, mdcore, MELD, miniMD, NAMD, NWChem, OCTOPUS*, PEtot, QUICK, Q-Chem, QMCPack, OpenMM, PolyFTS, SOP-GPU* & more Quantum Espresso/PWscf, QUICK, TeraChem* Active GPU acceleration projects: CASTEP, GAMESS, Gaussian, ONETEP, Quantum Supercharger Library*, VASP & more green* = application where >90% of the workload is on GPU 2 MD vs. QC on GPUs “Classical” Molecular Dynamics Quantum Chemistry (MO, PW, DFT, Semi-Emp) Simulates positions of atoms over time; Calculates electronic properties; chemical-biological or ground state, excited states, spectral properties, chemical-material behaviors making/breaking bonds, physical properties Forces calculated from simple empirical formulas Forces derived from electron wave function (bond rearrangement generally forbidden) (bond rearrangement OK, e.g., bond energies) Up to millions of atoms Up to a few thousand atoms Solvent included without difficulty Generally in a vacuum but if needed, solvent treated classically
    [Show full text]
  • Software Modules and Programming Environment SCAI User Support
    Software modules and programming environment SCAI User Support Marconi User Guide https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide Modules Set module variables module load <module_name> Show module variables, prereq (compiler and libraries) and conflict module show <module_name> Give info about the software, the batch script, the available executable variants (e.g, single precision, double precision) module help <module_name> Modules Set the variables of the module and its dependencies (compiler and libraries) module load autoload <module name> module load <compiler_name> module load <library _name> module load <module_name> Profiles and categories The modules are organized by functional category (compilers, libraries, tools, applications ,). collected in different profiles (base, advanced, .. ) The profile is a group of modules that share something Profiles Programming profiles They contain only compilers, libraries and tools modules used for compilation, debugging, profiling and pre -proccessing activity BASE Basic compilers, libraries and tools (gnu, intel, intelmpi, openmpi--gnu, math libraries, profiling and debugging tools, rcm,) ADVANCED Advanced compilers, libraries and tools (pgi, openmpi--intel, .) Profiles Production profiles They contain only libraries, tools and applications modules used for production activity They match the most important scientific domains. For this reason we call them “domain” profiles: CHEM PHYS LIFESC BIOINF ENG Profiles Programming and production and profile ARCHIVE It contains
    [Show full text]
  • Macromodel Quick Start Guide
    MacroModel Quick Start Guide MacroModel 9.9 Quick Start Guide Schrödinger Press MacroModel Quick Start Guide Copyright © 2012 Schrödinger, LLC. All rights reserved. While care has been taken in the preparation of this publication, Schrödinger assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. BioLuminate, Canvas, CombiGlide, ConfGen, Epik, Glide, Impact, Jaguar, Liaison, LigPrep, Maestro, Phase, Prime, PrimeX, QikProp, QikFit, QikSim, QSite, SiteMap, Strike, and WaterMap are trademarks of Schrödinger, LLC. Schrödinger and MacroModel are registered trademarks of Schrödinger, LLC. MCPRO is a trademark of William L. Jorgensen. DESMOND is a trademark of D. E. Shaw Research, LLC. Desmond is used with the permission of D. E. Shaw Research. All rights reserved. This publication may contain the trademarks of other companies. Schrödinger software includes software and libraries provided by third parties. For details of the copyrights, and terms and conditions associated with such included third party software, see the Legal Notices, or use your browser to open $SCHRODINGER/docs/html/third_party_legal.html (Linux OS) or %SCHRODINGER%\docs\html\third_party_legal.html (Windows OS). This publication may refer to other third party software not included in or with Schrödinger software ("such other third party software"), and provide links to third party Web sites ("linked sites"). References to such other third party software or linked sites do not constitute an endorsement by Schrödinger, LLC or its affiliates. Use of such other third party software and linked sites may be subject to third party license agreements and fees. Schrödinger, LLC and its affiliates have no responsibility or liability, directly or indirectly, for such other third party software and linked sites, or for damage resulting from the use thereof.
    [Show full text]