A Review on Combination of Ab Initio Molecular Dynamics and NMR Parameters Calculations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020 Supporting Information How to Select Ionic Liquids as Extracting Agent Systematically? Special Case Study for Extractive Denitrification Process Shurong Gaoa,b,c,*, Jiaxin Jina,b, Masroor Abroc, Ruozhen Songc, Miao Hed, Xiaochun Chenc,* a State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China b Research Center of Engineering Thermophysics, North China Electric Power University, Beijing, 102206, China c Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China d Office of Laboratory Safety Administration, Beijing University of Technology, Beijing 100124, China * Corresponding author, Tel./Fax: +86-10-6443-3570, E-mail: [email protected], [email protected] 1 COSMO-RS Computation COSMOtherm allows for simple and efficient processing of large numbers of compounds, i.e., a database of molecular COSMO files; e.g. the COSMObase database. COSMObase is a database of molecular COSMO files available from COSMOlogic GmbH & Co KG. Currently COSMObase consists of over 2000 compounds including a large number of industrial solvents plus a wide variety of common organic compounds. All compounds in COSMObase are indexed by their Chemical Abstracts / Registry Number (CAS/RN), by a trivial name and additionally by their sum formula and molecular weight, allowing a simple identification of the compounds. We obtained the anions and cations of different ILs and the molecular structure of typical N-compounds directly from the COSMObase database in this manuscript. -
An Ab Initio Materials Simulation Code
CP2K: An ab initio materials simulation code Lianheng Tong Physics on Boat Tutorial , Helsinki, Finland 2015-06-08 Faculty of Natural & Mathematical Sciences Department of Physics Brief Overview • Overview of CP2K - General information about the package - QUICKSTEP: DFT engine • Practical example of using CP2K to generate simulated STM images - Terminal states in AGNR segments with 1H and 2H termination groups What is CP2K? Swiss army knife of molecular simulation www.cp2k.org • Geometry and cell optimisation Energy and • Molecular dynamics (NVE, Force Engine NVT, NPT, Langevin) • STM Images • Sampling energy surfaces (metadynamics) • DFT (LDA, GGA, vdW, • Finding transition states Hybrid) (Nudged Elastic Band) • Quantum Chemistry (MP2, • Path integral molecular RPA) dynamics • Semi-Empirical (DFTB) • Monte Carlo • Classical Force Fields (FIST) • And many more… • Combinations (QM/MM) Development • Freely available, open source, GNU Public License • www.cp2k.org • FORTRAN 95, > 1,000,000 lines of code, very active development (daily commits) • Currently being developed and maintained by community of developers: • Switzerland: Paul Scherrer Institute Switzerland (PSI), Swiss Federal Institute of Technology in Zurich (ETHZ), Universität Zürich (UZH) • USA: IBM Research, Lawrence Livermore National Laboratory (LLNL), Pacific Northwest National Laboratory (PNL) • UK: Edinburgh Parallel Computing Centre (EPCC), King’s College London (KCL), University College London (UCL) • Germany: Ruhr-University Bochum • Others: We welcome contributions from -
Automated Construction of Quantum–Classical Hybrid Models Arxiv:2102.09355V1 [Physics.Chem-Ph] 18 Feb 2021
Automated construction of quantum{classical hybrid models Christoph Brunken and Markus Reiher∗ ETH Z¨urich, Laboratorium f¨urPhysikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Z¨urich, Switzerland February 18, 2021 Abstract We present a protocol for the fully automated construction of quantum mechanical-(QM){ classical hybrid models by extending our previously reported approach on self-parametri- zing system-focused atomistic models (SFAM) [J. Chem. Theory Comput. 2020, 16 (3), 1646{1665]. In this QM/SFAM approach, the size and composition of the QM region is evaluated in an automated manner based on first principles so that the hybrid model describes the atomic forces in the center of the QM region accurately. This entails the au- tomated construction and evaluation of differently sized QM regions with a bearable com- putational overhead that needs to be paid for automated validation procedures. Applying SFAM for the classical part of the model eliminates any dependence on pre-existing pa- rameters due to its system-focused quantum mechanically derived parametrization. Hence, QM/SFAM is capable of delivering a high fidelity and complete automation. Furthermore, since SFAM parameters are generated for the whole system, our ansatz allows for a con- venient re-definition of the QM region during a molecular exploration. For this purpose, a local re-parametrization scheme is introduced, which efficiently generates additional clas- sical parameters on the fly when new covalent bonds are formed (or broken) and moved to the classical region. arXiv:2102.09355v1 [physics.chem-ph] 18 Feb 2021 ∗Corresponding author; e-mail: [email protected] 1 1 Introduction In contrast to most protocols of computational quantum chemistry that consider isolated molecules, chemical processes can take place in a vast variety of complex environments. -
Computer-Assisted Catalyst Development Via Automated Modelling of Conformationally Complex Molecules
www.nature.com/scientificreports OPEN Computer‑assisted catalyst development via automated modelling of conformationally complex molecules: application to diphosphinoamine ligands Sibo Lin1*, Jenna C. Fromer2, Yagnaseni Ghosh1, Brian Hanna1, Mohamed Elanany3 & Wei Xu4 Simulation of conformationally complicated molecules requires multiple levels of theory to obtain accurate thermodynamics, requiring signifcant researcher time to implement. We automate this workfow using all open‑source code (XTBDFT) and apply it toward a practical challenge: diphosphinoamine (PNP) ligands used for ethylene tetramerization catalysis may isomerize (with deleterious efects) to iminobisphosphines (PPNs), and a computational method to evaluate PNP ligand candidates would save signifcant experimental efort. We use XTBDFT to calculate the thermodynamic stability of a wide range of conformationally complex PNP ligands against isomeriation to PPN (ΔGPPN), and establish a strong correlation between ΔGPPN and catalyst performance. Finally, we apply our method to screen novel PNP candidates, saving signifcant time by ruling out candidates with non‑trivial synthetic routes and poor expected catalytic performance. Quantum mechanical methods with high energy accuracy, such as density functional theory (DFT), can opti- mize molecular input structures to a nearby local minimum, but calculating accurate reaction thermodynamics requires fnding global minimum energy structures1,2. For simple molecules, expert intuition can identify a few minima to focus study on, but an alternative approach must be considered for more complex molecules or to eventually fulfl the dream of autonomous catalyst design 3,4: the potential energy surface must be frst surveyed with a computationally efcient method; then minima from this survey must be refned using slower, more accurate methods; fnally, for molecules possessing low-frequency vibrational modes, those modes need to be treated appropriately to obtain accurate thermodynamic energies 5–7. -
Kepler Gpus and NVIDIA's Life and Material Science
LIFE AND MATERIAL SCIENCES Mark Berger; [email protected] Founded 1993 Invented GPU 1999 – Computer Graphics Visual Computing, Supercomputing, Cloud & Mobile Computing NVIDIA - Core Technologies and Brands GPU Mobile Cloud ® ® GeForce Tegra GRID Quadro® , Tesla® Accelerated Computing Multi-core plus Many-cores GPU Accelerator CPU Optimized for Many Optimized for Parallel Tasks Serial Tasks 3-10X+ Comp Thruput 7X Memory Bandwidth 5x Energy Efficiency How GPU Acceleration Works Application Code Compute-Intensive Functions Rest of Sequential 5% of Code CPU Code GPU CPU + GPUs : Two Year Heart Beat 32 Volta Stacked DRAM 16 Maxwell Unified Virtual Memory 8 Kepler Dynamic Parallelism 4 Fermi 2 FP64 DP GFLOPS GFLOPS per DP Watt 1 Tesla 0.5 CUDA 2008 2010 2012 2014 Kepler Features Make GPU Coding Easier Hyper-Q Dynamic Parallelism Speedup Legacy MPI Apps Less Back-Forth, Simpler Code FERMI 1 Work Queue CPU Fermi GPU CPU Kepler GPU KEPLER 32 Concurrent Work Queues Developer Momentum Continues to Grow 100M 430M CUDA –Capable GPUs CUDA-Capable GPUs 150K 1.6M CUDA Downloads CUDA Downloads 1 50 Supercomputer Supercomputers 60 640 University Courses University Courses 4,000 37,000 Academic Papers Academic Papers 2008 2013 Explosive Growth of GPU Accelerated Apps # of Apps Top Scientific Apps 200 61% Increase Molecular AMBER LAMMPS CHARMM NAMD Dynamics GROMACS DL_POLY 150 Quantum QMCPACK Gaussian 40% Increase Quantum Espresso NWChem Chemistry GAMESS-US VASP CAM-SE 100 Climate & COSMO NIM GEOS-5 Weather WRF Chroma GTS 50 Physics Denovo ENZO GTC MILC ANSYS Mechanical ANSYS Fluent 0 CAE MSC Nastran OpenFOAM 2010 2011 2012 SIMULIA Abaqus LS-DYNA Accelerated, In Development NVIDIA GPU Life Science Focus Molecular Dynamics: All codes are available AMBER, CHARMM, DESMOND, DL_POLY, GROMACS, LAMMPS, NAMD Great multi-GPU performance GPU codes: ACEMD, HOOMD-Blue Focus: scaling to large numbers of GPUs Quantum Chemistry: key codes ported or optimizing Active GPU acceleration projects: VASP, NWChem, Gaussian, GAMESS, ABINIT, Quantum Espresso, BigDFT, CP2K, GPAW, etc. -
EPSRC Service Level Agreement with STFC for Computational Science Support
CoSeC Computational Science Centre for Research Communities EPSRC Service Level Agreement with STFC for Computational Science Support FY 2016/17 Report and Update on FY 2017/18 Work Plans This document contains the 2016/17 plans, 2016/17 summary reports, and 2017/18 plans for the programme in support of CCP and HEC communities delivered by STFC and funded by EPSRC through a Service Level Agreement. Notes in blue are in-year updates on progress to the tasks included in the 2016/17 plans. Text highlighted in yellow shows changes to the draft 2017/18 plans that we submitted in January 2017. Contents CCP5 – Computer Simulation of Condensed Phases .......................................................................... 4 CCP5 – 2016 / 17 Plans (1 April 2016 – 31 March 2017) ...................................................... 4 CCP5 – Summary Report (1 April 2016 – 31 March 2017) .................................................... 7 CCP5 –2017 / 18 Plans (1 April 2017 – 31 March 2018) ....................................................... 8 CCP9 – Electronic Structure of Solids .................................................................................................. 9 CCP9 – 2016 / 17 Plans (1 April 2016 – 31 March 2017) ...................................................... 9 CCP9 – Summary Report (1 April 2016 – 31 March 2017) .................................................. 11 CCP9 – 2017 / 18 Plans (1 April 2017 – 31 March 2018) .................................................... 12 CCP-mag – Computational Multiscale -
Arxiv:1508.02735V1 [Cond-Mat.Mtrl-Sci] 11 Aug 2015
A critical look at methods for calculating charge transfer couplings fast and accurately Pablo Ramos, Marc Mankarious, and Michele Pavanello∗ Department of Chemistry, Rutgers University, Newark, NJ 07102, USA E-mail: [email protected] Abstract We present here a short and subjective review of methods for calculating charge trans- fer couplings. Although we mostly focus on Density Functional Theory, we discuss a small subset of semiempirical methods as well as the adiabatic-to-diabatic transformation methods typically coupled with wavefunction-based electronic structure calculations. In this work, we will present the reader with a critical assessment of the regimes that can be modelled by the various methods – their strengths and weaknesses. In order to give a feeling about the practical aspects of the calculations, we also provide the reader with a practical protocol for running coupling calculations with the recently developed FDE-ET method. arXiv:1508.02735v1 [cond-mat.mtrl-sci] 11 Aug 2015 ∗To whom correspondence should be addressed 1 Contents 1 Introduction 3 2 DFT Based Methods 5 2.1 The Frozen Density Embedding formalism . 5 2.1.1 FDE-ET method . 9 2.1.2 Distance dependence of the electronic coupling . 12 2.1.3 Hole transfer in DNA oligomers . 14 2.2 Constrained Density Functional Theory Applied to Electron Transfer Simulations . 16 2.3 Fragment Orbital DFT . 18 2.3.1 Hole transfer rates on DNA hairpins . 20 2.3.2 The Curious Case of Sulfite Oxidase . 20 2.4 Ultrafast computations of the electronic couplings: The AOM method . 22 2.5 Note on orthogonality . -
Interoperability Between Electronic Structure Codes with the Quippy Toolkit
Interoperability between electronic structure codes with the quippy toolkit James Kermode Department of Physics King’s College London 6 September 2012 Outline Overview of libAtoms and QUIP Scripting interfaces Overview of quippy capabilities Live demo! Summary and Conclusions Outline Overview of libAtoms and QUIP Scripting interfaces Overview of quippy capabilities Live demo! Summary and Conclusions I The QUIP (QUantum mechanics and Interatomic Potentials) package, built on top of libAtoms, implements a wide variety of interatomic potentials and tight binding quantum mechanics, and is also able to call external packages. I Various hybrid combinations are also supported in the style of QM/MM, including ‘Learn on the Fly’ scheme (LOTF).2 3 I quippy is a Python interface to libAtoms and QUIP. The libAtoms, QUIP and quippy packages 1 I The libAtoms package is a software library written in Fortran 95 for the purposes of carrying out molecular dynamics simulations. 1http://www.libatoms.org 2Csányi et al., PRL (2004) 3http://www.jrkermode.co.uk/quippy I Various hybrid combinations are also supported in the style of QM/MM, including ‘Learn on the Fly’ scheme (LOTF).2 3 I quippy is a Python interface to libAtoms and QUIP. The libAtoms, QUIP and quippy packages 1 I The libAtoms package is a software library written in Fortran 95 for the purposes of carrying out molecular dynamics simulations. I The QUIP (QUantum mechanics and Interatomic Potentials) package, built on top of libAtoms, implements a wide variety of interatomic potentials and tight binding quantum mechanics, and is also able to call external packages. 1http://www.libatoms.org 2Csányi et al., PRL (2004) 3http://www.jrkermode.co.uk/quippy 3 I quippy is a Python interface to libAtoms and QUIP. -
TURBOMOLE: Modular Program Suite for Ab Initio Quantum-Chemical and Condensed- Matter Simulations
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed- matter simulations Cite as: J. Chem. Phys. 152, 184107 (2020); https://doi.org/10.1063/5.0004635 Submitted: 12 February 2020 . Accepted: 07 April 2020 . Published Online: 13 May 2020 Sree Ganesh Balasubramani, Guo P. Chen, Sonia Coriani, Michael Diedenhofen, Marius S. Frank, Yannick J. Franzke, Filipp Furche, Robin Grotjahn, Michael E. Harding, Christof Hättig, Arnim Hellweg, Benjamin Helmich-Paris, Christof Holzer, Uwe Huniar, Martin Kaupp, Alireza Marefat Khah, Sarah Karbalaei Khani, Thomas Müller, Fabian Mack, Brian D. Nguyen, Shane M. Parker, Eva Perlt, Dmitrij Rappoport, Kevin Reiter, Saswata Roy, Matthias Rückert, Gunnar Schmitz, Marek Sierka, Enrico Tapavicza, David P. Tew, Christoph van Wüllen, Vamsee K. Voora, Florian Weigend, Artur Wodyński, and Jason M. Yu COLLECTIONS Paper published as part of the special topic on Electronic Structure SoftwareESS2020 ARTICLES YOU MAY BE INTERESTED IN PSI4 1.4: Open-source software for high-throughput quantum chemistry The Journal of Chemical Physics 152, 184108 (2020); https://doi.org/10.1063/5.0006002 NWChem: Past, present, and future The Journal of Chemical Physics 152, 184102 (2020); https://doi.org/10.1063/5.0004997 CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations The Journal of Chemical Physics 152, 194103 (2020); https://doi.org/10.1063/5.0007045 J. Chem. Phys. 152, 184107 (2020); https://doi.org/10.1063/5.0004635 152, 184107 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations Cite as: J. -
A Summary of ERCAP Survey of the Users of Top Chemistry Codes
A survey of codes and algorithms used in NERSC chemical science allocations Lin-Wang Wang NERSC System Architecture Team Lawrence Berkeley National Laboratory We have analyzed the codes and their usages in the NERSC allocations in chemical science category. This is done mainly based on the ERCAP NERSC allocation data. While the MPP hours are based on actually ERCAP award for each account, the time spent on each code within an account is estimated based on the user’s estimated partition (if the user provided such estimation), or based on an equal partition among the codes within an account (if the user did not provide the partition estimation). Everything is based on 2007 allocation, before the computer time of Franklin machine is allocated. Besides the ERCAP data analysis, we have also conducted a direct user survey via email for a few most heavily used codes. We have received responses from 10 users. The user survey not only provide us with the code usage for MPP hours, more importantly, it provides us with information on how the users use their codes, e.g., on which machine, on how many processors, and how long are their simulations? We have the following observations based on our analysis. (1) There are 48 accounts under chemistry category. This is only second to the material science category. The total MPP allocation for these 48 accounts is 7.7 million hours. This is about 12% of the 66.7 MPP hours annually available for the whole NERSC facility (not accounting Franklin). The allocation is very tight. The majority of the accounts are only awarded less than half of what they requested for. -
Surface Functionalization of H-Terminated Diamond with NH and NH2 on the (1, 0, 0), (1, 1, 0) and (1, 1, 1) Surface Planes Using Density Functional Theory
Uppsala University Bachelor project, 15hp Surface functionalization of H-terminated diamond with NH and NH2 on the (1; 0; 0), (1; 1; 0) and (1; 1; 1) surface planes using Density Functional Theory Sara Kjellberg Supervised by Prof. Karin Larsson October 5, 2017 Abstract The adsorption energy of aminated diamond surfaces on the (1; 1; 1), (1; 1; 0) and (1; 0; 0) diamond surfaces have been calculated with density functional theory (DFT). The resulting values show that bridging is favoured before on-top nitrogen at low coverage for all the low index planes. The trend is even more pronounced as the coverage increases, most likely due to sterical hindrance. As expected, the imidogen (NH) and amidogen (NH2) groups are bonded to the surface planes in the order (1; 0; 0) > (1; 1; 1) > (1; 1; 0) as decrease in energy is the highest on the (1; 0; 0) plane and lowest on the (1 010) plane. The effect of sterical hindrance is largest at the (1; 1; 0) surface while the (1; 0; 0) surface is almost unaffected by neighbouring functional groups. Also, double bonded on-top imidogen (NH) is the least stable group at the (1; 0; 0) surface at low coverage while it is almost as stable as bridging NH when having a full mono-layer. Moreover, on-top imidogen (NH) was highly distorted and forced a change in surface geometry 1 Contents 1 Goal 3 2 Introduction 3 2.1 Background . .3 3 Theory 4 3.1 Surfaces of diamond . .4 3.1.1 General surface theory . -
Trends in Atomistic Simulation Software Usage [1.3]
A LiveCoMS Perpetual Review Trends in atomistic simulation software usage [1.3] Leopold Talirz1,2,3*, Luca M. Ghiringhelli4, Berend Smit1,3 1Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland; 2Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 3National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 4The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University, Berlin, Germany This LiveCoMS document is Abstract Driven by the unprecedented computational power available to scientific research, the maintained online on GitHub at https: use of computers in solid-state physics, chemistry and materials science has been on a continuous //github.com/ltalirz/ rise. This review focuses on the software used for the simulation of matter at the atomic scale. We livecoms-atomistic-software; provide a comprehensive overview of major codes in the field, and analyze how citations to these to provide feedback, suggestions, or help codes in the academic literature have evolved since 2010. An interactive version of the underlying improve it, please visit the data set is available at https://atomistic.software. GitHub repository and participate via the issue tracker. This version dated August *For correspondence: 30, 2021 [email protected] (LT) 1 Introduction Gaussian [2], were already released in the 1970s, followed Scientists today have unprecedented access to computa- by force-field codes, such as GROMOS [3], and periodic tional power.