Aquatic Life Screening Values for Aquatic Plants for Evaluating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Apiaceae) - Beds, Old Cambs, Hunts, Northants and Peterborough
CHECKLIST OF UMBELLIFERS (APIACEAE) - BEDS, OLD CAMBS, HUNTS, NORTHANTS AND PETERBOROUGH Scientific name Common Name Beds old Cambs Hunts Northants and P'boro Aegopodium podagraria Ground-elder common common common common Aethusa cynapium Fool's Parsley common common common common Ammi majus Bullwort very rare rare very rare very rare Ammi visnaga Toothpick-plant very rare very rare Anethum graveolens Dill very rare rare very rare Angelica archangelica Garden Angelica very rare very rare Angelica sylvestris Wild Angelica common frequent frequent common Anthriscus caucalis Bur Chervil occasional frequent occasional occasional Anthriscus cerefolium Garden Chervil extinct extinct extinct very rare Anthriscus sylvestris Cow Parsley common common common common Apium graveolens Wild Celery rare occasional very rare native ssp. Apium inundatum Lesser Marshwort very rare or extinct very rare extinct very rare Apium nodiflorum Fool's Water-cress common common common common Astrantia major Astrantia extinct very rare Berula erecta Lesser Water-parsnip occasional frequent occasional occasional x Beruladium procurrens Fool's Water-cress x Lesser very rare Water-parsnip Bunium bulbocastanum Great Pignut occasional very rare Bupleurum rotundifolium Thorow-wax extinct extinct extinct extinct Bupleurum subovatum False Thorow-wax very rare very rare very rare Bupleurum tenuissimum Slender Hare's-ear very rare extinct very rare or extinct Carum carvi Caraway very rare very rare very rare extinct Chaerophyllum temulum Rough Chervil common common common common Cicuta virosa Cowbane extinct extinct Conium maculatum Hemlock common common common common Conopodium majus Pignut frequent occasional occasional frequent Coriandrum sativum Coriander rare occasional very rare very rare Daucus carota Wild Carrot common common common common Eryngium campestre Field Eryngo very rare, prob. -
Molecular Identification of Commercialized Medicinal Plants in Southern Morocco
Molecular Identification of Commercialized Medicinal Plants in Southern Morocco Anneleen Kool1*., Hugo J. de Boer1.,A˚ sa Kru¨ ger2, Anders Rydberg1, Abdelaziz Abbad3, Lars Bjo¨ rk1, Gary Martin4 1 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Department of Botany, Stockholm University, Stockholm, Sweden, 3 Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 4 Global Diversity Foundation, Dar Ylane, Marrakech, Morocco Abstract Background: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level. -
Aquatic Macrophyte Spirodela Polyrrhiza As a Phytoremediation Tool in Polluted Wetland Water from Eloor, Ernakulam District, Kerala
IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 5, Issue 1 (Jul. - Aug. 2013), PP 51-58 www.Iosrjournals.Org Aquatic macrophyte Spirodela polyrrhiza as a phytoremediation tool in polluted wetland water from Eloor, Ernakulam District, Kerala. Anil Loveson, Rajathy Sivalingam and Syamkumar R. School of Environmental Studies, Cochin University Of Science and Technology Abstract: This study involved a laboratory experiment on the efficiency of the plant duckweed Spirodela polyrrhiza in improving the quality of two polluted wetlands of Eloor industrial area, Ernakulam, Kerala. The efficiency was tested by measuring some of physicochemical characteristics of the control and plant treatments after each eight days. All the parameters show considerable rate of reduction. In wetland I, The highest rates of reduction after 8 days of treatment were for heavy metals, accounting 95%, 79%, and 66% for Lead, Copper and Zinc, respectively, followed by 53% for Chromium, 45% for Mercury, 26% for Cobalt, 20% for manganese and 7% for Nickel. Other factors like pH, BOD, COD, Nitrate, Phosphate , sulphate, TDS, TSS and Turbidity reduced by 12%, 37%, 49%, 100%, 36%, 16%, 53%,85% and 52% respectively. In wetland II also heavy metals were removed with Cd(100%), Fe(98%), Pb(91%), Cu(74%) Zn(62%) and Hg(53%) removed more efficiently. The results showed that this aquatic plant can be successfully used for wastewater pollutants removal. Other physiochemical parameters like pH, BOD, COD, Nitrate, Phosphate , sulphate, TDS, TSS and Turbidity reduced by 14%, 40%, 60%, 100%, 38%, 65%, 73%, 85%, and 51% after 8 days of treatment. -
DNA Barcoding Reveals Limited Accuracy of Identifications Based on Folk Taxonomy
DNA Barcoding Reveals Limited Accuracy of Identifications Based on Folk Taxonomy Hugo J. de Boer1,2,3., Abderrahim Ouarghidi4,5., Gary Martin5, Abdelaziz Abbad4, Anneleen Kool3* 1 Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Naturalis Biodiversity Center, Leiden, The Netherlands, 3 Natural History Museum, University of Oslo, Oslo, Norway, 4 Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 5 Global Diversity Foundation, Marrakech, Morocco Abstract Background: The trade of plant roots as traditional medicine is an important source of income for many people around the world. Destructive harvesting practices threaten the existence of some plant species. Harvesters of medicinal roots identify the collected species according to their own folk taxonomies, but once the dried or powdered roots enter the chain of commercialization, accurate identification becomes more challenging. Methodology: A survey of morphological diversity among four root products traded in the medina of Marrakech was conducted. Fifty-one root samples were selected for molecular identification using DNA barcoding using three markers, trnH-psbA, rpoC1, and ITS. Sequences were searched using BLAST against a tailored reference database of Moroccan medicinal plants and their closest relatives submitted to NCBI GenBank. Principal Findings: Combining psbA-trnH, rpoC1, and ITS allowed the majority of the market samples to be identified to species level. Few of the species level barcoding identifications matched the scientific names given in the literature, including the most authoritative and widely cited pharmacopeia. Conclusions/Significance: The four root complexes selected from the medicinal plant products traded in Marrakech all comprise more than one species, but not those previously asserted. -
Phylogeny and Systematics of Lemnaceae, the Duckweed Family
Systematic Botany (2002), 27(2): pp. 221±240 q Copyright 2002 by the American Society of Plant Taxonomists Phylogeny and Systematics of Lemnaceae, the Duckweed Family DONALD H. LES,1 DANIEL J. CRAWFORD,2,3 ELIAS LANDOLT,4 JOHN D. GABEL,1 and REBECCA T. K IMBALL2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043; 2Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210; 3Present address: Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas 66045-2106; 4Geobotanisches Institut ETH, ZuÈ richbergstrasse 38, CH-8044, ZuÈ rich, Switzerland Communicating Editor: Jeff H. Rettig ABSTRACT. The minute, reduced plants of family Lemnaceae have presented a formidable challenge to systematic inves- tigations. The simpli®ed morphology of duckweeds has made it particularly dif®cult to reconcile their interspeci®c relation- ships. A comprehensive phylogenetic analysis of all currently recognized species of Lemnaceae has been carried out using more than 4,700 characters that include data from morphology and anatomy, ¯avonoids, allozymes, and DNA sequences from chloroplast genes (rbcL, matK) and introns (trnK, rpl16). All data are reasonably congruent (I(MF) , 6%) and contributed to strong nodal support in combined analyses. Our combined data yield a single, well-resolved, maximum parsimony tree with 30/36 nodes (83%) supported by bootstrap values that exceed 90%. Subfamily Wolf®oideae is a monophyletic clade with 100% bootstrap support; however, subfamily Lemnoideae represents a paraphyletic grade comprising Landoltia, Lemna,and Spirodela. Combined data analysis con®rms the monophyly of Landoltia, Lemna, Spirodela, Wolf®a,andWolf®ella. -
Internal Eutrophication: How It Works and What to Do About It – a Review
Chemistry and Ecology Vol. 22, No. 2, April 2006, 93–111 Internal eutrophication: How it works and what to do about it – a review A. J. P. SMOLDERS*, L. P. M. LAMERS, E. C. H. E. T. LUCASSEN, G. VAN DER VELDE and J. G. M. ROELOFS Department of Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands (Received 18 November 2005; in final form 16 January 2006) In the 1980s and 1990s, it became increasingly clear that changes in external nutrient loads alone could not entirely explain the severe eutrophication of surface waters in the Netherlands. Nowadays, ‘internal eutrophication’ has become a widely accepted term in Dutch water management practice to describe the eutrophication of an ecosystem without additional external input of nutrients (N, P, K). This review surveys the principal mechanisms involved in this process. It also discusses possible remedies to combat internal eutrophication. Keywords: Alkalinity; Anaerobic decomposition; Biomanipulation; Internal eutrophication; Nitrate; Phosphate; Sulphate 1. Introduction In the Netherlands, the term internal eutrophication (‘interne eutrofiëring’ in Dutch) has become popular through publications by Roelofs and co-workers since the late 1980s [1–8]. Most of these publications were written in Dutch and described the eutrophication of surface waters in Dutch peaty lowlands as a result of changes in water quality without additional external supply of nutrients (N, P, K). Their ideas were based on the observation that water quality had deteriorated considerably, even in nature reserves, although in many cases no significant increase had occurred in the external nutrient loads [1, 3, 5]. -
Introduction to Duckweeds
Introduction to Duckweeds Helena Crouch & Fred Rumsey Old Lemnaceae : 4 genera (now in Araceae) Spirodela (3 spp) Spirodela polyrhiza 7-10 roots (including Landoltia) Spirodela punctata 2-5 roots Lemna (14 spp) Lemna gibba 1 root Lemna minor 1 root Lemna turionifera 1 root Lemna trisulca 1 root Lemna minuta 1 root Lemna valdiviana 1 root Lemna aequinoctialis 1 root Wolffiella (10 spp) No roots Wolffia (11 spp) Wolffia arrhiza No roots Spirodela polyrhiza (Greater Duckweed) • Large fronds • Red underside • Many roots (5+) (but they get eaten) • Turns red in autumn • Multiple veins Spirodela polyrhiza (Greater Duckweed) © BSBI 2019 Distribution in Britain & Ireland (taken from the BSBI DDb Oct 2019) Ponds Canals Rivers Ditches (Base-rich water) Tolerant of some eutrophication Wolffia arrhiza (Rootless Duckweed) • Small globose- ovoid fronds • Bright green • No roots • Reproduces by budding Wolffia arrhiza (Rootless Duckweed) © BSBI 2019 Distribution in Britain & Ireland (taken from the BSBI DDb Oct 2019) Ditches Ponds Base-rich water GB: Vulnerable England: Least Concern Wales: Least Concern GB Scarce Lemna trisulca (Ivy-leaved Duckweed) • Stalked fronds form branching chains • Submerged, just below water surface • Flowering fronds float on the water surface Photo: © J. Bruinsma Lemna trisulca (Ivy-leaved Duckweed) © BSBI 2019 Distribution in Britain & Ireland (taken from the BSBI DDb Oct 2019) Rivers Canals Streams Ditches Lakes Ponds Mesotrophic to eutrophic water The Troublesome Ones • All that is MINUTE is not minuta • Fat Duckweed is not always FAT • Common Duckweed may not be the most COMMON • RED is not always RED Duckweed Frond shape Photo: © R.V. Lansdown Lemna minor Lemna gibba Ovate, widest near middle Rounder, widest near apex Length:width ratio 1.2-2.0 Length:width ratio 1.0-1.5 Enlarged Cells Lemna minor Upper surface uniform No large air cells Lemna gibba Reticulum on upper surface Large air cells visible Swollen cells underneath Photo: © Fred Giles Red Coloration Red Duckweed L. -
Landoltia Punctata. Retrieved From
Aquatic Plant Dotted Duckweed I. Current Status and Distribution Landoltia punctata (formerly Spirodela punctata)1 a. Range Global/Continental Wisconsin Native Range Southeast Asia, Australia, Japan, India, Thailand, Africa, South America, New Zealand2 Not recorded in Wisconsin Figure 1: U.S and Canada Distribution Map3 Abundance/Range Widespread: Southern and western United States3; Not applicable Europe and Asia2 Locally Abundant: Nutrient-rich, slow-moving or stagnant Not applicable ponds2,4 Sparse: Areas with severe, cold winters4 Not applicable Range Expansion Date Introduced: Missouri, 19304 Not applicable Rate of Spread: Rapid Not applicable Density Risk of Monoculture: High4 Unknown Facilitated By: Undocumented Unknown b. Habitat Slow-moving or stagnant ponds2,4; lakes, wetlands, ditches, swamps, backwaters, intermittent waters4 Tolerance Chart of tolerances: Increasingly dark color indicates increasingly optimal range4,5,6 Page 1 of 4 Wisconsin Department of Natural Resources – Aquatic Invasive Species Literature Review Preferences Small, slow-moving or stagnant, nutrient rich waters2 c. Regulation Noxious/Regulated: TX Minnesota Regulations: Not regulated Michigan Regulations: Not regulated Washington Regulations: Not regulated II. Establishment Potential and Life History Traits a. Life History Small, monocotyledonous, free-floating plant2 Fecundity High Reproduction Asexual (budding); Sexual (occasional)4 Importance of Seeds: Medium; L. punctata can survive drought by producing seeds4 Vegetative: Very important; through vegetative -
Ancient Aquatic Angiosperms Flow from the Fossil Record Donald H
COMMENTARY COMMENTARY Water from the rock: Ancient aquatic angiosperms flow from the fossil record Donald H. Les1 the rapid rise of angiosperms has intrigued Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 paleoecologists and evolutionary biologists, who have strived to elucidate underlying ex- planations for their successful radiation. La- The world of 120 million years ago was one dominant global floristic element, a transfor- mented by Charles Darwin as “an abomina- of dynamic biological processes. During that mative event that ultimately altered the char- ble mystery” (1), the abrupt appearance of time the flowering plants emerged as the acter of the entire planet. Understandably, angiosperms and their sudden burst of diver- sification in the fossil record continues to captivate contemporary plant systematists, who have sought a solution by incorporating massive amounts of DNA sequence data in comparative phylogenetic studies of extant species. However, despite extensive techno- logical advances in genetics, genomics, and bioinformatics, which have revolutionized plant research over the past decades, our comprehension of life on earth during such ancient times continues to rely primarily on one data source: the fossil record. In PNAS, Gomez et al. (2) uncover an important clue to Darwin’s mystery by their analyses of Monteschia vidalii,anenigmaticplantfossil from Barremian deposits in Spain. Their re- interpretation of these fossils provides a new perspective that allies Monteschia not only with the angiosperms, but specifically with extant members of the order Ceratophyllales, a group of considerable interest in debates concerning the origin of flowering plants. The characterization of these early plants as highly specialized aquatics also offers novel interpretations regarding the ecological char- acteristics of early angiosperms. -
Different Reutilization of Mineral Nutrients in Senescent Leaves Of
Aquatic Botany 119 (2014) 1–6 Contents lists available at ScienceDirect Aquatic Botany jou rnal homepage: www.elsevier.com/locate/aquabot Different reutilization of mineral nutrients in senescent leaves of aquatic and terrestrial carnivorous Utricularia species ∗ Lubomír Adamec Institute of Botany of the Academy of Sciences of the Czech Republic, Section of Plant Ecology, Dukelská 135, CZ-379 82 Treboˇ n,ˇ Czech Republic a r t i c l e i n f o a b s t r a c t Article history: Nutrient reutilization (recycling) from senescent tissues in aquatic and terrestrial plants is important Received 24 February 2014 especially in nutrient-poor environments. The hypothesis was verified that N and P are reutilized effi- Received in revised form 2 June 2014 ciently from senescent shoots in both aquatic and terrestrial plants, while K is reutilized only in terrestrial Accepted 7 June 2014 plants. The efficiency of N, P and K reutilization in old traps and shoot segments in the submerged carnivo- Available online 16 June 2014 rous plant Utricularia reflexa and the leaves of non-carnivorous Ceratophyllum submersum was compared with that in the leaves of five terrestrial Utricularia species. Oxygen-based dark respiration rates of U. Keywords: reflexa traps, measured as a criterion of physiological activity, exhibited a marked polarity, while a weak Lentibulariaceae respiration polarity of leaves was not significant. No distinct polarity of trap and shoot N contents were Aquatic and terrestrial plants found in U. reflexa shoots. When the correction factor of 0.71 was applied to compensate for the assumed Aerobic dark respiration Shoot polarity dry weight (DW) decrease in old traps and leaf nodes, the mean reutilization efficiency for N was 19% in Senescence traps and 37% in leaf nodes and for P, 67% in traps and 52% in leaf nodes. -
Zooplankton Diversity and Macrophyte Biometry in Shallow Water Bodies of Various Trophic State
Hydrobiologia (2016) 774:39–51 DOI 10.1007/s10750-015-2595-4 WETLANDS BIODIVERSITY AND PROCESSES Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state Natalia Kuczyn´ska-Kippen . Tomasz Joniak Received: 18 September 2015 / Revised: 12 November 2015 / Accepted: 17 November 2015 / Published online: 1 December 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract In order to determine whether using indi- elimination of macrophyte-dominated refuges, cators of zooplankton diversity and macrophyte thereby lowering the macrophyte-site share, which parameters (density and biomass) could be a useful ranged from 47% in eutrophy, 40% in mesotrophy to tool for diagnosing the water quality of ponds we only 20% in hypereutrophy. Therefore, we assume that hypothesised that in various trophic types of shallow zooplankton diversity and macrophyte occurrence can water bodies parameters of a macrophyte habitat will be used for quality assessment of small water bodies. reflect zooplankton diversity. Thus, 439 stations (open water, helophytes, elodeids) were studied among 274 Keywords Shallow ponds Á Rotifer and crustacean pastoral ponds (mid-west Poland). In each trophic diversity Á Trophic status Á Aquatic plant biomass Á state of waters a key predictor of zooplankton diversity Environmental predictors was biomass of macrophytes attributed to a variety of ecological types or various species of macrophytes. A shift from the high importance of elodeids (e.g. Myriophyllum, Ceratophyllum demersum) in structur- Introduction ing zooplankton diversity in mesotrophic waters to helophytes (Typha angustifolia, Phragmites australis, Ponds, which are considered to be small ecological Schoenoplectus lacustris) in hypereutrophic ponds complexes, form model systems for studying various was recorded.