THE EFFECTS of SELECTED ANTIBIOTICS on NITROGEN UPTAKE by Spirodela Punctata

Total Page:16

File Type:pdf, Size:1020Kb

THE EFFECTS of SELECTED ANTIBIOTICS on NITROGEN UPTAKE by Spirodela Punctata THE EFFECTS OF SELECTED ANTIBIOTICS ON NITROGEN UPTAKE BY Spirodela punctata By Cory M. Jones A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Science In Natural Resources: Wastewater Utilization Program February, 2010 ABSTRACT The Effects of Selected Antibiotics on Nitrogen Uptake by Spirodela punctata Cory M. Jones The purpose of this study was to determine the effects of nitrogenous compound removal by the aquatic macrophyte, Spirodela punctata, when exposed to three selected antibiotics. Recent research has shown that certain antibiotics target the chloroplasts of aquatic species such as Lemna and Myriophyllum. Studies have demonstrated antibiotic toxicity to Lemna gibba at concentrations as low as 10 µg/L. Meanwhile, antibiotic concentrations in domestic wastewater lie in the nanogram to microgram range with an average of approximately 50 µg/L. In this study, Spirodela punctata was grown in a mineral salts medium containing the antibiotics chlortetracycline, lomefloxacin, and sulfamethoxazole in concentrations ranging from 10 µg/L to 300 µg/L. Fronds were allowed to grow in the medium for seven, fourteen, and twenty-one day periods. Following the growth periods, the medium was analyzed for nitrate and total nitrogen concentrations. Dry weights of fronds were taken and the dried plant material was analyzed for Total Kjeldahl Nitrogen (TKN) content. Effective concentrations (EC25 and EC50) that impacted total nitrogen and nitrate removal from the growth medium as well as dry weights and Total Kjeldahl Nitrogen of the plant tissue were calculated. Of the antibiotics tested, chlortetracycline had the most iii significant responses. The antibiotic reduced nitrate and total nitrogen removal from the medium and decreased plant biomass. For nitrate removal chlortetracycline had an EC25 of 32 µg/L after three weeks of exposure. Dry weight EC25 for chlortetracycline was 73 µg/L after seven days of exposure to the antibiotic. Control treatments containing the antibiotic and no plant material had similar results indicating that the compounds added nitrogen. Conversely, other compounds tested resulted in very few significant responses. Lomefloxacin only showed significance for nitrate removal during week two and total nitrogen for week one. Surprisingly, the antibiotic seemed to stimulate the ability of Spirodela punctata to remove total nitrogen during the first week of exposure. Sulfamethoxazole had only one significant response during the test period. The combination of the three antibiotics resulted in only a reduction in nitrate removal during the first week after which there was no significant effect. Overall, selected antibiotics had little direct effect on ability of Spirodela punctata to remove nitrogenous compounds. However, with respect to chlortetracycline, the reduction in the production of biomass resulted in the reduction in nitrate and total nitrogen removal. This reduction in biomass is perhaps the greatest impact on S. punctata’s ability to remove nitrogenous compounds from wastewater. iv ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere appreciation towards Dr. Kristine Brenneman for the commitment, support, and expertise that she lent me throughout my graduate school experience. Dr. Brenneman was extremely patient with me through multiple thesis revisions and motivated me to keep working. I could not have done it without her. Secondly, I would like to thank Dr. Bill Bigg and his wife, Donna, for their help with statistics, experimental design, and the Total Kjeldahl Nitrogen analysis. They will be missed at Humboldt State University. Thanks to Ryan Faria-Cecil for all of his help during those long hours in the laboratory. I would also like to express my gratitude towards the city of Arcata for funding my research. My committee members, Dr. Frank Shaughnessy and Dr. Margaret Lang are greatly appreciated for their efforts providing insight regarding my project and for time spent reviewing my thesis. Thanks to the biology department for lending me laboratory materials without which I wouldn’t have been able to perform my research. Finally, I would like to thank my family for all of the support, financially and otherwise, that allowed me to achieve my goal. I am especially indebted to my beautiful wife, Lynette, who always supported and believed in me throughout this entire project. v TABLE OF CONTENTS Page ABSTRACT.......................................................................................................................iii ACKNOWLEDGEMENTS.................................................................................................v TABLE OF CONTENTS...................................................................................................vi LIST OF TABLES.............................................................................................................vii LIST OF FIGURES..........................................................................................................viii INTRODUCTION...............................................................................................................1 MATERIALS AND METHODS.........................................................................................5 Response Variables and Statistics............................................................................7 RESULTS............................................................................................................................8 DISCUSSION....................................................................................................................21 LITERATURE CITED......................................................................................................26 PERSONAL COMMUNICATION CITED......................................................................29 APPENDIX A....................................................................................................................30 Antibiotic Molecular Structures.............................................................................30 vi LIST OF TABLES Table Page 1 The p-values for significant responses for indicated assays of growth media treated with antibiotics as determined using analysis of variance (ANOVA) in the general linear model...................................9 2 The p-values and lowest-observable-effect concentrations (LOECs) for indicated assays of growth media and plant tissue of Spirodela punctata treated with antibiotics as determined using analysis of variance (ANOVA) in the general linear model and Dunnett’s two-sided test for treatment-control comparison............................11 3 Effective concentrations that cause a 25% change from the control for the indicated assays of growth media and plant tissue of Spirodela punctata treated with antibiotics as determined using curve fitting modeling techniques at the 95% confidence interval...................................................................................................................12 4 Effective concentrations that cause a 50% impact on the indicated assays of growth media and plant tissue of Spirodela punctata treated with antibiotics as determined using curve fitting modeling techniques at the 95% confidence interval............................................13 vii LIST OF FIGURES Figure Page 1 Significant (p<0.05) effects of the antibiotic chlortetracycline on nitrate removal by Spirodela punctata.............................................................14 2 Significant (p<0.05) effects of the antibiotic chlortetracycline on total nitrogen removal by Spirodela punctata..................................................15 3 Significant (p<0.05) effects of the antibiotic chlortetracycline on frond dry weight and Total Kjeldahl Nitrogen percentage of Spirodela punctata.................................................................................................................16 4 Significant (p<0.05) effects of the antibiotic lomefloxacin on nitrate removal and total nitrogen removal by Spirodela punctata.......................18 5 The significant (p<0.05) effect of the sulfonamide antibiotic sulfamethoxazole on total nitrogen removal by Spirodela punctata.....................19 6 The significant (p<0.05) effect of the combination of three antibiotics (chlortetracycline, lomefloxacin, and sulfamethoxazole) on nitrate removal by Spirodela punctata..............................................................20 viii INTRODUCTION Recent studies have provided evidence that antibiotics have phytotoxic effects on vascular plants including Lemna and Myriophyllum species (Brain et al. 2003, Brain et al. 2004, Pomati et al. 2004). The primary focus of these studies has been on the morphological effects that antibiotics impose including reduction of chlorophyll and biomass. To my knowledge, nothing is known about the effect antibiotics have on nutrient removal by such aquatic species. Lemnaceae have long been shown to be effective in wastewater treatment (Harvey and Fox 1973, Sutton and Ornes 1975, Hillman and Culley 1978). Lemnaceae are efficient in reducing nitrogen and phosphorus levels from various polluted water sources including animal wastes and municipal wastewater. A study by Tripathi (20003) showed that Lemna minor removed 62.5% of total nitrogen and 58.8% of phosphorus from secondarily treated dairy effluent in eight-weeks. Furthermore, Cheng et al. (2001) reported that within a 20-day
Recommended publications
  • A TWO-YEAR RETROSPECTIVE ANALYSIS of ADVERSE DRUG REACTIONS with 5PSQ-031 FLUOROQUINOLONE and QUINOLONE ANTIBIOTICS 24Th Congress Of
    A TWO-YEAR RETROSPECTIVE ANALYSIS OF ADVERSE DRUG REACTIONS WITH 5PSQ-031 FLUOROQUINOLONE AND QUINOLONE ANTIBIOTICS 24th Congress of V. Borsi1, M. Del Lungo2, L. Giovannetti1, M.G. Lai1, M. Parrilli1 1 Azienda USL Toscana Centro, Pharmacovigilance Centre, Florence, Italy 2 Dept. of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), 27-29 March 2019 Section of Pharmacology and Toxicology , University of Florence, Italy BACKGROUND PURPOSE On 9 February 2017, the Pharmacovigilance Risk Assessment Committee (PRAC) initiated a review1 of disabling To review the adverse drugs and potentially long-lasting side effects reported with systemic and inhaled quinolone and fluoroquinolone reactions (ADRs) of antibiotics at the request of the German medicines authority (BfArM) following reports of long-lasting side effects systemic and inhaled in the national safety database and the published literature. fluoroquinolone and quinolone antibiotics that MATERIAL AND METHODS involved peripheral and central nervous system, Retrospective analysis of ADRs reported in our APVD involving ciprofloxacin, flumequine, levofloxacin, tendons, muscles and joints lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, cinoxacin, nalidixic acid, reported from our pipemidic given systemically (by mouth or injection). The period considered is September 2016 to September Pharmacovigilance 2018. Department (PVD). RESULTS 22 ADRs were reported in our PVD involving fluoroquinolone and quinolone antibiotics in the period considered and that affected peripheral or central nervous system, tendons, muscles and joints. The mean patient age was 67,3 years (range: 17-92 years). 63,7% of the ADRs reported were serious, of which 22,7% caused hospitalization and 4,5% caused persistent/severe disability. 81,8% of the ADRs were reported by a healthcare professional (physician, pharmacist or other) and 18,2% by patient or a non-healthcare professional.
    [Show full text]
  • An Updated Checklist of Aquatic Plants of Myanmar and Thailand
    Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Maxaquin® Lomefloxacin Hydrochloride Tablets to Reduce The
    Maxaquin® lomefloxacin hydrochloride tablets To reduce the development of drug-resistant bacteria and maintain the effectiveness of Maxaquin and other antibacterial drugs, Maxaquin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION Maxaquin (lomefloxacin HCl) is a synthetic broad-spectrum antimicrobial agent for oral administration. Lomefloxacin HCl, a difluoroquinolone, is the monohydrochloride salt of (±)-1-ethyl-6, 8-difluoro-1, 4-dihydro-7-(3-methyl-1-piperazinyl)-4-oxo-3- quinolinecarboxylic acid. Its empirical formula is C17H19F2N3O3·HCl, and its structural formula is: Lomefloxacin HCl is a white to pale yellow powder with a molecular weight of 387.8. It is slightly soluble in water and practically insoluble in alcohol. Lomefloxacin HCl is stable to heat and moisture but is sensitive to light in dilute aqueous solution. Maxaquin is available as a film-coated tablet formulation containing 400 mg of lomefloxacin base, present as the hydrochloride salt. The base content of the hydrochloride salt is 90.6%. The inactive ingredients are carboxymethylcellulose calcium, hydroxypropyl cellulose, hypromellose, lactose, magnesium stearate, polyethylene glycol, polyoxyl 40 stearate, and titanium dioxide. CLINICAL PHARMACOLOGY Pharmacokinetics in healthy volunteers: In 6 fasting healthy male volunteers, approximately 95% to 98% of a single oral dose of lomefloxacin was absorbed. Absorption was rapid following single doses of 200 and 400 mg (Tmax 0.8 to 1.4 hours). Mean
    [Show full text]
  • Aquatic Macrophyte Spirodela Polyrrhiza As a Phytoremediation Tool in Polluted Wetland Water from Eloor, Ernakulam District, Kerala
    IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 5, Issue 1 (Jul. - Aug. 2013), PP 51-58 www.Iosrjournals.Org Aquatic macrophyte Spirodela polyrrhiza as a phytoremediation tool in polluted wetland water from Eloor, Ernakulam District, Kerala. Anil Loveson, Rajathy Sivalingam and Syamkumar R. School of Environmental Studies, Cochin University Of Science and Technology Abstract: This study involved a laboratory experiment on the efficiency of the plant duckweed Spirodela polyrrhiza in improving the quality of two polluted wetlands of Eloor industrial area, Ernakulam, Kerala. The efficiency was tested by measuring some of physicochemical characteristics of the control and plant treatments after each eight days. All the parameters show considerable rate of reduction. In wetland I, The highest rates of reduction after 8 days of treatment were for heavy metals, accounting 95%, 79%, and 66% for Lead, Copper and Zinc, respectively, followed by 53% for Chromium, 45% for Mercury, 26% for Cobalt, 20% for manganese and 7% for Nickel. Other factors like pH, BOD, COD, Nitrate, Phosphate , sulphate, TDS, TSS and Turbidity reduced by 12%, 37%, 49%, 100%, 36%, 16%, 53%,85% and 52% respectively. In wetland II also heavy metals were removed with Cd(100%), Fe(98%), Pb(91%), Cu(74%) Zn(62%) and Hg(53%) removed more efficiently. The results showed that this aquatic plant can be successfully used for wastewater pollutants removal. Other physiochemical parameters like pH, BOD, COD, Nitrate, Phosphate , sulphate, TDS, TSS and Turbidity reduced by 14%, 40%, 60%, 100%, 38%, 65%, 73%, 85%, and 51% after 8 days of treatment.
    [Show full text]
  • Phylogeny and Systematics of Lemnaceae, the Duckweed Family
    Systematic Botany (2002), 27(2): pp. 221±240 q Copyright 2002 by the American Society of Plant Taxonomists Phylogeny and Systematics of Lemnaceae, the Duckweed Family DONALD H. LES,1 DANIEL J. CRAWFORD,2,3 ELIAS LANDOLT,4 JOHN D. GABEL,1 and REBECCA T. K IMBALL2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043; 2Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210; 3Present address: Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas 66045-2106; 4Geobotanisches Institut ETH, ZuÈ richbergstrasse 38, CH-8044, ZuÈ rich, Switzerland Communicating Editor: Jeff H. Rettig ABSTRACT. The minute, reduced plants of family Lemnaceae have presented a formidable challenge to systematic inves- tigations. The simpli®ed morphology of duckweeds has made it particularly dif®cult to reconcile their interspeci®c relation- ships. A comprehensive phylogenetic analysis of all currently recognized species of Lemnaceae has been carried out using more than 4,700 characters that include data from morphology and anatomy, ¯avonoids, allozymes, and DNA sequences from chloroplast genes (rbcL, matK) and introns (trnK, rpl16). All data are reasonably congruent (I(MF) , 6%) and contributed to strong nodal support in combined analyses. Our combined data yield a single, well-resolved, maximum parsimony tree with 30/36 nodes (83%) supported by bootstrap values that exceed 90%. Subfamily Wolf®oideae is a monophyletic clade with 100% bootstrap support; however, subfamily Lemnoideae represents a paraphyletic grade comprising Landoltia, Lemna,and Spirodela. Combined data analysis con®rms the monophyly of Landoltia, Lemna, Spirodela, Wolf®a,andWolf®ella.
    [Show full text]
  • Gene-Drug Interactions and the Evolution of Antibiotic Resistance
    Gene-Drug Interactions and the Evolution of Antibiotic Resistance The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Palmer, Adam Christopher. 2012. Gene-Drug Interactions and the Evolution of Antibiotic Resistance. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10436292 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA © - Adam Christopher Palmer All rights reserved. Professor Roy Kishony Adam Christopher Palmer Gene-drug interactions and the evolution of antibiotic resistance Abstract The evolution of antibiotic resistance is shaped by interactions between genes, the chemical environment, and an antibiotic's mechanism of action. This thesis explores these interactions with experiments, theory, and analysis, seeking a mechanistic understanding of how different interactions between genes and drugs can enhance or constrain the evolution of antibiotic resistance. Chapter 1 investigates the effects of the chemical decay of an antibiotic. Tetracycline resistant and sensitive bacteria were grown competitively in the presence of tetracycline and its decay products. Antibiotic decay did not only remove selection for resistance, but long- lived decay products favored tetracycline sensitivity by inducing costly drug efflux pumps in the resistant strain. Selection against resistance by antibiotic-related compounds may contribute to the coexistence of drug-sensitive and resistant bacteria in nature. Chapter 2 investigates how genetic interactions can favor particular combinations of resistance-conferring mutations.
    [Show full text]
  • A Systematic Review of Randomised Clinical Trials for Oral Antibiotic Treatment of Acute Pyelonephritis
    European Journal of Clinical Microbiology & Infectious Diseases (2018) 37:2285–2291 https://doi.org/10.1007/s10096-018-3371-y ORIGINAL ARTICLE A systematic review of randomised clinical trials for oral antibiotic treatment of acute pyelonephritis Jonathan W. S. Cattrall1 & Alyss V. Robinson1 & Andrew Kirby1,2 Received: 30 May 2018 /Accepted: 28 August 2018 /Published online: 6 September 2018 # The Author(s) 2018 Abstract There is increasing resistance to the oral antibiotics currently recommended for the treatment of pyelonephritis, and increased healthcare costs are associated with the reliance on alternative intravenous agents. We, therefore, performed a systematic review of randomised controlled trials to determine the clinical efficacy and safety of oral antibiotics for the treatment of pyelonephritis in adults. A search of four major medical databases (MEDLINE, Embase+ Embase classic, CENTRAL and Cochrane Database for Systematic Reviews) in addition to manual reference searching of relevant reviews was conducted. Clinical cure and adverse event rates were reported, and trial quality and bias were assessed. A total of 277 studies were reviewed; five studies matched all eligibility criteria and were included. Antibiotics included were cefaclor, ciprofloxacin, gatifloxacin, levofloxacin, lomefloxacin, loracarbef, norfloxacin, rufloxacin and trimethoprim-sulfamethoxazole. In included studies, the clinical success of the outpatient treatment of pyelonephritis by cefaclor, ciprofloxacin and norfloxacin at 4 to 6 weeks was comparable at between 83 to 95%. Relatively high rates of adverse events were noted in a trial of ciprofloxacin (24%) and trimethoprim-sulfamethoxazole (33%). Significant heterogeneity between all aspects of the trial designs was identified, with all studies having a potential for bias. This review demonstrates a need for high-quality clinical trials into the oral antibiotic treatment of pyelonephritis, with more consistent designs and reporting of outcomes.
    [Show full text]
  • Introduction to Duckweeds
    Introduction to Duckweeds Helena Crouch & Fred Rumsey Old Lemnaceae : 4 genera (now in Araceae) Spirodela (3 spp) Spirodela polyrhiza 7-10 roots (including Landoltia) Spirodela punctata 2-5 roots Lemna (14 spp) Lemna gibba 1 root Lemna minor 1 root Lemna turionifera 1 root Lemna trisulca 1 root Lemna minuta 1 root Lemna valdiviana 1 root Lemna aequinoctialis 1 root Wolffiella (10 spp) No roots Wolffia (11 spp) Wolffia arrhiza No roots Spirodela polyrhiza (Greater Duckweed) • Large fronds • Red underside • Many roots (5+) (but they get eaten) • Turns red in autumn • Multiple veins Spirodela polyrhiza (Greater Duckweed) © BSBI 2019 Distribution in Britain & Ireland (taken from the BSBI DDb Oct 2019) Ponds Canals Rivers Ditches (Base-rich water) Tolerant of some eutrophication Wolffia arrhiza (Rootless Duckweed) • Small globose- ovoid fronds • Bright green • No roots • Reproduces by budding Wolffia arrhiza (Rootless Duckweed) © BSBI 2019 Distribution in Britain & Ireland (taken from the BSBI DDb Oct 2019) Ditches Ponds Base-rich water GB: Vulnerable England: Least Concern Wales: Least Concern GB Scarce Lemna trisulca (Ivy-leaved Duckweed) • Stalked fronds form branching chains • Submerged, just below water surface • Flowering fronds float on the water surface Photo: © J. Bruinsma Lemna trisulca (Ivy-leaved Duckweed) © BSBI 2019 Distribution in Britain & Ireland (taken from the BSBI DDb Oct 2019) Rivers Canals Streams Ditches Lakes Ponds Mesotrophic to eutrophic water The Troublesome Ones • All that is MINUTE is not minuta • Fat Duckweed is not always FAT • Common Duckweed may not be the most COMMON • RED is not always RED Duckweed Frond shape Photo: © R.V. Lansdown Lemna minor Lemna gibba Ovate, widest near middle Rounder, widest near apex Length:width ratio 1.2-2.0 Length:width ratio 1.0-1.5 Enlarged Cells Lemna minor Upper surface uniform No large air cells Lemna gibba Reticulum on upper surface Large air cells visible Swollen cells underneath Photo: © Fred Giles Red Coloration Red Duckweed L.
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Landoltia Punctata. Retrieved From
    Aquatic Plant Dotted Duckweed I. Current Status and Distribution Landoltia punctata (formerly Spirodela punctata)1 a. Range Global/Continental Wisconsin Native Range Southeast Asia, Australia, Japan, India, Thailand, Africa, South America, New Zealand2 Not recorded in Wisconsin Figure 1: U.S and Canada Distribution Map3 Abundance/Range Widespread: Southern and western United States3; Not applicable Europe and Asia2 Locally Abundant: Nutrient-rich, slow-moving or stagnant Not applicable ponds2,4 Sparse: Areas with severe, cold winters4 Not applicable Range Expansion Date Introduced: Missouri, 19304 Not applicable Rate of Spread: Rapid Not applicable Density Risk of Monoculture: High4 Unknown Facilitated By: Undocumented Unknown b. Habitat Slow-moving or stagnant ponds2,4; lakes, wetlands, ditches, swamps, backwaters, intermittent waters4 Tolerance Chart of tolerances: Increasingly dark color indicates increasingly optimal range4,5,6 Page 1 of 4 Wisconsin Department of Natural Resources – Aquatic Invasive Species Literature Review Preferences Small, slow-moving or stagnant, nutrient rich waters2 c. Regulation Noxious/Regulated: TX Minnesota Regulations: Not regulated Michigan Regulations: Not regulated Washington Regulations: Not regulated II. Establishment Potential and Life History Traits a. Life History Small, monocotyledonous, free-floating plant2 Fecundity High Reproduction Asexual (budding); Sexual (occasional)4 Importance of Seeds: Medium; L. punctata can survive drought by producing seeds4 Vegetative: Very important; through vegetative
    [Show full text]
  • Glovebox Guide to Water Plants of the ACT Region
    1 How do you tell a weed water plant from a native? Many water plants show luxuriant growth, produce plenty of seed and have the ability to spread easily and may look weedy. However, WEEDS like Alligator Weed, Soapwort and Dense Waterweed are ‘plants growing successfully in the wrong place’. Aquatics are easiest to separate on habitat (where they live) and form or habit (what shape they take), and then look at flowers to see where they belong. We have chosen four categories, all non-woody plants: • Free-floating Plants with their leaves on or above the water and their roots suspended in the water. • Instream Plants of Pools and Riffles with roots in the soil, underwater leaves and above water leaves. • Mudflat and Emergent Plants that can cope with inundation but grow happily on the bank. • Clump Forming Water Edge Plants that form dense erect stands at the water’s edge. 2 Free floating plants usually dispense with stems. The roots are often very like root-tips only. Azolla (Azolla filiculoides and Azolla pinnata) is a fern found in still backwaters, off-stream wetlands and farm dams. They have small feathery leaves, and often spread across the whole water surface, with greener plants in shaded areas and redder plants out in the sun. Sometimes they can be piled on the bank 30 cm deep by the wind. Other common floating plants include the Duckweeds (Spirodela punctata, Lemna trisulca and Wolffia australiana) and floating Liverworts (Ricciocarpus natans and Riccia fluitans). These species all have tiny leaves. While all flourish in water with high nutrient content, they can be found in still parts of most waterways.
    [Show full text]
  • Surveillance of Antimicrobial Consumption in Europe 2013-2014 SURVEILLANCE REPORT
    SURVEILLANCE REPORT SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe in Europe consumption of antimicrobial Surveillance Surveillance of antimicrobial consumption in Europe 2013-2014 2012 www.ecdc.europa.eu ECDC SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe 2013–2014 This report of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Klaus Weist. Contributing authors Klaus Weist, Arno Muller, Ana Hoxha, Vera Vlahović-Palčevski, Christelle Elias, Dominique Monnet and Ole Heuer. Data analysis: Klaus Weist, Arno Muller and Ana Hoxha. Acknowledgements The authors would like to thank the ESAC-Net Disease Network Coordination Committee members (Marcel Bruch, Philippe Cavalié, Herman Goossens, Jenny Hellman, Susan Hopkins, Stephanie Natsch, Anna Olczak-Pienkowska, Ajay Oza, Arjana Tambić Andrasevic, Peter Zarb) and observers (Jane Robertson, Arno Muller, Mike Sharland, Theo Verheij) for providing valuable comments and scientific advice during the production of the report. All ESAC-Net participants and National Coordinators are acknowledged for providing data and valuable comments on this report. The authors also acknowledge Gaetan Guyodo, Catalin Albu and Anna Renau-Rosell for managing the data and providing technical support to the participating countries. Suggested citation: European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe, 2013‒2014. Stockholm: ECDC; 2018. Stockholm, May 2018 ISBN 978-92-9498-187-5 ISSN 2315-0955
    [Show full text]