Capture-Based Aquaculture of Mud Crabs (Scylla Spp.)

Total Page:16

File Type:pdf, Size:1020Kb

Capture-Based Aquaculture of Mud Crabs (Scylla Spp.) 255 Capture-based aquaculture of mud crabs (Scylla spp.) Colin Shelley YH & CC Shelley Pty. Ltd Brisbane, Australia E-mail: [email protected] Shelley, C. 2008. Capture-based aquaculture of mud crabs (Scylla spp.). In A. Lovatelli and P.F. Holthus (eds). Capture-based aquaculture. Global overview. FAO Fisheries Technical Paper. No. 508. Rome, FAO. pp. 255–269. SUMMARY There is limited understanding of wild mud crab resources and how best to manage them in many countries, particularly where fisheries management resources and enforcement capabilities are limited. The growth of mud crab aquaculture is likely to lead to changes to the ecological, socioeconomic and livelihoods currently associated with mud crab fisheries. This paper provides an overview of the issues, needs, opportunities and risks in trying to maintain sustainable mud crab fisheries, whilst supporting the ecologically sustainable development of mud crab aquaculture. The uncontrolled fishing of juvenile crabs for farming in some countries has led to recruitment overfishing, even though mud crabs are very fecund and have extended spawning seasons over much of their range. Conserving of mud crabs primary habitat, mangrove forests, is critical to supporting their populations, as is the regular monitoring of stocks to guard against their over-fishing. Environmentally sustainable farming of mud crabs in mangrove pens is seen as an important tool in both conserving mangrove forests, and expanding farm production areas. Significant growth of mud crab aquaculture is only going to occur from hatchery sourced seed-stock, as wild populations are at either at their limit or over-fished in many countries. Such growth will also be dependent on the development of formulated diets to reduce mud crab farming’s current dependence on trash-fish, a resource which is already under pressure from other types of aquaculture. During the transition from an industry dependent on wild mud crab seed-stock and wild feed resources, to hatchery produced seed-stock and formulated fields there will be changes to the current supply chains, and employment opportunities. Consideration needs to be given to programmes to assist fishers of both wild mud crab seed-stock and trash-fish (and associated middlemen) as the farming of mud crabs moves to a more industrial scale as is currently taking place in China, as both groups are amongst the poorest in many coastal communities. DESCRIPTION OF MUD CRABS AND THEIR USE IN AQUACULTURE Species There are four species of mud (or mangrove) crabs in the genus Scylla, S. serrata, S. olivacea, S. tranquebarica and S. paramamosain (Keenan, 1999b; Keenan, Davie 256 Capture-based aquaculture: global overview and Mann, 1998), all of which FIGURE 1 Juvenile mud crab support capture fisheries and aquaculture. In most countries where mud crabs are fished or farmed, they are an important source of income from both export and local sales, and are utilized by recreational fishers. Life cycle All mud crabs commonly display 6 larval stages; 5 zoeal stages, followed by a megalops larval stage which precedes the first crab stage (Figure 1). Mud crabs typically undergo 14–16 moults prior to reaching their maximum size. Reported daily weight gain COURTESY COURTESY OF D. MANN for mud crabs varies from 1–4 g per day and varies with species, and sex, with males reportedly growing faster than females (Trino, Millamena and Keenan, 1999b; Christensen, Macintosh and Phuong, 2004). All mud crabs can mature within their first year of life, with S. paramamosain maturing at a size of 102 mm carapace width at around 160 days from settlement (Le Vay, Ut and Walton, 2006; Le Vay, Ut and Walton, 2007), whilst S. serrata have reportedly grown to 750 g within 145 days and shown signs of maturity at day 147 (Field, 2006). They are highly fecund with individual females carrying over 3 million eggs. Apart from spawning migrations where females may travel considerable distances offshore most crabs appear to move little within their local habitat, which is typically mangrove forest (Hill, 1975; Hill, 1976; Le Vay, Ut and Walton, 2006; Le Vay, Ut and Walton, 2007). Mud crabs of different sizes occupy different niches within mangrove forests and the adjacent sub- tidal zone (Walton et al., 2006). Habitat Mud crabs are a common component of the fauna of mangrove forests, usually burrowing in mud or sandy-muds. They have a diverse diet and are omnivorous in nature, feeding on a wide range of animal and plant resources (Hill, 1976). Geographical distribution The distribution of mud crabs extends from South Africa, along the southern coasts of middle-eastern countries, across the Indian Ocean and northerly to the southern tip of Japan, east as far as Micronesia and south to the east coast of Australia. Scylla serrata is the most widely distributed species, whilst Indonesia appears to be the centre of diversity for the genus, where all four species of Scylla are found. Capture fishery The mud crab is a targeted species for harvest across its range. Techniques vary from catching by hand to the use of fishing gear including tangle nets, baited traps and lift nets. Fishery trends for the last decade are detailed in Table 1. However it should be noted that figures for Sri Lanka and Australia were missing from the FAO database and not included here, so that these figures represent an underestimate of the production of Capture-based aquaculture of mud crabs (Scylla spp.) 257 TABLE 1 Capture of Scylla serrata in tonnes Country 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Indonesia 7 980 7 342 8 298 8 161 8 707 8 774 11 753 11 240 14 802 20 129 18 750 Philippines 4 835 4 258 1 133 1 124 1 211 1 247 1 604 1 692 1 663 1 466 1 432 Taiwan PC 1 339 935 180 215 269 299 230 337 375 9 717 Thailand 5 776 4 243 4 031 3 732 5 736 6 921 5 417 3 823 1 259 2 859 1 865 Fiji Islands 234 208 290 270 281 250 268 180 82 324 280 Source: FAO–FIGIS Scylla serrata. Whilst Indonesia has shown an increasing catch, FIGURE 2 all other major producers have Live crabs on sale in Viet Nam shown either a decreasing or static catch. Harvest products Juvenile crabs or crablets are actively harvested throughout Southeast Asia for use as seed- stock for crab farms. Sizes harvested vary from a few centimetres across the carapace to just under harvest size for sale direct to market. Crabs of close to, or at a marketable size are caught for a range of activities. Crabs which have recently moulted and have not fully grown to fill their new shells are commonly referred to as “empty” crabs. Such crabs may be put into fattening pens, ponds or enclosures and fed until they are “full” and ready for market. COURTESY OF C. SHELLEY Other crabs of varying sizes will be caught and put into soft shell shedding facilities. Such crabs are commonly placed in individual containers and monitored until they moult. On moulting the crabs will either be chilled and put on ice, or frozen for the soft shell crab market, where all parts of the crab can be consumed as the shell has not been allowed to harden after moulting. Finally, hard-shell crabs of a marketable size are collected, secured to ensure traders and customers are not injured by their powerful claws and sold; most commonly in the live form (Figure 2). The size of crabs marketed varies with species. In the Philippines S. serrata is most commonly harvested at weights over 500 g, whilst for S. olivacea and S. tranquebarica the weight is usually over 350 g. Whilst mud crabs are usually a targeted species, they may be caught occasionally in various nets which are targeting other mangrove or reef species and are caught as they move across their habitat. Only a very small part of the mud crab harvested is bycatch of other fisheries. Mud crabs adapt very well to a farmed environment. With their omnivorous diet they will eat a wide range of feeds, from trash fish through to pelletised aquaculture feeds. There are a number of problems encountered by collectors and farmers, involved with using wild harvested crabs in various farming systems. Stock will often consist of a wide variety of sizes, and as mud crabs have a tendency to cannibalism, larger specimens will often predate on smaller crabs, causing significant mortalities amongst farm stock. 258 Capture-based aquaculture: global overview Life cycle status Mud crabs born in captivity have been successfully mated with both wild and other captive stock so that some organizations and companies now use domesticated stock. Almost all hard shell, mature females collected from the wild will have been impregnated and will spawn if held under appropriate conditions. Each mature female will usually be able to spawn 2 or 3 batches of larvae when held under satisfactory conditions following a single copulation. The use of farm produced seed is now becoming common in Viet Nam and China in particular. In some countries, such as the Philippines, there has been caution in the use of hatchery produced stock to date (Shelley, 2004a). Farmers have reported a range of concerns with crablets produced in hatcheries; will they be as robust as wild stock, will they grow as fast, will they be more prone to disease, and which is the better value for money – wild or farm produced stock? In some countries where mud crab fisheries are actively managed e.g. Australia, crablets or under-size crabs cannot be legally harvested. Farming techniques Considerable efforts have been made over the last few decades to develop effective technology for mud crab aquaculture (Brick, 1974; Angell, 1992; Heasman and Fielder, 1983; Keenan and Blackshaw, 1999a; Anon., 2001; Anon., 2005; Shelley et al., In Press; Wang et al., 2005).
Recommended publications
  • Seafood Watch Seafood Report: Crabs Blue Crab
    Seafood Watch Seafood Report: Crabs Volume I Blue Crab Callinectes sapidus Writer/Editor:AliceCascorbi Fisheries Research Analyst Monterey Bay Aquarium Additional Research: Heather Blough Audubon Living Oceans Program Final 14 February 2004 Seafood Watch® Blue Crab Report February 14, 2004 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long- term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices”, “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability.
    [Show full text]
  • Ovarian Development of the Mud Crab Scylla Paramamosain in a Tropical Mangrove Swamps, Thailand
    Available Online JOURNAL OF SCIENTIFIC RESEARCH Publications J. Sci. Res. 2 (2), 380-389 (2010) www.banglajol.info/index.php/JSR Ovarian Development of the Mud Crab Scylla paramamosain in a Tropical Mangrove Swamps, Thailand M. S. Islam1, K. Kodama2, and H. Kurokura3 1Department of Aquaculture and Fisheries, Jessore Science and Technology University, Jessore- 7407, Bangladesh 2Marine Science Institute, The University of Texas at Austin, Channel View Drive, Port Aransas, Texas 78373, USA 3Laboratory of Global Fisheries Science, Department of Global Agricultural Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan Received 15 October 2009, accepted in revised form 21 March 2010 Abstract The present study describes the ovarian development stages of the mud crab, Scylla paramamosain from Pak Phanang mangrove swamps, Thailand. Samples were taken from local fishermen between June 2006 and December 2007. Ovarian development was determined based on both morphological appearance and histological observation. Ovarian development was classified into five stages: proliferation (stage I), previtellogenesis (II), primary vitellogenesis (III), secondary vitellogenesis (IV) and tertiary vitellogenesis (V). The formation of vacuolated globules is the initiation of primary vitellogenesis and primary growth. The follicle cells were found around the periphery of the lobes, among the groups of oogonia and oocytes. The follicle cells were hardly visible at the secondary and tertiary vitellogenesis stages. Yolk granules occurred in the primary vitellogenesis stage and are first initiated in the inner part of the oocytes, then gradually concentrated to the periphery of the cytoplasm. The study revealed that the initiation of vitellogenesis could be identified by external observation of the ovary but could not indicate precisely.
    [Show full text]
  • Climate Change and Fisheries: Policy, Trade and Sustainable Nal of Fisheries Management 22:852-862
    Climate Change and Alaska Fisheries TERRY JOHNSON Alaska Sea Grant University of Alaska Fairbanks 2016 ISBN 978-1-56612-187-3 http://doi.org/10.4027/ccaf.2016 MAB-67 $10.00 Credits Alaska Sea Grant is supported by the US Department of Commerce, NOAA National Sea Grant, grant NA14OAR4170079 (A/152-32) and by the University of Alaska Fairbanks with state funds. Sea Grant is a partnership with public and private sectors combining research, education, and extension. This national network of universities meets changing environmental and Alaska Sea Grant economic needs of people in coastal, ocean, and Great Lakes University of Alaska Fairbanks regions. Fairbanks, Alaska 99775-5040 Funding for this project was provided by the Alaska Center for Climate Assessment and Policy (ACCAP). Cover photo by (888) 789-0090 Deborah Mercy. alaskaseagrant.org TABLE OF CONTENTS Abstract .................................................................................................... 2 Take-home messages ...................................................................... 2 Introduction............................................................................................. 3 1. Ocean temperature and circulation ................................................ 4 2. Ocean acidification ............................................................................ 9 3. Invasive species, harmful algal blooms, and disease-causing pathogens .................................................... 12 4. Fisheries effects—groundfish and crab ......................................
    [Show full text]
  • Growth Analysis, Mortality and Exploitation Level of Mud Crab
    Jurnal Kelautan Tropis Maret 2020 Vol. 23(1):136-144 P-ISSN : 1410-8852 E-ISSN : 2528-3111 Growth analysis, mortality and exploitation level of Mud Crab Scylla serrata, Forskål 1775, (Malacostraca : Portunidae) in Mangkang Wetan waters, Semarang, Central Java, Indonesia Ervia Yudiati1,2*, Arumning Tias Fauziah1, Irwani1, Agus Setyawan3 and Insafitri4 1Department of Marine Sciences, Faculty of Fisheries and Marine Science, Diponegoro University Jl. Prof. Soedarto SH, Tembalang, Semarang 50275 2Laboratory of Marine Biotechnology, Diponegoro University 3Department of Fisheries and Marine Science, Faculty of Agriculture, Lampung University Jl. Soemantri Brojonegoro No 1, Bandar Lampung 35145 4Marine Science Programme Study, Faculty of Agriculture, Madura Trunojoyo University Jl. Raya Telang, Kamal, Bangkalan 69162 Email: [email protected] Abstract Awareness of Mud Crab over exploitation in Mangkang Wetan Waters has been noticed. One of the reference information is the growth study to determine the condition of the mud crab population. High demand encourages the fisherman to catch more, which leads to overexploitation in nature. The study aimed to estimate the growth, mortality, and exploitation rate of mud crabs. The 921 mud crabs samples were collected from Mangkang Wetan Waters from October 2018 to January 2019. The method used was the survey method. The crabs were taken once a week for 4 months. The width and weight of crab carapace were measured. The growth rate of S. serrata was 0.93/year (male) and 0.69/year (female). The natural mortality rate of S. serrata was 1.08/year (male) and 0.89/year (female), the mortality of catch (F) was 0.55/year (male) and 1.09/year (female).
    [Show full text]
  • Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries
    JANUARY 2020 Wholesale Market Profiles for Alaska Groundfish and FisheriesCrab Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries JANUARY 2020 JANUARY Prepared by: McDowell Group Authors and Contributions: From NOAA-NMFS’ Alaska Fisheries Science Center: Ben Fissel (PI, project oversight, project design, and editor), Brian Garber-Yonts (editor). From McDowell Group, Inc.: Jim Calvin (project oversight and editor), Dan Lesh (lead author/ analyst), Garrett Evridge (author/analyst) , Joe Jacobson (author/analyst), Paul Strickler (author/analyst). From Pacific States Marine Fisheries Commission: Bob Ryznar (project oversight and sub-contractor management), Jean Lee (data compilation and analysis) This report was produced and funded by the NOAA-NMFS’ Alaska Fisheries Science Center. Funding was awarded through a competitive contract to the Pacific States Marine Fisheries Commission and McDowell Group, Inc. The analysis was conducted during the winter of 2018 and spring of 2019, based primarily on 2017 harvest and market data. A final review by staff from NOAA-NMFS’ Alaska Fisheries Science Center was completed in June 2019 and the document was finalized in March 2016. Data throughout the report was compiled in November 2018. Revisions to source data after this time may not be reflect in this report. Typically, revisions to economic fisheries data are not substantial and data presented here accurately reflects the trends in the analyzed markets. For data sourced from NMFS and AKFIN the reader should refer to the Economic Status Report of the Groundfish Fisheries Off Alaska, 2017 (https://www.fisheries.noaa.gov/resource/data/2017-economic-status-groundfish-fisheries-alaska) and Economic Status Report of the BSAI King and Tanner Crab Fisheries Off Alaska, 2018 (https://www.fisheries.noaa.
    [Show full text]
  • Zoologische Verhandelingen
    CRUSTACEA LIBRARY SMITHSONIAN INST. RETURN TO W-119 ZOOLOGISCHE VERHANDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJK WERK) No. 162 A COLLECTION OF DECAPOD CRUSTACEA FROM SUMBA, LESSER SUNDA ISLANDS, INDONESIA by L. B. HOLTHUIS LEIDEN E. J. BRILL 14 September 1978 ZOOLOGISCHE VERHANDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJIC WERK) No. 162 A COLLECTION OF DECAPOD CRUSTACEA FROM SUMBA, LESSER SUNDA ISLANDS, INDONESIA by i L. B. HOLTHUIS LEIDEN E. J. BRILL 14 September 1978 Copyright 1978 by Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands All rights reserved. No part of this hook may he reproduced or translated in any form, by print, photoprint, microfilm or any other means without written permission from the publisher PRINTED IN THE NETHERLANDS A COLLECTION OF DECAPOD CRUSTACEA FROM SUMBA, LESSER SUNDA ISLANDS, INDONESIA by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historic, Leiden, Netherlands With 14 text-figures and 1 plate The Sumba-Expedition undertaken by Dr. E. Sutter of the Naturhistori- sches Museum of Basle and Dr. A. Biihler of the Museum fur Volkerkunde of the same town, visited the Lesser Sunda Islands, Indonesia, in 1949. Dr. Sutter, the zoologist, stayed in the islands from 19 May to 26 November; most of the time was spent by him in Sumba (21 May-31 October), and extensive collections were made there, among which a most interesting material of Decapod Crustacea, which forms the subject of the present paper. A few Crustacea were collected on the islands of Sumbawa (on 19 May) and Flores (19 and 21 November).
    [Show full text]
  • The Mating Success and Hybridization of Mud Crab, Scylla Spp. in Controlled Tanks Gunarto, Sulaeman, Herlinah
    The mating success and hybridization of Mud crab, Scylla spp. in controlled tanks Gunarto, Sulaeman, Herlinah Research Institute for Coastal Aquaculture and Fisheries Extension Maros, South Sulawesi, Indonesia. Corresponding author: Gunarto, [email protected] Abstract. Interspecific hybridization in mud crabs hardly occurs in uncontrolled conditions (in the wild). Therefore, the purpose of this study is to investigate the reproductive performance of female broodstock (fecundity, hatchability and crablet production) after mating with the same species and interspecific hybridization among Scylla spp. in controlled tanks. Four rounded fiberglass tanks, 1 m high and with a diameter of 2.1 m, were filled with 32 ppt saline filtered seawater. Then, 10 pairs (male/female) of mud crab broodstocks were stocked in each tank for mating and hybridization. The study involved four treatments: 1. Scylla paramamosain male paired with S. tranquebarica female; 2. S. tranquebarica male paired with S. paramamosain female; 3. S. tranquebarica male paired with the females of S. paramamosain, S. olivacea, and S. tranquebarica; 4. S. paramamosain male paired with females of S. tranquebarica, S. olivacea, and S. paramamosain. The number of precopulation and copulation incidences were recorded daily. Post copulated female crabs grew individually in different tanks until the gonads matured and the crabs spawned. The results of the research showed that the precopulation incidence obtained in treatment tanks 2, 3 and 4 were not significantly different (P>0.05), but they were significantly higher than the treatment in tank 1 (P<0.05). The interspecific hybridization between the female of S. paramamosain and the male of S. tranquebarica resulted in egg fecundities from 32200 to 1868000 eggs, and a hatching rate between 2 and 45%.
    [Show full text]
  • Nutritional Composition, Antioxidants and Antimicrobial Activities In
    Research Journal of Biotechnology Vol. 15 (4) April (2020) Res. J. Biotech Nutritional Composition, Antioxidants and Antimicrobial Activities in Muscle Tissues of Mud Crab, Scylla paramamosain Wan Roslina Wan Yusof1*, Noorasmin Mokhtar Ahmad2, Mohd Alhafiizh Zailani1, Mardhiah Mohd Shahabuddin1, Ngieng Ngui Sing2 and Awang Ahmad Sallehin Awang Husaini2 1. Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, MALAYSIA 2. Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, MALAYSIA *[email protected] Abstract paramamosain, Scylla serrata, Scylla transquebarica and Mud crab, Scylla paramamosain known as a green mud Scylla olivacea. Interestingly, S. paramamosain also known crab, has become a popular seafood due to its meat as a green mud crab is one of the popular species and widely quality. In addition, this marine invertebrate has been distributed in mangrove area with high water salinity such as continental coast of South China Sea and Java Sea.10 found to possess peptides with different biological activities and potentials. The aim was, first, to Among the other species, S. paramamosain has triangular determine the basic nutritional content and second, to frontal lobe spines and easily identified by the dotted pattern screen for the antioxidants and antimicrobials on its propodus. From nutritional point of view, mud crabs activities in the tissue of mud crab, S. paramamosain. have high protein, minerals and polyunsaturated fatty acids Percentages of carbohydrate, protein and fat in S. contents.23 Apart from nutritional view, many studies have paramamosain were 2.32%, 12.53% and 0.23% been conducted on the biological activities in mud crabs, respectively.
    [Show full text]
  • 5.2 Barents Sea Ecoregion – Fisheries Overview
    ICES Fisheries Overviews Barents Sea Ecoregion Published 29 November 2019 5.2 Barents Sea Ecoregion – Fisheries overview Table of contents Executive summary ...................................................................................................................................................................................... 1 Introduction .................................................................................................................................................................................................. 1 Who is fishing ............................................................................................................................................................................................... 2 Catches over time ......................................................................................................................................................................................... 6 Description of the fisheries........................................................................................................................................................................... 8 Fisheries management ............................................................................................................................................................................... 12 Status of the fishery resources ..................................................................................................................................................................
    [Show full text]
  • Reproductive Biology of Mud Crabs (Scylla Olivacea) Collected from Paikgachha, Khulna, Bangladesh
    JOURNAL OF ADVANCED VETERINARY AND ANIMAL RESEARCH ISSN 2311-7710 (Electronic) http://doi.org/10.5455/javar.2021.h483 March 2021 A periodical of the Network for the Veterinarians of Bangladesh (BDvetNET) VOL 8, NO. 1, PAGES 44–50 ORIGINAL ARTICLE Reproductive biology of mud crabs (Scylla olivacea) collected from Paikgachha, Khulna, Bangladesh Prianka Paul1 , Md. Sherazul Islam1, Sumona Khatun1, Joyanta Bir2 , Antara Ghosh3 1Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, Bangladesh 2Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh 3Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh ABSTRACT ARTICLE HISTORY Objective: This study was carried out to estimate the sex ratio, maturity size, gonadosomatic Received October 31, 2020 index (GSI), and peak breeding season of mud crabs. Revised December 11, 2020 Materials and Methods: Samples were collected randomly from the estuary and river of the study Accepted December 24, 2020 area. Sampling was carried out monthly from April to September at every full moon during one Published March 05, 2021 high tide. A total number of 240 specimens were sampled, where 53 individuals were hermaphro- KEYWORDS dite. The crabs were shifted alive to the biology and histology lab for detailed biological study. Sex was determined. Male and female sex ratio and breeding season were also investigated. Mud crabs; Scylla olivacea; maturity Results: The male:female ratio was 1:0.96 and the ovarian development was categorized into five stage; gonadosomatic index stages based on internal observations, viz. immature (stage I), underdeveloped (stage II), early developed (stage III), late developed (stage IV), and mature (stage V).
    [Show full text]
  • University of Copenhagen, Copenhagen, Denmark * These Authors Contributed Equally to This Work
    Infestation of parasitic rhizocephalan barnacles Sacculina beauforti (Cirripedia, Rhizocephala) in edible mud crab, Scylla olivacea Waiho, Khor; Fazhan, Hanafiah; Glenner, Henrik; Ikhwanuddin, Mhd Published in: PeerJ DOI: 10.7717/peerj.3419 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Waiho, K., Fazhan, H., Glenner, H., & Ikhwanuddin, M. (2017). Infestation of parasitic rhizocephalan barnacles Sacculina beauforti (Cirripedia, Rhizocephala) in edible mud crab, Scylla olivacea. PeerJ, 5, [e3419]. https://doi.org/10.7717/peerj.3419 Download date: 09. Apr. 2020 Infestation of parasitic rhizocephalan barnacles Sacculina beauforti (Cirripedia, Rhizocephala) in edible mud crab, Scylla olivacea Khor Waiho1,2,*, Hanafiah Fazhan1,2,*, Henrik Glenner3,4,* and Mhd Ikhwanuddin1 1 Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia 2 Marine Biology Institute (MBI), Shantou University, Shantou, Guangdong, China 3 Marine Biodiversity Group, Department of Biology, University of Bergen, Bergen, Norway 4 Center for Macroecology and Evolution, University of Copenhagen, Copenhagen, Denmark * These authors contributed equally to this work. ABSTRACT Screening of mud crab genus Scylla was conducted in four locations (Marudu Bay, Lundu, Taiping, Setiu) representing Malaysia. Scylla olivacea with abnormal primary and secondary sexual characters were prevalent (approximately 42.27% of the local screened S. olivacea population) in Marudu Bay, Sabah. A total of six different types of abnormalities were described. Crabs with type 1 and type 3 were immature males, type 2 and type 4 were mature males, type 5 were immature females and type 6 were mature females. The abdomen of all crabs with abnormalities were dented on both sides along the abdomen's middle line.
    [Show full text]
  • What Crab Is It?
    What crab is it? Item Type article Authors Buendia, Romeo Y. Download date 02/10/2021 05:36:48 Link to Item http://hdl.handle.net/1834/35065 aquafarm news • shrimp culture What crab is it? By R Y B uendia The mud crab Scylla spp. of the Portunidae family is widely distributed throughout the Mud crab classification Indo-west Pacific region. They are consid­ ered an important seafood item due to their First reported as Cancer serratus (Forskal 1755), Portunus tranquibaricus esteemed delicacy, medicinal and high (Fabricius 1793), andScylla olivacea (Herbst 1796), de Haan in 1833 choose the market value (Kathirvel e t al. 1997). Re­ nam e Scylla serrata after a mythical Greek sea monster Scylla who lived in a cave cent studies showed that there is a large (BOBP 1992). A century later, Estampador in 1949 identified three species and a market for mud crab worldwide (Globefish subspecies. This, however, was revised by Keenan et al. in 1998. Below is a com­ 1995; Austrade 1996). In the Philippines, parison (Fortes 1999): the Department of Science and Technol­ ogy included mud crab in its list of “Ex­ Estampador (1949a) K eenan et al. (1998) port Winners” in aquaculture (Fortes 1999). S. serrata S. olivacea Locally known as king crab or giant S. oceanica S. serrata crab, the Scylla serrata species is preferred S. serrata var. param am osain S. paramamosain by crab farmers. "They grow bigger and S. tranquebarica S. tranquebarica faster, some reaching 1 kg in just six months," says Avelino Triño, a crab expert at SEAFDEC.
    [Show full text]