Reproductive Biology of Mud Crabs (Scylla Olivacea) Collected from Paikgachha, Khulna, Bangladesh

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Biology of Mud Crabs (Scylla Olivacea) Collected from Paikgachha, Khulna, Bangladesh JOURNAL OF ADVANCED VETERINARY AND ANIMAL RESEARCH ISSN 2311-7710 (Electronic) http://doi.org/10.5455/javar.2021.h483 March 2021 A periodical of the Network for the Veterinarians of Bangladesh (BDvetNET) VOL 8, NO. 1, PAGES 44–50 ORIGINAL ARTICLE Reproductive biology of mud crabs (Scylla olivacea) collected from Paikgachha, Khulna, Bangladesh Prianka Paul1 , Md. Sherazul Islam1, Sumona Khatun1, Joyanta Bir2 , Antara Ghosh3 1Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, Bangladesh 2Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh 3Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh ABSTRACT ARTICLE HISTORY Objective: This study was carried out to estimate the sex ratio, maturity size, gonadosomatic Received October 31, 2020 index (GSI), and peak breeding season of mud crabs. Revised December 11, 2020 Materials and Methods: Samples were collected randomly from the estuary and river of the study Accepted December 24, 2020 area. Sampling was carried out monthly from April to September at every full moon during one Published March 05, 2021 high tide. A total number of 240 specimens were sampled, where 53 individuals were hermaphro- KEYWORDS dite. The crabs were shifted alive to the biology and histology lab for detailed biological study. Sex was determined. Male and female sex ratio and breeding season were also investigated. Mud crabs; Scylla olivacea; maturity Results: The male:female ratio was 1:0.96 and the ovarian development was categorized into five stage; gonadosomatic index stages based on internal observations, viz. immature (stage I), underdeveloped (stage II), early developed (stage III), late developed (stage IV), and mature (stage V). The maturity percentages were 37%, 19%, 13%, 11%, and 20%, respectively. 50% maturation was estimated at 82.36 mm inter- © The authors. This is an Open Access nal carapace width (ICW). The highest mean GSI value was 7.97 ± 3.03. The mature stage was found article distributed under the terms of in all the working periods. This shows that females have activated ovaries in all the working months, the Creative Commons Attribution 4.0 and the species are continuous breeders. A higher frequency of vitellogenic ovary and higher GSI License (http://creativecommons.org/ value were found in September. The maximum GSI value was found in the size group 70–79 mm. licenses/by/4.0) Conclusion: The study shows that the capture from the wild sources of mud crabs without any regulation can threaten the population structure. The capture of female mud crabs should be more than 82.36 mm ICW, which will help conserve and protect young crabs. Introduction Recent information from the Department of Fisheries of Bangladesh is the world’s largest deltaic country and is enriched with a large number of aquatic species. Because directly or indirectly associated with mud crab aquaculture of Bangladesh’s geographic condition, these resources pro- forBangladesh their livelihood states that .about Mud crabs300,000–400,000 (Scylla spp.) peopleare one are of [1]. The the most delicious seafood items and attain high economic value worldwide, especially[6] in tropical and subtropical vide a feasible circumstance to develop fisheries countries [7]. The growing demand for mud crabs in Asia, agriculturalfisheries sector’s GDP national[2] economic contribution is 3.69% Europe, and America has led to increased mud crab produc- exportedto the Gross mud Domestic crabs coming Product from (GDP) the mangrove and 22.60% forests to the of tion [7, . It is a euryhaline species found in coastal waters the Sundarbans . There were 60% of the country’s the mangrove8] area. Biochemically, mud crabs are enriched [4] [3]. In Bangladesh, 60% of people’s daily with a 2–30 ppt salinity and is particularly dominant ,in need for animal protein comes from supplementary fish- rounded. Bangladesh’s areas suitable coastline for coastal has 710 aquaculture km associated [5]. with with 15%–25% protein, 1% fat, and 2%–3% Scyllaminerals olivacea [8 9] 618,780 ha of mangrove tidal flats and 80,000 ha of sur that make them a popular food item globally and with high Correspondence Prianka Paul [email protected] Departmentmarket of Fisheries prices. andFor Marine these reasons,Bioscience, mud Jashore crab University of Sci- ence & Technology, Jashore, Bangladesh. How to cite: Paul P, Islam MS, Khatun S, Bir J, Ghosh A. Reproductive biology of mud crabs (Scylla olivacea) collected from Paikgachha, Khulna, Bangladesh. J Adv Vet Anim Res 2021; 8(1):44–50. http://bdvets.org/javar/ Paul et al. / J. Adv. Vet. Anim. Res., 8(1): 44–50, March 2021 44 is a highly exploited species associated with mangrove eco- - systems because of over-harvesting. In the southeast and ical parts. This study aims to identify the maturity size, southwest regions of Bangladesh, Chittagong, Cox’s Bazar, ovariancrab such development as maturity size,stages, peak gonadosomatic season, and other index, biolog and breeding season of S. olivacea. manyNoakhali, years Bhola, . Potuakhali,According toBarguna, Export PromotionKhulna, Bagerhat, Bureau Material and Methods and Satkhira,[11] mud crab aquaculture has been practiced for [10] [12] Ethical approval crabs2001 are exported, crab export from Bangladeshearned $33 that million is harvested in 2018–19, from The Research Ethics Committee of the Faculty of Biological thewhich Sundarbans was $23.28 million. in 2015–16 . Around 99% of Science and Technology, Jashore University of Science and Due to the increasing demand for mud crabs in the local Technology, Jashore, Bangladesh, had given ethical approval [13] incomeand international source [14, markets,15]. Crab most collection families and in fattening the greater are during(approval the number:present study FBST/JUST/AECA-4012/2018 followed the institutional guideDate:- alternativeKhulna area sources have chosen of income to grow and crabssustainable as their livelihood primary line,April following 02, 2018). the All international procedures andcarried national out involving guidelines. fish for the disadvantaged people in southwest Bangladesh. Despite tremendous opportunities, the mud crab trade is Study site subject to wild capture, mostly from coastal mangroves, S. olivacea crabs were collected primarily from estuaries and there is no absolute procedure for hatchery produc- tion [7]. As a result, the natural populations of mud crab (Fig. 1). For further study, mainly breeding aspects were are declining throughout southeast Asia due to over-ex- studiedand rivers in thenear Fisheries Paikgachha and upazilaMarine Biosciencein the Khulna laboratory district ploitation, loss of mangrove habitat, water pollution, and at Jashore University of Science and Technology. coastal environment degradation. Approximately, less than - Study period . For this cause, extensive management80% of the crab activities populations are speedilyare being needed caught beforefor the reach mud The study was carried out over a calendar year from April crabing the to firstsustain size its of population maturity [16] through over-exploitation. It month from the study site. to September 2018, and samples were collected each is essential to know the biological aspects about the mud Figure 1. Study area (Paikgachha upazila in Khulna district). http://bdvets.org/javar/ Paul et al. / J. Adv. Vet. Anim. Res., 8(1): 44–50, March 2021 45 Sample collection units during data processing. The processed data were then Live crabs were collected randomly from the estuary and datatransferred sheets towere a master correlated sheet with from computer which classified spreadsheets tables carried out monthly from April to September on each full towere ensure prepared data accuracy. to reveal the study’s findings. Preliminary river of Khulna and Shatkhira regions. The sampling was- Results and Discussion weremoon thenduring transported high tide. Aalive total to of the 240 Biology specimens Laboratory were sam of thepled Department where 53 individuals of Fisheries were and hermaphrodites. Marine Biosciences The crabs at Sex ratio Jashore University of Science and Technology for detailed biological study [17]. S. olivacea collected from the months of April to September Sex identification The sex ratio was analyzed basedS. onolivacea 187 specimens of - 2018. Out of 187 specimens of , 95 specimensTable 1). mine the sex. In male S. olivacea were male and 92 specimens were female. The total The abdominal flap of each crab was observed to deter The highest number of females was found in August, male:female ratio was determined to be 1:0.96 ( , the abdominal flap was narrower like a “V” shape, female crabs had a wider irregular abdomens (Fig. 2) . The female crab’s abdom- while the lowest was in September. Viswanathan et al. “U”-shaped abdomen, and hermaphrodite mud crabs had [23] recorded the sex ratio of males and females as 1:0.87, [18] and Rajendran [24] gradually the shape changes with its life stages. which is quite similar to the present study. Kannathasan inal flap is a little bit narrower at the first stage of life, and the southeast coast of the Bay of Bengal of India. Ali et al. Determination of sex ratio [25] recorded the sex ratio as 1:1.01 in which is in agreement with the present study. The ratio of males to females of the collected samples was observed the sex ratio of males and females as 1:0.94, estimated by the following formula : Maturity size Female crab (Nos) [19] The common minimum legal size used in many open Sex Ratio = Male crab (Nos) ) 27]. The current study found that thewater size mud at crabinitial fisheries maturation only for(M female) of female crabs was S. olivacea at least Where GSI = gonadosomatic index, GW = gonad weight, 50 50% maturity (M [26, ). Ali et al. [17] and TW = total body weight [17]. 50 ) to be approx- Investigating the breeding season was estimated at 82.36 mm (ICW) (Fig. 3 50 mmdetected (CW). that Similarly, the size M at first maturity (M Breeding season was determined by counting the mature wildimately Scylla 95.5 paramamosain mm CW, which was lay witnessed at a size inclass Thailand of 91–100 .
Recommended publications
  • Ovarian Development of the Mud Crab Scylla Paramamosain in a Tropical Mangrove Swamps, Thailand
    Available Online JOURNAL OF SCIENTIFIC RESEARCH Publications J. Sci. Res. 2 (2), 380-389 (2010) www.banglajol.info/index.php/JSR Ovarian Development of the Mud Crab Scylla paramamosain in a Tropical Mangrove Swamps, Thailand M. S. Islam1, K. Kodama2, and H. Kurokura3 1Department of Aquaculture and Fisheries, Jessore Science and Technology University, Jessore- 7407, Bangladesh 2Marine Science Institute, The University of Texas at Austin, Channel View Drive, Port Aransas, Texas 78373, USA 3Laboratory of Global Fisheries Science, Department of Global Agricultural Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan Received 15 October 2009, accepted in revised form 21 March 2010 Abstract The present study describes the ovarian development stages of the mud crab, Scylla paramamosain from Pak Phanang mangrove swamps, Thailand. Samples were taken from local fishermen between June 2006 and December 2007. Ovarian development was determined based on both morphological appearance and histological observation. Ovarian development was classified into five stages: proliferation (stage I), previtellogenesis (II), primary vitellogenesis (III), secondary vitellogenesis (IV) and tertiary vitellogenesis (V). The formation of vacuolated globules is the initiation of primary vitellogenesis and primary growth. The follicle cells were found around the periphery of the lobes, among the groups of oogonia and oocytes. The follicle cells were hardly visible at the secondary and tertiary vitellogenesis stages. Yolk granules occurred in the primary vitellogenesis stage and are first initiated in the inner part of the oocytes, then gradually concentrated to the periphery of the cytoplasm. The study revealed that the initiation of vitellogenesis could be identified by external observation of the ovary but could not indicate precisely.
    [Show full text]
  • Growth Analysis, Mortality and Exploitation Level of Mud Crab
    Jurnal Kelautan Tropis Maret 2020 Vol. 23(1):136-144 P-ISSN : 1410-8852 E-ISSN : 2528-3111 Growth analysis, mortality and exploitation level of Mud Crab Scylla serrata, Forskål 1775, (Malacostraca : Portunidae) in Mangkang Wetan waters, Semarang, Central Java, Indonesia Ervia Yudiati1,2*, Arumning Tias Fauziah1, Irwani1, Agus Setyawan3 and Insafitri4 1Department of Marine Sciences, Faculty of Fisheries and Marine Science, Diponegoro University Jl. Prof. Soedarto SH, Tembalang, Semarang 50275 2Laboratory of Marine Biotechnology, Diponegoro University 3Department of Fisheries and Marine Science, Faculty of Agriculture, Lampung University Jl. Soemantri Brojonegoro No 1, Bandar Lampung 35145 4Marine Science Programme Study, Faculty of Agriculture, Madura Trunojoyo University Jl. Raya Telang, Kamal, Bangkalan 69162 Email: [email protected] Abstract Awareness of Mud Crab over exploitation in Mangkang Wetan Waters has been noticed. One of the reference information is the growth study to determine the condition of the mud crab population. High demand encourages the fisherman to catch more, which leads to overexploitation in nature. The study aimed to estimate the growth, mortality, and exploitation rate of mud crabs. The 921 mud crabs samples were collected from Mangkang Wetan Waters from October 2018 to January 2019. The method used was the survey method. The crabs were taken once a week for 4 months. The width and weight of crab carapace were measured. The growth rate of S. serrata was 0.93/year (male) and 0.69/year (female). The natural mortality rate of S. serrata was 1.08/year (male) and 0.89/year (female), the mortality of catch (F) was 0.55/year (male) and 1.09/year (female).
    [Show full text]
  • University of Copenhagen, Copenhagen, Denmark * These Authors Contributed Equally to This Work
    Infestation of parasitic rhizocephalan barnacles Sacculina beauforti (Cirripedia, Rhizocephala) in edible mud crab, Scylla olivacea Waiho, Khor; Fazhan, Hanafiah; Glenner, Henrik; Ikhwanuddin, Mhd Published in: PeerJ DOI: 10.7717/peerj.3419 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Waiho, K., Fazhan, H., Glenner, H., & Ikhwanuddin, M. (2017). Infestation of parasitic rhizocephalan barnacles Sacculina beauforti (Cirripedia, Rhizocephala) in edible mud crab, Scylla olivacea. PeerJ, 5, [e3419]. https://doi.org/10.7717/peerj.3419 Download date: 09. Apr. 2020 Infestation of parasitic rhizocephalan barnacles Sacculina beauforti (Cirripedia, Rhizocephala) in edible mud crab, Scylla olivacea Khor Waiho1,2,*, Hanafiah Fazhan1,2,*, Henrik Glenner3,4,* and Mhd Ikhwanuddin1 1 Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia 2 Marine Biology Institute (MBI), Shantou University, Shantou, Guangdong, China 3 Marine Biodiversity Group, Department of Biology, University of Bergen, Bergen, Norway 4 Center for Macroecology and Evolution, University of Copenhagen, Copenhagen, Denmark * These authors contributed equally to this work. ABSTRACT Screening of mud crab genus Scylla was conducted in four locations (Marudu Bay, Lundu, Taiping, Setiu) representing Malaysia. Scylla olivacea with abnormal primary and secondary sexual characters were prevalent (approximately 42.27% of the local screened S. olivacea population) in Marudu Bay, Sabah. A total of six different types of abnormalities were described. Crabs with type 1 and type 3 were immature males, type 2 and type 4 were mature males, type 5 were immature females and type 6 were mature females. The abdomen of all crabs with abnormalities were dented on both sides along the abdomen's middle line.
    [Show full text]
  • What Crab Is It?
    What crab is it? Item Type article Authors Buendia, Romeo Y. Download date 02/10/2021 05:36:48 Link to Item http://hdl.handle.net/1834/35065 aquafarm news • shrimp culture What crab is it? By R Y B uendia The mud crab Scylla spp. of the Portunidae family is widely distributed throughout the Mud crab classification Indo-west Pacific region. They are consid­ ered an important seafood item due to their First reported as Cancer serratus (Forskal 1755), Portunus tranquibaricus esteemed delicacy, medicinal and high (Fabricius 1793), andScylla olivacea (Herbst 1796), de Haan in 1833 choose the market value (Kathirvel e t al. 1997). Re­ nam e Scylla serrata after a mythical Greek sea monster Scylla who lived in a cave cent studies showed that there is a large (BOBP 1992). A century later, Estampador in 1949 identified three species and a market for mud crab worldwide (Globefish subspecies. This, however, was revised by Keenan et al. in 1998. Below is a com­ 1995; Austrade 1996). In the Philippines, parison (Fortes 1999): the Department of Science and Technol­ ogy included mud crab in its list of “Ex­ Estampador (1949a) K eenan et al. (1998) port Winners” in aquaculture (Fortes 1999). S. serrata S. olivacea Locally known as king crab or giant S. oceanica S. serrata crab, the Scylla serrata species is preferred S. serrata var. param am osain S. paramamosain by crab farmers. "They grow bigger and S. tranquebarica S. tranquebarica faster, some reaching 1 kg in just six months," says Avelino Triño, a crab expert at SEAFDEC.
    [Show full text]
  • Survival, Growth, and Nutrient Content of the Mud Crabs (Scylla Olivacea) Which Cultivated in Mangrove Area with Different Types of Feed 1Muhammad Y
    Physiological response: survival, growth, and nutrient content of the mud crabs (Scylla olivacea) which cultivated in mangrove area with different types of feed 1Muhammad Y. Karim, 1Hasni Y. Azis, 2Muslimin, 3Akbar M. Tahya 1 Department of Aquaculture, Faculty of Marine Science and Fishery, Hasanuddin University, Makassar, South Sulawesi, Indonesia; 2 Pangkep State Polytechnic for Agriculture, Pangkep, South Sulawesi, Indonesia; 3 Balik Diwa Marine Technology University, Makassar, South Sulawesi, Indonesia. Corresponding author: M. Y. Karim, [email protected] Abstract. Cultivation of mangrove crabs for fattening can be carried out in mangrove area or known as a silvofishery system. This study aimed to determine the best types of feed for mangrove crab (Scylla olivacea) fattening which cultivated in the mangrove area. The research was conducted in the mangrove area of Pangkep Regency, South Sulawesi Province, Indonesia. The experimental animal used was male mangrove crabs (S. olivacea) with a weight of 250±10 g. The container used was a confinement that made from bamboo with length, width, and height of 1.0 x 1.0 x 1.0 m respectively, and placed in the mangrove area. Four types of feed used referred to treatment with a dose of 10% of crab’s body weight. The frequency of feeding was twice per day namely in the morning by 30% and in the afternoon 70%. The study used a complete randomized design (CRD) consisting of 4 treatments and 3 replications. The different types of feed used were: (A) trash fish, (B) mujair fish, (C) oysters, and (D) rice field snails. The data were analyzed using variance analysis (ANOVA) and the further test was performed using W- Tuckey test.
    [Show full text]
  • Scylla Olivacea (Herbst, 1796)
    Kasetsart J. (Nat. Sci.) 40 : 507 - 516 (2006) Morphological Study in Zoeal Stages of Mud Crabs: Scylla olivacea (Herbst, 1796) Pattanee Jantrarotai1*, Kannika Sirisintruwanich1, Suparp Pripanapong2 and Chuchart Chayarat3 ABSTRACT The larva of mud crab, Scylla olivacea consisted of five zoeal stages. These zoeal stages were illustrated on the basis of laboratory culture from three ovigerous females. The appendage such as mandible, maxillule, maxilla including antennule, antenna, maxilliped and telson were described showing the difference among the zoeal stages. In the first zoeae, the presence of the sessile eyes and 3 pairs of setae at the telson were used to distinguish from the other zoeal stages. From the second through the fifth zoeal stages, the number of setation on maxillule, maxilla, first and second maxilliped were used to discriminate among these zoeal stages. The more advanced zoeal stages, the more number of setation on these appendages. From the second through the fifth zoeae, the setae on basal endite of maxillule and maxilla were 8, 9, 12, 14 and 9, 10, 12, 16 setae, respectively. The setae on the exopod of the first and second maxilliped were 6, 8, 10, 12-15 and 6, 9, 11-12, 14-16 setae, respectively. For the fifth zoeae, the presence of biramous pleopod on the second to the fifth segment was the key character to distinguish from the other zoeal stages. The zoeal morphology of Scylla olivacea from this study were compared with those of Scylla serrata. Key words: Scylla olivacea, zoea, mud crab, morphology, identification INTRODUCTION and Andamans Sea (Quinitio, 2003). However, S.
    [Show full text]
  • Scylla Olivacea (Dcapoda, Bachyura, Prtunidae) from Goa, Central West Coast of India – a Comparative Diagnosis
    Indian Journal of Geo-Marine Sciences Vol. 42(1), February 2013, pp. 82-89 A new record of Scylla olivacea (Dcapoda, Bachyura, Prtunidae) from Goa, central west coast of India – A comparative diagnosis Vinay P. Padate1, Chandrashekher U. Rivonker 1* & A.C. Anil2 1Department of Marine Sciences, Goa University, Taleigao Plateau, Goa 403 206, India 2National Institute of Oceanography, Dona Paula, Goa 403 004, India *[E-mail: [email protected]] Received 10 June 2011; revised 2 August 2012 Taxonomic studies on mud crabs (Scylla) reveal considerable ambiguity in species identification owing to overlap of morphological characters. Present study consists a new record of S. olivacea along with a comparative diagnosis with S. serrata from the region. Further, minor phenotypic variations in the present S. olivacea specimens could be attributed to geographical isolation from existing populations. [Keywords: New record, Scylla, morphometry, Goa, India] Introduction Mandovi–Zuari estuarine complex15. Mangrove Mud crabs of the genus Scylla de Haan, 1833 habitats function as nursery grounds for juveniles of (Decapoda, Brachyura, Portunidae) are common mud crabs, and provide food and shelter for adult inhabitants of mangrove–vegetated estuaries stages of mud crabs16,17. Sixty nine trawls were throughout the Indo–Pacific region1. Taxonomic undertaken in the present study (Fig. 1) to assess the studies2,3 revealed ambiguity in the taxonomy and diversity and total community structure of demersal identification of Scylla species. Keenan et al.3 fish fauna. Nine trawls were taken from estuaries in employed twenty three morphological parameters and May and December, 2005, September and October, twenty seven ratios to identify four distinct species 2006 and May, September & December of 2007.
    [Show full text]
  • Crablet of Mangrove Crab, Scylla Olivacea Rearing at the Different
    e Rese tur arc ul h c & a u D q e A v e f l o o Gun and Parenrengi, J Aquac Res Development 2014, 5:5 l p a m n Journal of Aquaculture r e u n o t DOI: 10.4172/2155-9546.1000255 J ISSN: 2155-9546 Research & Development Research Article OpenOpen Access Access Crablet of Mangrove Crab, Scylla olivacea Rearing at the Different Salinity Regimes Gunarto and Andi Parenrengi Research and Development for Coastal Aquaculture, Maros, South Sulawesi, Indonesia Abstract High canibalisms in crablet of mangrove crab, S. olivacea stage was resulted lower juvenile crab production. The objectives of the research is to know the efectiveness of crablet rearing at the different salinity regimes in floating plastic glass individually to minimize canibalism. Research was conducted at mud crab hatcheri Marana Station of RICA Maros. Day-7 crablet produced from a hatchery, and then reared individually in plastic glass provided with small holes in glass to enter water inside the glass. Crablet were stocked inside of the plastic glass individually, then it sets in a floating cage constructed with bamboo fenced, where a piece of styrofoam as they float in surface water in the aquarium. Nine aquariums each size 29×60×34.5 cm randomly was filled 30 L saline water with different salinity regimes, i. e. (A) 5 ppt, (B) 10 ppt, (C) 20 ppt, (D) 30 ppt. Each treatment in the three replications. Monitoring was conducted on growth increment (total weight and carapace width) and survival rate of crablet during one month rearing.
    [Show full text]
  • Capture-Based Aquaculture of Mud Crabs (Scylla Spp.)
    255 Capture-based aquaculture of mud crabs (Scylla spp.) Colin Shelley YH & CC Shelley Pty. Ltd Brisbane, Australia E-mail: [email protected] Shelley, C. 2008. Capture-based aquaculture of mud crabs (Scylla spp.). In A. Lovatelli and P.F. Holthus (eds). Capture-based aquaculture. Global overview. FAO Fisheries Technical Paper. No. 508. Rome, FAO. pp. 255–269. SUMMARY There is limited understanding of wild mud crab resources and how best to manage them in many countries, particularly where fisheries management resources and enforcement capabilities are limited. The growth of mud crab aquaculture is likely to lead to changes to the ecological, socioeconomic and livelihoods currently associated with mud crab fisheries. This paper provides an overview of the issues, needs, opportunities and risks in trying to maintain sustainable mud crab fisheries, whilst supporting the ecologically sustainable development of mud crab aquaculture. The uncontrolled fishing of juvenile crabs for farming in some countries has led to recruitment overfishing, even though mud crabs are very fecund and have extended spawning seasons over much of their range. Conserving of mud crabs primary habitat, mangrove forests, is critical to supporting their populations, as is the regular monitoring of stocks to guard against their over-fishing. Environmentally sustainable farming of mud crabs in mangrove pens is seen as an important tool in both conserving mangrove forests, and expanding farm production areas. Significant growth of mud crab aquaculture is only going to occur from hatchery sourced seed-stock, as wild populations are at either at their limit or over-fished in many countries. Such growth will also be dependent on the development of formulated diets to reduce mud crab farming’s current dependence on trash-fish, a resource which is already under pressure from other types of aquaculture.
    [Show full text]
  • Classification, Biodiversity and Conservation of Marine Commercial 11 Crabs of India Josileen Jose Crustacean Fisheries Division
    Classification, Biodiversity and Conservation of Marine Commercial 11 Crabs of India Josileen Jose Crustacean Fisheries Division 9 One of the best known and most intensely studied groups is the true crabs of the infraorder Brachyura. Brachyuran crabs belong to the Order Decapoda, the most diverse group of crustaceans alive today (Ng et al., 2008). The known size of crabs now ranges from a maximum leg span of approximately 4 m in the giant Japanese spider crab Macrocheira kaempferi and a maximum carapace width of 46 cm in the giant Tasmanian crab Pseudocarcinus gigas to a minimum of 1.5 mm across the carapace for a mature ovigerous female pinnotherid, Nannotheres moorei, the smallest known species of crab. Every living thing is classified into one of the three domains. Archaea, Bacteria, and Eukarya are the three domains. The eight levels of classification are domain, kingdom, phylum, class, order, family, genus, and species. True crabs are classified as follows: Phylum: Arthropoda Subphylum: Crustacea Class: Malacostraca Order: Decapoda Suborder: Pleocyemata Infraorder: Brachyura Linnaeus, 1758 Training Manual on Species Identification The basic crab design consists of an expanded carapace (formed by a fusion of the head and some thoracic somites), and a strongly reduced abdomen that is tightly tucked underneath the thorax. In addition, the first pereiopods of brachyurans are fully chelate, and the walking legs are placed at the sides of the body. True brachyuran crabs are often confused with hermit and porcelain crabs belonging to the infraorder Anomura. In general, most anomuran crabs have only three pairs of walking legs clearly visible, with the last pair being very small and normally positioned under the abdomen and not visible externally.
    [Show full text]
  • Journal of Environment and Aquatic Resources. 5: 1-9 (2020)
    1 Journal of Environment and Aquatic Resources. 5: 61-82 (2020) doi: 10.48031/msunjear.2020.05.05 An Annotated Checklist to the Commonly Harvested Crabs (Crustacea: Decapoda) from Marine and Brackish Water Ecosystems of Palawan, Philippines Billie P. Subang, Jr.1*, Riza G. San Juan2, Grecel Fatima C. Ventura1 and Nonillon M. Aspe3 1Provincial Fishery Office, Bureau of Fisheries and Aquatic Resources, Puerto Princesa City, Palawan, Philippines 2Binduyan Fisheries Research Station, Western Philippines University, Puerto Princesa City, Palawan, Philippines 3College of Science and Environment, Mindanao State University at Naawan, Naawan, Misamis Oriental, Philippines *corresponding author: [email protected] ABSTRACT Despite the abundance of commercially important and edible crabs in Palawan, there is no consolidated information on their taxonomy, distribution, and ecology that will serve as baseline data for management and conservation of these decapod species. Thus, this paper provides a consolidated information on the commonly harvested crab species of the marine and brackishwater ecosystems of Palawan. Eighteen species belonging to seven families, namely Coenobitidae, Raninidae, Matutidae, Portunidae, Ocypodidae, Varunidae, and Gecarcinidae were listed. Majority of these crabs are widely distributed in the province. Scylla and Portunus are two of the genera that have high commercial value, marketed both as local and export commodities. Among the species listed, only Birgus latro is considered as threatened species while Scylla spp. have specific size restriction if marketed for export. Other edible crab species are allowed for collection with certain regulatory measures. It is vital to take necessary measures to protect these species including their habitats from overexploitation as these could be source of livelihood commodity and tourist attraction in the future.
    [Show full text]
  • Taxonomic Account of Genus Scylla (De Haan, 1833) from Gujarat State, India with Two New Records of Species
    Arthropods, 2013, 2(4): 159-171 Article Taxonomic account of genus Scylla (de Haan, 1833) from Gujarat State, India with two new records of species J. N. Trivedi, K. D. Vachhrajani Marine Biodiversity and Ecology lab, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, India E-mail: [email protected] Received 1 August 2013; Accepted 5 September 2013; Published online 1 December 2013 Abstract The present study describes the taxonomic account of genus Scylla from Gujarat state, India. Specimens of crab were collected from 11 different marine sites/ habitats along the coastal region of the state. Of the several specimens examined on site, 30 morphologically distinct samples were selected for the study, and total 47 different morphological characters were measured. Three different species of genus Scylla were identified viz. Scylla serrata, Scylla tranquebarica and Scylla Olivacea. We report Scylla tranquebarica and Scylla Olivacea for the first time from the state. In general, S. serrata is reported as a dominant species with wide spread distribution while rest of the species show patchy distribution. Keywords Scylla; Gujarat; taxonomy; morphology; marine habitat. Arthropods ISSN 2224­4255 URL: http://www.iaees.org/publications/journals/arthropods/online­version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E­mail: [email protected] Editor­in­Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences 1 Introduction Mud crabs of genus Scylla de Haan, (1883) (Decapoda, Brachyura, Portunidae) are a very important part of marine fisheries resources in many countries for aquaculture purposes (Fukunga and Fukumoto, 1960; Cowan, 1984; Oshiro, 1988).
    [Show full text]