Mammalian Herbivores As Drivers of Community Assembly

Total Page:16

File Type:pdf, Size:1020Kb

Mammalian Herbivores As Drivers of Community Assembly Mammalian Herbivores as Drivers of Community Assembly by Caprice M. Disbrow A thesis submitted to Sonoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Committee members: Dr. Daniel E. Crocker, Chair Dr. Lisa Bentley Dr. J. Hall Cushman Dr. Marko J. Spasojevic April 20, 2018 i Copyright 2018 By Caprice M. Disbrow ii Authorization for Reproduction of Master’s Thesis Permission to reproduce parts of this thesis must be obtained from me. DATE: April 20, 2018 NAME: Caprice M. Disbrow iii Mammalian Herbivores as Drivers of Community Assembly Thesis by Caprice M. Disbrow ABSTRACT Despite growing interest in trait-based approaches to community assembly, little attention has been given to mammalian herbivores and their effects on trait distribution patterns. Large herbivores can play a key role in structuring communities, affecting community assembly though their role as consumers, depositors of metabolic wastes and as agents of disturbance. This study analyzes the effect of a native, reintroduced herbivore on taxonomic and functional trait distributions using a 20-year-old exclosure experiment, stratified across a heterogeneous coastal ecosystem. I found that herbivores can alter the taxonomic diversity, functional composition (CWMs) and functional diversity (FDis) of plant communities, and that their influence may be mediated by the local environmental conditions (soil formation). Importantly, we found significant changes in functional diversity due to elk shifting the dominance of plant species across the landscape even though elk had no influence on species richness. Specifically, I found that elk altered the functional diversity of these plant communities by shifting functional strategies from a stress avoidant strategy to a more resource acquisitive strategy and by deterministically changing functional diversity patterns. Assessing the degree to which herbivores drive community assembly and functional traits has important implications: it provides insights into the mechanisms driving changes in plant communities and has the potential to allow perturbations in communities to be detected and mitigated. Keywords: functional traits, plant community ecology, native ungulate herbivores, environmental heterogeneity and community assembly. MS Program: Biology Sonoma State University Date: April 20, 2018 iv Acknowledgements I am indebted to the following individuals for assistance in the lab and field: Cody Ender, Eric Cecil, Melissa Crews, Vanessa Dodge, Emily Fredrickson, Brieanne Forbes, Megan Gaitan, Andrew Griffin, Caitlin Harvey, Elias Lopez, Shannon McEntee, Danielle Wegner and Keith Wellstone. Thanks to Tim Bernot at Point Reyes National Seashore for his help in maintaining the exclosures. David Press and Brent Johnson provided invaluable logistical support throughout the entire project. Special thanks go to Dan Crocker for his guidance with our statistical analyses and to Lisa Bentley for helpful discussions and comments on early drafts of this thesis. This project has been generously supported by grants from the California Native Plant Society Milo Baker Chapter, Northern California Botanists and Sonoma State University. v Table of Contents Table of Contents Introduction ...................................................................................................................................... 1 Methods ........................................................................................................................................... 4 Study System ............................................................................................................................... 4 Experimental Design .................................................................................................................... 6 Vegetation Sampling .................................................................................................................... 7 Trait Selection and Measurement ................................................................................................ 7 Diversity Indices .......................................................................................................................... 9 Statistical Analyses .................................................................................................................... 10 Results ............................................................................................................................................ 11 Taxonomic Diversity ................................................................................................................. 11 Community Weighted Mean ...................................................................................................... 11 Functional Diversity................................................................................................................... 12 Discussion ...................................................................................................................................... 14 Changes in Taxonomic Diversity ............................................................................................... 14 Changes in Community-weighted Traits ................................................................................... 16 Changes in Functional Diversity ................................................................................................ 18 Effects on Native and Exotic Species ........................................................................................ 19 Simultaneous Processes and Inferred Mechanisms ................................................................... 20 Conclusions .................................................................................................................................... 20 Literature Cited .............................................................................................................................. 22 vi List of Tables Table 1. Results from ANOVA models evaluating the effects of tule elk and soil formation (SF) on (a) plant species diversity, (b) plant species evenness, (c) plant species richness, (d) percent cover of native species, and (e) percent cover of exotic species. Bold text indicates significant results and italicized text indicates marginally significant results. ......................... 32 Table 2. Results from ANOVA models evaluating the effects of tule elk and soil formation (SF) on (a) CWM SSD (log transformed), (b) CWM height (log transformed). (c) CWM SLA (log transformed), (d) CWM LA (log transformed), and (e) CWM LDMC (log transformed). Bold text indicates significant results and italicized text indicates marginally significant results. ..................................................................................................... 33 Table 3. Results from ANOVA models evaluating the effects of tule elk and soil formation (SF) on (a) FDis height, (b) FDis leaf dry matter content (LDMC) (log transformed (c) functional dispersion (FDis) stem- specific density (SSD) (log transformed), (d) FDis leaf area (LA) (log transformed), (e) FDis specific leaf area (SLA), and (f) multivariate FDis. Bold text indicates significant results and italicized text indicates marginally significant results. ................................................................................... 34 vii List of Figures Figure 1. Mean (+/- 1 S.E.) plant species diversity H’(a) , plant species evenness (b) and plant species richness (c) as a function of elk (present or excluded) and soil formation (ordered by soil texture from finest to coarsest: Kehoe variant 1, Kehoe variant 2, mixed Kehoe variant 1/Sirdrak Sand, and Sirdrak Sand). ...........................................................................................36 Figure 2. Mean (+/- 1 S.E.) percent cover of native (a) and exotic (b) plant species as a function of elk and soil formation (ordered by soil texture from finest to coarsest: Kehoe variant 1, Kehoe variant 2, mixed Kehoe variant 1/Sirdrak Sand, and Sirdrak Sand). ...................................................37 Figure 3. Mean (+/- 1 S.E.) community weighted mean (CWM) of stem- specific density (SSD) (a), community weighted mean of specific leaf area (SLA) (b), community weighted mean of height (c), community weighted mean of leaf area (LA) (d) and community weighted mean of leaf dry matter content (LDMC) (e) as a function of elk and soil formation (ordered by soil texture from finest to coarsest: Kehoe variant 1, Kehoe variant 2, mixed Kehoe variant 1/Sirdrak Sand, and Sirdrak Sand). ........................38 Figure 4. Mean (+/- 1 S.E.) functional dispersion (FDis) of height (a), functional dispersion of leaf dry matter content (LDMC) (b), functional dispersion of stem-specific density (SSD) (c), functional dispersion of leaf area (LA) (d), functional dispersion of specific leaf area (SLA) (e) and multivariate functional dispersion (f) as a function of elk and soil formation (ordered by soil texture from finest to coarsest: Kehoe variant 1, Kehoe variant 2, mixed Kehoe variant 1/Sirdrak Sand, and Sirdrak Sand). Letters above bars correspond to the results from Tukey multiple comparison tests. .......................................................................................................39 viii 1 Introduction Understanding the factors that structure communities is a long-standing goal in ecology, with important implications for restoration and conservation.
Recommended publications
  • Limiting Similarity? the Ecological Dynamics of Natural Selection Among Resources and Consumers Caused by Both Apparent and Resource Competition
    vol. 193, no. 4 the american naturalist april 2019 E-Article Limiting Similarity? The Ecological Dynamics of Natural Selection among Resources and Consumers Caused by Both Apparent and Resource Competition Mark A. McPeek* Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 Submitted December 31, 2017; Accepted September 8, 2018; Electronically published January 17, 2019 Online enhancements: appendix, MATLAB code, video. abstract: 1959). Most explorations of this idea have focused on one Much of ecological theory presumes that natural selection — should foster species coexistence by phenotypically differentiating particular type of species interaction competition among competitors so that the stability of the community is increased, but consumers for shared resources. Resource competition is an whether this will actually occur is a question of the ecological dynamics indirect interaction between consumers that is mediated by of natural selection. I develop an evolutionary model of consumer- their effects on and responses to shared resources (Levene resource interactions based on MacArthur’s and Tilman’s classic works, 1976; Tilman 1980, 1982, 1987). If multiple resource species including both resource and apparent competition, to explore what are involved, the indirect interaction of apparent competition fosters or retards the differentiation of resources and their consumers. Analyses of this model predict that consumers will differentiate only between resources also occurs and is mediated by their effects on specific ranges of environmental gradients (e.g., greater productivity, on and responses to the consumers (Holt 1977). However, weaker stressors, lower structural complexity), and where it occurs, the MacArthur’s original exploration of these issues recast all of magnitude of differentiation also depends on gradient position.
    [Show full text]
  • Broadly Inflicted Stressors Can Cause Ecosystem Thinning
    Theoretical Ecology https://doi.org/10.1007/s12080-019-0417-4 ORIGINAL PAPER Broadly inflicted stressors can cause ecosystem thinning Matthew G. Burgess1,2 & Alexa Fredston-Hermann3 & David Tilman3,4 & Michel Loreau5 & Steven D. Gaines3,6 Received: 11 July 2018 /Accepted: 12 February 2019 # Springer Nature B.V. 2019 Abstract Many anthropogenic stressors broadly inflict mortality or reduce fecundity, including habitat destruction, pollution, climate change, invasive species, and multispecies harvesting. Here, we show—in four analytical models of interspecies competition—that broadly inflicted stressors disproportionately cause competitive exclusions within groups of ecologically similar species. As a result, we predict that ecosystems become progressively thinner—that is, they have progressively less functional redundancy—as broadly inflicted stressors become progressively more intense. This may negatively affect the temporal stability of ecosystem functions, but it also buffers ecosystem productivity against stress by favoring species less sensitive to the stressors. Our main result follows from the weak limiting similarity principle: species with more similar ecological niches compete more strongly, and their coexistence can be upset by smaller perturbations. We show that stressors can cause indirect competitive exclusions at much lower stressor intensity than needed to directly cause species extinction, consistent with the finding of empirical studies that species interactions are often the proximal drivers of local extinctions. The excluded species are more sensitive to the stressor relative to their ecologically similar competitors. Moreover, broadly inflicted stressors may cause hydra effects—where higher stressor intensity results in higher abundance for a species with lower sensitivity to the stressor than its competitors. Correlations between stressor impacts and ecological niches reduce the potential for indirect competitive exclusions, but they consequently also reduce the buffering effect of ecosystem thinning on ecosystem productivity.
    [Show full text]
  • Download Publication
    Caesar Kleberg A Publication of the Caesar Kleberg Wildlife ResearchTracks Institute CAESAR KLEBERG WILDLIFE RESEARCH INSTITUTE TEXAS A&M UNIVERSITY - KINGSVILLE 1 Caesar Kleberg Volume 5 | Issue 2 | Fall 2020 In This Issue 3 From the Director Tracks 4 Restoration: Just What Do You Mean By That? 8 The Unique Nature of Colonial-nesting Waterbirds 12 Texas Horned Lizard 8 Detectives Learn More About CKWRI The Caesar Kleberg Wildlife Research Institute at 16 Donor Spotlight: Texas A&M University-Kingsville is a Master’s and Mike Reynolds Ph.D. Program and is the leading wildlife research organization in Texas and one of the finest in the nation. Established in 1981 by a grant from the Caesar Kleberg 20 Fawn Survival and Foundation for Wildlife Conservation, its mission is Recruitment in South Texas to provide science-based information for enhancing the conservation and management of Texas wildlife. 23 Alumni Spotlight: J. Dale James Visit our Website www.ckwri.tamuk.edu Caesar Kleberg Wildlife Research Institute Texas A&M University-Kingsville 700 University Blvd., MSC 218 Kingsville, Texas 78363 4 (361) 593-3922 Follow us! Facebook: @CKWRI Twitter: @CKWRI Instagram: ckwri_official Cover Photo by iStock 2 Magazine Design and Layout by Gina Cavazos Caesar Kleberg From the Director The overarching mission of the Caesar Kleberg Wildlife Research Institute is to promote wildlife conservation. We do this primarily by conducting research and producing knowledge to benefit wildlife managers and land stewards. We also promote wildlife conservation by training the next generation of wildlife biologists Tracks through our graduate education programs. However, producing knowledge and trained professionals is not enough.
    [Show full text]
  • Resource Partitioning Among African Savanna Herbivores in North Cameroon: the Importance of Diet Composition, Food Quality and Body Mass
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wageningen University & Research Publications Journal of Tropical Ecology (2011) 27:503–513. © Cambridge University Press 2011 doi:10.1017/S0266467411000307 Resource partitioning among African savanna herbivores in North Cameroon: the importance of diet composition, food quality and body mass H. H. de Iongh∗,1,C.B.deJong†, J. van Goethem∗,E.Klop∗, A. M. H. Brunsting†, P. E. Loth∗ and H. H. T. Prins† ∗ Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands † Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands (Accepted 20 June 2011) Abstract: The relationship between herbivore diet quality, and diet composition (the range of food plants consumed) and body mass on resource partitioning of herbivores remains the subject of an ongoing scientific debate. In this study we investigated the importance of diet composition and diet quality on resource partitioning among eight species of savanna herbivore in north Cameroon, with different body mass. Dung samples of four to seven wild herbivore and one domesticated species were collected in the field during the dry and wet period. Diet composition was based on microhistological examination of herbivore droppings, epidermis fragments were identified to genus or family level. In addition, the quality of the faecal droppings was determined in terms of phosphorus, nitrogen and fibre concentrations. The results showed that there was no significant correlation between body mass and (differences in) diet composition for wet and dry season. When all species are considered, only significant relationships are found by the Spearman rank correlation analyses during the wet season between body mass and phosphorus and nitrogen, but this relationship did not exist during the dry season.
    [Show full text]
  • Competitive Exclusion and Limiting Similarity: a Unified Theory
    International Institute for Tel: +43 2236 807 342 Applied Systems Analysis Fax: +43 2236 71313 Schlossplatz 1 E-mail: [email protected] A-2361 Laxenburg, Austria Web: www.iiasa.ac.at Interim Report IR-05-040 Competitive Exclusion and Limiting Similarity: A Unified Theory Géza Meszéna ([email protected]) Mats Gyllenberg ([email protected]) Liz Pásztor ([email protected]) Johan A. J. Metz ([email protected]) Approved by Ulf Dieckmann Program Leader, ADN August 2005 Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 101 The Adaptive Dynamics Network at IIASA fosters the develop- ment of new mathematical and conceptual techniques for under- standing the evolution of complex adaptive systems. Focusing on these long-term implications of adaptive processes in systems of limited growth, the Adaptive Dynamics Network brings together scientists and institutions from around the world with IIASA acting as the central node. Scientific progress within the network is collected in the IIASA ADN Studies in Adaptive Dynamics series. No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G: The Dy- Heerwaarden JS: Adaptive Dynamics: A Geometrical Study namics of Adaptation and Evolutionary Branching. IIASA of the Consequences of Nearly Faithful Reproduction. IIASA Working Paper WP-96-077 (1996). Physical Review Letters Working Paper WP-95-099 (1995).
    [Show full text]
  • History of Insular Ecology and Biogeography - Harold Heatwole
    OCEANS AND AQUATIC ECOSYSTEMS- Vol. II - History of Insular Ecology and Biogeography - Harold Heatwole HISTORY OF INSULAR ECOLOGY AND BIOGEOGRAPHY Harold Heatwole North Carolina State University, Raleigh, North Carolina, USA Keywords: islands; insular dynamics; One Tree Island; Aristotle; Darwin; Wallace; equilibrium theory; biogeography; immigration; extinction; species-turnover; stochasticism; determinism; null hypotheses; trophic structure; transfer organisms; assembly rules; energetics. Contents 1. Ancient and Medieval Concepts: the Birth of Insular Biogeography 2. Darwin and Wallace: the Dawn of the Modern Era 3. Genetics and Insular Biogeography 4. MacArthur and Wilson: the Equilibrium Theory of Insular Biogeography 5. Documenting and Testing the Equilibrium Theory 6. Modifying the Equilibrium Theory 7. Determinism versus Stochasticism in Insular Communities 8. Insular Energetics and Trophic Structure Stability Glossary Bibliography Biographical Sketch Summary In ancient times, belief in spontaneous generation and divine creation dominated thinking about insular biotas. Weaknesses in these theories let to questioning of those ideas, first by clergy and later by scientists, culminating in Darwin's and Wallace's postulation of evolution through natural selection. MacArthur and Wilson presented a dynamic equilibrium model of insular ecology and biogeography that represented the number of species on an island as an equilibrium between immigration and extinction rates, as influenced by insular sizes and distances from mainlands. This model has been tested and found generally true but requiring minor modifications, such as accounting for disturbancesUNESCO affecting the equilibrium nu–mber. EOLSS There has been basic controversy as to whether insular biotas reflect deterministic or stochastic processes. It is likely that neither extreme SAMPLEis completely correct but rather CHAPTERS the two kinds of processes interact.
    [Show full text]
  • Chapter 11A Structuring Herbivore Communities
    CHAPTER 11A STRUCTURING HERBIVORE COMMUNITIES The role of habitat and diet SIPKE E. VAN WIEREN AND FRANK VAN LANGEVELDE Resource Ecology Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands E-mail: [email protected] Abstract. This chapter tries to address the question “Why are there so many species?” with a focus on the diversity of herbivore species. We review several mechanisms of resource specialisation between herbivore species that allow coexistence, ranging from diet specialisation, habitat selection to spatial heterogeneity in resources. We use the ungulate community in Kruger National Park to illustrate approaches in niche differentiation. The habitat overlap of the ungulate species is analysed, continued with the overlap in diet and the spatial heterogeneity in resources. This focus on the constraints on species’ exclusive resources is a useful tool for understanding how competitive interactions structure communities and limit species diversity. In explaining community structure of mobile animals, we argue that the existence of exclusive resources governed by spatial heterogeneity plays an important role. Trade- offs between food availability and quality, food availability and predation risk, or food and abiotic conditions (different habitat types) may constrain competitive interactions among mobile animals and allow the existence of exclusive resources. We propose that body mass of the animals considered is crucial here as animals with different body mass use different resources and perceive spatial heterogeneity in resources differently. A functional explanation of the role of body mass in the structuring of communities is still lacking while the study of how much dissimilarity is minimally needed to permit coexistence between strongly overlapping species is still in its infancy.
    [Show full text]
  • Society for Ecological Restoration Intern a T I O N
    society for ecological restoration intern a t i o n a l The SER International Primer o n Ecological Restoration Society for Ecological Restoration International Science & Policy Working Group (Version 2: October, 2004)* Section 1: Overview . 1 Section 2: Definition of Ecological Restoration . 3 Section 3: Attributes of Restored Ecosystems . 3 Section 4: Explanations of Terms . 4 Section 5: Reference Ecosystems . 8 Section 6: Exotic Species . 9 Section 7: Monitoring and Evaluation . 10 Section 8: Restoration Planning. 11 Section 9: Relationship Between Restoration Practice and Restoration Ecology . 11 Section 10: Relationship of Restoration to Other Activities . 12 Section 11: Integration of Ecological Restoration into a Larger Program. 13 This document should be cited as: Society for Ecological Restoration International Science & Policy Working Group. 2004. The SER International Primer on Ecological Restoration. www.ser.org & Tucson: Society for Ecological Restoration International. The principal authors of this Primer were André Clewell (Quincy, FL USA), James Aronson (Montpellier, France), and Keith Winterhalder (Sudbury, ON Canada). Clewell initially proposed the Primer and wrote its first draft. Aronson and Winterhalder, in collaboration with Clewell, revised the Primer into its present form. Winterhalder, in his capacity as Chairperson of SER’s Science & Policy Working Group, coordinated this effort and invited other Working Group members to participate. Eric Higgs (Victoria, BC Canada) crafted the Overview sec- tion. Dennis Martinez (Douglas City, CA USA) contributed a position paper that became the basis for text pertaining to cultural ecosystems. Other Working Group members provided critiques and suggestions as the work progressed, including Richard Hobbs (Murdoch, WA Australia), James Harris (London, UK), Carolina Murcia (Cali, Colombia), and John Rieger (San Diego, CA USA).
    [Show full text]
  • Assembly Rules for Functional Groups of North American Shrews: Effects of Geographic Range and Habitat Partitioning
    OIKOS 107: 141Á/147, 2004 Assembly rules for functional groups of North American shrews: effects of geographic range and habitat partitioning Timothy S. McCay, Matthew J. Lovallo, W. Mark Ford and Michael A. Menzel McCay, T. S., Lovallo, M. J., Ford, W. M. and Menzel, M. A. 2004. Assembly rules for functional groups of North American shrews: effects of geographic range and habitat partitioning. Á/ Oikos 107: 141Á/147. We examined the representation of shrew species within assemblages at 197 sites in the southern Appalachian Mountains, USA. Assemblages were classified according to representation of functional groups, including fossorial, small epigeal, and large epigeal. Average (9/SD) species richness was 2.99/1.0 and assemblages averaged 0.8 species in the fossorial and large epigeal groups and 1.3 species in the small epigeal group. Compliance with Fox’s assembly rule was evaluated by dividing sites into those likely under the rule (favored) and those unlikely under the rule. The number of favored sites was compared to expected numbers of favored sites under three null models of community development, which variously incorporated observed characteristics of species in the regional pool. Number of favored sites (175 [89%]) exceeded the number found in each of 25,000 sets of assemblages simulated (PB/0.00004) using algorithms that incorporated the observed species richness of each site and the observed incidences of each species. However, the number of favored sites did not differ (P/0.1054) from the number expected when patterns of allopatry and sympatry were preserved in the null model. Thus, the tendency for the equitable representation of functional groups in shrew assemblages was primarily due to the pattern of allopatry among similar species, and we believe that the striking compliance of these sites with Fox’s assembly rule is largely due to structure within the regional species pool, rather than extant competitive interactions.
    [Show full text]
  • Stability and Persistance of Populations and Assemblages
    STABILITY AND PERSISTANCE OF POPULATIONS AND ASSEMBLAGES: THEORY AND LABORATORY AND FIELD STUDIES A Departmental Thesis Presented to the Faculty of California State University, Hayward In Partial Fulfillment of the Requirements for the Degree Master of Science in Biological Science By Burke A. Strobel .Ttme, 1996 Aknowledgments I would like to thank the Moss Landing Marine Laboratories' librarians Sheila Baldridge and Joan Parker, whose efforts made many important papers available to me. The use ofJay Hager's and Brett Strobel's computers for text and graphics respectively was invaluable to the project. Discussions with Christopher Moyer solidified many of the ideas on disturbances presented. I also thank my committee members for their patience and insights, and, most of all, my wife Katie for her support, understanding, and even courage. 111 Table of Contents Acknowledgments iii Table of Contents IV List of Figures vi I. Introduction 1 IT. Stability Theory: Populations 13 Introduction 13 Carrying capacity 17 Mechanisms 25 Density dependence 29 Detection of density dependence 32 Assumptions 35 Ill. Stability Theory: Paired Interactions 37 Interspecific competition 37 Amensalism 46 IV v Predation 47 Mutualism 66 N. Stability ofMultispecies Interactions 70 Indirect effects 70 V. Stability of Assemblages 76 Considerations 76 Diversity 78 Alternative stable states 81 VI. Conclusion 84 Bibliography 89 List of Figures Figure 1. Gompertz curve of population growth 18 Figure 2. Logistic curve of population growth 19 Figure 3. Holling type I predator functional response 49 Figure 4. Holling type I1 predator functional response 50 Figure 5. Holling type ill predator functional response 51 Figure 6. Lotka-Volterra predator/prey trajectory 53 Figure 7.
    [Show full text]
  • A REVIEW on ECOLOGICAL ASSEMBLY RULES Revista EIA, Vol
    Revista EIA ISSN: 1794-1237 [email protected] Escuela de Ingeniería de Antioquia Colombia Colorado Zuluaga, Gabriel Jaime HOW ECOLOGICAL COMMUNITIES ARE STRUCTURED: A REVIEW ON ECOLOGICAL ASSEMBLY RULES Revista EIA, vol. 12, núm. 24, julio-diciembre, 2015, pp. 27-53 Escuela de Ingeniería de Antioquia Envigado, Colombia Available in: http://www.redalyc.org/articulo.oa?id=149244222002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista EIA, ISSN 1794-1237 Revista impresa - ISSN WEB 2463-0950 / Año XII / Volumen 12 / Número 24 / Julio-diciembre 2015 / pp. 27-53 / Publicación semestral de carácter técnico-científico / Escuela de Ingeniería de Antioquia —EIA—, Envigado (Colombia) HOW ECOLOGICAL COMMUNITIES ARE STRUCTURED: A REVIEW ON ECOLOGICAL ASSEMBLY RULES 1 ABSTRACT Gabriel Jaime Colorado Zuluaga Whether biological communities are deterministic or stochastic assemblages of species has long been a central topic of ecology. The widely demonstrated presence of structural patterns in nature may imply the existence of rules that regulate the organization of ecological communities. In this review, I present a compilation of major assembly rules that fundament, in a great proportion, the community assembly theory. Initially, I present a general overview of key concepts underlying mechanisms in the structure of ecological communities. Subsequently, two major approaches or paradigms associated to the assembly of communities, in particular the origin of assembly rules, definition, the problem of scale and (i.e. species-based and trait-based) for the assembly of communities are discussed.
    [Show full text]
  • Life History Strategies of Fishes, However Most Have Focused on Growth, Mortality and Reproduction, and Rarely Included Trophic Ecology
    Christian-Albrecht Universität zu Kiel Leibniz Institut für Meereswissenschaften Habilitationsschrift Life-History Strategies of Recent Fishes: a Meta-Analysis vorgelegt von Dr. Rainer Froese Kiel, November 2005 1 Table of Content Abstract ...................................................................................................................................... 4 Introduction ................................................................................................................................ 6 Material and Methods............................................................................................................... 11 Results and Discussion............................................................................................................. 13 Key Components of Life-history Strategies......................................................................... 13 Phylogeny......................................................................................................................... 13 Size................................................................................................................................... 14 Trophic Level ................................................................................................................... 16 Productivity ...................................................................................................................... 17 Relationships between Size, Trophic Level and Productivity.............................................. 22 Available
    [Show full text]