Archiv Für Naturgeschichte

Total Page:16

File Type:pdf, Size:1020Kb

Archiv Für Naturgeschichte © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Bericht über die wissenschaftlichen Leistungen im Gehiete der Entomologie während des Jahres 1893. Von Dr. Ph. Bertkau in Bonn. H. J. Hansen's vorläufige Mittheilung zur Morphologie der Gliedmafsen und Mundtheile bei Crustaceen und Insecten, Zool. Anzeig., 1893, S. 193—198, 201—212, scheint mir eine solche hohe Bedeutung zu haben, dass ich hier ein ausführlicheres Referat darüber geben möchte; dasselbe könnte mir ein Zurückkommen auf die in Aussicht gestellte ausführlichere Arbeit überflüssig machen. Wahrscheinhch bestehen die Gliedmafsen der Crustaceen ur- sprünglich aus einem Stamm und zwei äquivalenten Aesten. Stamm und Innenast wird als Endopodit, der Aussenast als von einem Gliede des Endopodits ausgehend bezeichnet. Durch Vergleichung der Beine der Axaneae, Thelyphonus, Scorpiones, Chelonethi, Soli- fugae sieht man bald, dass die Glieder mit Ausnahme der beiden ersten, nicht nach ihrer parallelen Ordnungszahl homolog sind. Will man zu einem wirklich morphologischen Verständniss der Mund- theile und Ghedmafsen der 4 Arthropodenklassen gelangen, so muss man sie zuerst bei verschiedenen Typen der Crustaceen studieren. Das Verständniss des Baues der Maxillen der Malakostraken wird durch das Studium der Kieferfüsse eröffnet. Die Kauladen sind einfache von dem inneren Vordereck des 2. oder 3. Gliedes ausgehende Fortsätze; eine solche Seitenkaulade ist bei Eurjcope eine einfache Verlängerung, bei Idothea dagegen durch Artikulation abgesetzt. Ebenso müssen die Kauladen der beiden Maxillen als Fortsätze von den Seiten der einzelnen Glieder des Endopodits der- selben angesehen werden. (Verf. führt für das 1. Maxillenpaar den Namen Maxillulae, dem 2. lässt er den bisherigen Namen.) Der Hypo- pharynx mit seinen weiteren Ausbildungen (Paragnathen, Unterlippe, Zunge) ist ein medianer zweilappiger Vorsprung der Sternalpartie des Kopfes und hat mit den Gliedmafsen nichts zu schaffen. Arch. f. Naturge&eh. Jahrg. 1894. Bd. II. H.2. A © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 2 Ph. Bertkau: Bericht über die mssenschaftlicheu Leistungen Der Verfasser gelit nun näher auf diese Verhältnisse bei Ento- mostraken und Malakostraken ein. Bei einem Apus besteht das 6. Bein aus 6 Ghedern , von denen jedes seine Lade hat, die an den 5 eisten Ghedern eingelenkt sind, am 6. eine einfache Ver- längerung des Gliedes darstellt. Der Exopodit geht von der Basis des 3. GKedes aus, der Epipodit von dem distalen Ende des 2. Aehnlich ist es bei Linmetis, Estheria u. a. Vor dem Exopodit und dem Endopodit entspringt eine sehr lange imd breite Platte auf der Aussenseite des 1. Gliedes; bei den Cladoceren ebenso. Bei den höchstentwickelten Copepoden (Calanus z. B.) ist der Schaft des 2. Antennenpaares dreigliederig, und an den Mandibeln geht der Exopodit von dem 3. Gliede aus; bei den Metanauphen und Setella fand Hansen ebenfalls 3 Glieder in dem Schaft der 2. Antenne und den Mandibeln. Ebenso fand er bei Calanidenmetanauplien Anten- nulen, Antennen und Mandibeln wie beim Nauplius, hinter denselben 5 kleine Plattenpaare, die die Anlage von 5 Gliedmafsenpaaren sind, von denen die 2 letzten eine Andeutung zu einer Spaltung zeigen; das sind die Maxillen, 1. und 2. Kieferfüsse, 1. und 2. Schwimm- füsse. Die ersten von Kieferfuss 1 und 2 entspringen weit entfernt von einander und können nicht, wie das bis jetzt geschehen, als Aussen- und Innen ast derselben GHedmafse angesehen werden. Auch bei Argulus bestehen die Schwimmbeme deuthch aus einem 3gliedrigen Schaft und 2 Aesten, und aus diesem gleichmässigen Vorkommen folgt, dass man 3 Glieder im Stamm von allen ge- spaltenen Gliedmafsen bei den Crustaceen als ein primäres Ver- halten ansehen muss. Bei den Malakostraken finden sich folgende Verhältnisse. Bei Nebalia besteht der Schaft aus 5 Gliedern und das 5. zeigt die Tendenz, aus 2 Gliedern zu bestehen, die bei Nebaliopsis gut abgesondert sind. Die Beine des Vorderleibes bestehen aus 9 Gliedern. Bei Nebalia findet sich auf der Aussenseite an der Basis ein kurzes aber deutliches Glied, darnach kommen die Glieder mit Exopodit und Endopodit und endlich zeigt das übrige Bein 3 deut- liche Einschnitte an dem Innenrande und 3 Gelenke. Das 1. Glied der Maxillulen trägt eine Kaulade, das 2. hat nur eine schmale, feste Chitinplatte, das 3. setzt sich gleichmässig in eine kurze, breite Lade fort. Von den Eumalakostraken haben die Mysiden Antennen mit 6 gliederigem Schaft; der Aussenast fsquama) entspringt aus dem 3. Gliede. Die Mandibeln mit „lacinia mobihs". Die zwei Laden der Maxillulen gehen von dem ersten und 3. Gliede aus. Die Lagen der Maxillen entspringen aus dem 2. und 3. Gliede, der Exopodit aus dem 3. (Das 1. Glied des Beines ist verschwunden, so dass der Exopodit scheinbar aus dem 2. Gliede entspringt.) Das Bein besteht dann aus 8 Gliedern, indem die Klaue für ein umgebildetes Glied anzusehen ist. In den ersten Larvenstadien findet man am hinteren Leibesende 2 fest chitinisirte Platten, die ohne Zweifel mit der furca der NebaHa homolog sind. © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at -im Gebiete der Entomologie während des Jahres 1893. 3 Cumaceen und Tanaiden (eigene Ordnungen!), Isopoden und Amphipoden stimmen im Bau der Mimdgliedmafsen und Vorderleibgliedmafsen genau mit den Mysiden überein. Bei vielen Isopoden ist das 1. Glied der 6 hintersten Beinpaare des Vorder- leibes klein und beweglich; in vielen anderen Gattungen entwickelt es sich als ein „Epimer" , das bei Idothea entomon sehr gross, bei I. hectica mit den Segmenten des Körpers verschmolzen ist, indem es Theile ihrer Seitenpartie bildet. Die Euphausiaden entfernen sich weit von den Mysiden; der Antennenschaft ist zweigliederig, Mandibeln ohne lacinia mobilis. Beine nur aus 7 Gliedern; „Knie" zwischen 4. und 5. Gliede. Die Glieder hinter dem Knie sind mit den 6. —8. Gliedern homolog, das 4. mit 4.-}- 5. von Mysis. Die Maxillulen haben Laden am 1. und 3. Gliede, in einem Larvenstadium am 3. Glied auch einen Exopodit, der später verschwindet, während der bisherige Exopodit der meisten Autoren eine später entwickelte Plattenform des ersten Gliedes ist. Die Dekapoden schliessen sehr nahe an die Euphausiaden an. Das 2. Glied der Maxillulen ist mit dem 1. verschmolzen, so dass die Laden aus dem 1. und 2. Gliede ausgehen. Wie bei Idothea so verschwindet auch, wie man annehmen kann, bei den Phyllopoden das Coxopodit nicht, sondern ist in einen Theil der Pleuren umgewandelt. Hieraus erklärt es sich, dass den Dekapoden Kiemen zukommen, welche sich auf den Pleuren, auf der Gelenkhaut zwischen Pleure und Bein, wie auf dem Coxopodit finden. Die Leptostraken sind die niedersten Malakostraken ; ihnen stehen die Mysiden viel näher als die Euphausiaden. Die alte Eintheilung in Thorakostraka und Arthrostraka hält der Verfasser für ganz verwerflich, da Panzer und Stielaugen auf der einen und Mangel eines Panzers und sitzende Augen auf der anderen Seite nicht einmal durchgreifende Unterschiede sind. Hansen theilt die Eumalakostraka in 3 Gruppen: 1. Mysida, Cumacea, Isopoda, Amphipoda; 2. Euphausiida, Dekapoda; 3. Sto- matopoda. Die 1. Gruppe hat lacinia mobilis auf den Mandibeln; an den Beinen 8 Glieder, Marsupium, anfangs unbewegliche Larven; langgestrecktes Herz; keine Spermatophoren ; die 2. Gruppe: keine lacinia mobilis; 7 Beingl. , kein Marsupium; bewegliche Larven; kurzes Herz; Spermatophoren. Bei den Inecta finden sich folgende Vorkommnisse. Bei Machilis sind die Mandibeln homolog den der Malakostraka, in Gestalt sind sie denen der Cumaceen ähnlich; in Einlenkung und Muskulatur stimmen sie mit Diastyhs und Nebalia überein und weichen z. B. von Orthopteren und Coleopteren ab. Die Maxillen werden aus 3 Gliedern und einem 8 gliederigen Palpus gebildet. Das Basalghed (cardo) hat keine Kaulade, das 2. und 3. Glied setzen sich auch in lange Laden fort und an der Aussenseite des 3. fügt sich der Palpus an; das sind Uebereinstimmungen mit den A* ; © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 4 Ph. Bertkau: Bericht über die -wissenschaftlichen Leistungen Maxillen, aber nicht den Maxillulen der Eumalakostraken. Lage der Mandibeln, Maxillen und des Labiums sind hier (aber auch bei Orthopt. und Coleopt.) gleich der der Isopoden und Amphipoden. Die Maxillen des Machilis sind homolog dem 2. Maxillenpaar der Malakostraka, das Labium den Kieferfüssen (1 labium = ped. max. compluribus?; Ref.). Das kleine GHed, das die coxa der Brustbeine an den Körper befestigt, hält Hansen für homolog mit dem Coxo- podit der Malakostraken; coxa wird also mit Basipodit homolog. — Abdomen aus 11 Segmenten (10 -}- Telson) bestehend; die Griffel auf der Unterseite Theile rudimentärer Gliedmassen, wahrscheinlich Exopoditen. Campodea, Japyx und die Collembola stimmen im Bau der Mundtheile überein. Mandibeln und Maxillen liegen, abgesehen von ihren Enden, in der Mundhöhle, und zwar wie bei Machilis in der Seitenhaut derselben befestigt. Ihre Muskulatur ist der der Crusta- ceen ähnlicher als von Machilis; den Mandibeln fehlt eine pars molaris, dagegen hat Campodea eine kleine lacinia mobilis. Die Maxillen bestehen aus cardo und einem zweiten Ghede; 3. Glied und Palpus fehlen vollständig. Was die meisten Autoren als solche beschrieben haben, ist mit den „Paraglossen" und mit der vom Labium be- deckten Unterseite des Kopfes verbunden. Bei Japyx ist der Hypopharynx kurz, das Chitin der „Para- glossae" ist an das Chitin des Kopfes hinter der Basis des
Recommended publications
  • Ramblings with Rebecca April 30 – May 16, 2005
    Ramblings with Rebecca April 30 – May 16, 2005 ANNOUCEMENTS: * I’ll bet you’ve met, or at least seen, the 11 head of cattle Daniel Gluesenkamp has “hired” to help manage invasive grass growth in the lower field! Because we’re sharing space in the lower field with this small number of very well-behaved cattle for the rest of this season (and maybe longer), it’s even more important than ever to be absolutely sure you never leave one of the gates near the highway open unattended! Gate keepers- you should also know that the fencing along the entry is electrified, a not- so-subtle reminder to these animals that fences are intended as impenetrable barriers! So- don’t grab or try to climb this fence… and DO let a member of the staff know as soon as possible if you see a cow or bull behaving in a too athletic, or otherwise inappropriate or un-bovine fashion ! We’ve heard tell of fence jumping once in a blue moon, and think we have that problem licked, but we want to know if you see any such shenanigans. With all that said, let me tell you these 11 are actually pretty docile, and very responsive. And, as odd as it might seem, grazing on a wildlife preserve is a necessary means of counteracting the effects of invasive, introduced non-native grasses. If left alone, the grasslands at Bouverie would be anything but “natural”. Instead, these areas would grow to more closely resemble unkempt pasture land with few if any native species, rather than the kinds of grasslands that evolved in California before European interference.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • RECENT PLECOPTERA LITERATURE (CALENDAR Zootaxa 795: 1-6
    Oliver can be contacted at: Arscott, D. B., K. Tockner, and J. V. Ward. 2005. Lateral organization of O. Zompro, c/o Max-Planck-Institute of Limnology, aquatic invertebrates along the corridor of a braided floodplain P.O.Box 165, D-24302 Plön, Germany river. Journal of the North American Benthological Society 24(4): e-mail: [email protected] 934-954. Baillie, B. R., K. J. Collier, and J. Nagels. 2005. Effects of forest harvesting Peter Zwick and woody-debris removal on two Northland streams, New Pseudoretirement of Richard Baumann Zealand. New Zealand Journal of Marine and Freshwater Research 39(1): 1-15. I will officially retire from my position at Brigham Young Barquin, J., and R. G. Death. 2004. Patterns of invertebrate diversity in University on September 1, 2006. However, I will be able to maintain my streams and freshwater springs in Northern Spain. Archiv für workspace and research equipment at the Monte L. Bean Life Science Hydrobiologie 161: 329-349. Museum for a minimum of three years. At this time, I will work to complete Bednarek, A. T., and D. D. Hart. 2005. Modifying dam operations to restore many projects on stonefly systematics in concert with colleagues and rivers: Ecological responses to Tennessee River dam mitigation. friends. The stonefly collection will continue to grow and to by curated by Ecological Applications 15(3): 997-1008. Dr. C. Riley Nelson, Dr. Shawn Clark, and myself. I plan to be a major Beketov, M. A. 2005. Species composition of stream insects of northeastern “player” in stonefly research in North America for many years.
    [Show full text]
  • Comparative Morphology of the Male Genitalia in Lepidoptera
    COMPARATIVE MORPHOLOGY OF THE MALE GENITALIA IN LEPIDOPTERA. By DEV RAJ MEHTA, M. Sc.~ Ph. D. (Canta.b.), 'Univefsity Scholar of the Government of the Punjab, India (Department of Zoology, University of Oambridge). CONTENTS. PAGE. Introduction 197 Historical Review 199 Technique. 201 N ontenclature 201 Function • 205 Comparative Morphology 206 Conclusions in Phylogeny 257 Summary 261 Literature 1 262 INTRODUCTION. In the domains of both Morphology and Taxonomy the study' of Insect genitalia has evoked considerable interest during the past half century. Zander (1900, 1901, 1903) suggested a common structural plan for the genitalia in various orders of insects. This work stimulated further research and his conclusions were amplified by Crampton (1920) who homologized the different parts in the genitalia of Hymenoptera, Mecoptera, Neuroptera, Diptera, Trichoptera Lepidoptera, Hemiptera and Strepsiptera with those of more generalized insects like the Ephe­ meroptera and Thysanura. During this time the use of genitalic charac­ ters for taxonomic purposes was also realized particularly in cases where the other imaginal characters had failed to serve. In this con­ nection may be mentioned the work of Buchanan White (1876), Gosse (1883), Bethune Baker (1914), Pierce (1909, 1914, 1922) and others. Also, a comparative account of the genitalia, as a basis for the phylo­ genetic study of different insect orders, was employed by Walker (1919), Sharp and Muir (1912), Singh-Pruthi (1925) and Cole (1927), in Orthop­ tera, Coleoptera, Hemiptera and the Diptera respectively. It is sur­ prising, work of this nature having been found so useful in these groups, that an important order like the Lepidoptera should have escaped careful analysis at the hands of the morphologists.
    [Show full text]
  • The Mcguire Center for Lepidoptera and Biodiversity
    Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens.
    [Show full text]
  • Culture Corner Put Aside to Await Hatching, Which Takes 6 to 12 Or So Days at 75° to 80°F
    No.3 May/June 1983 of tht> LEPIDOPTERISTS' snell-TV June Preston, Editor 832 Sunset Drive Lawrenc~ KS 66044 USA ======================================================================================= ASSOCIATE EDITORS ART: Les Sielski RIPPLES: Jo Brewer ZONE COORDINATORS 1 Robert Langston 8 Kenelm Philip 2 Jon Shepard 5 Mo Nielsen 9 Eduardo Welling M. 3 Ray Stanford 6 Dave Baggett 10 Boyce Drummond 4 Hugh Freeman 7 Dave Winter 11 Quimby Hess ===.=========================================================.========================= CULTURING SATYRIDS Satyrids (or satyrines, if you prefer) have always had a special fascination for me, perhaps partly because of their tendency for great geographic variation. In Eurasia satyrids account for a large part of the butterfly fauna, and many of the common species (e.g. Pararge spp.) are multivoltine even in northern Europe. Here the grass-feeding niche seems to be dominated by skippers, and only a very few of the American species north of, say, latitude 40 0 N have more than one generation per season. When rearing satyrids, the key word is PATIENCE. Most species grow very slowly and must be carried over the winter as diapausing larvae. On the other hand, generally they are quite tough and survive well under laboratory culture conditions. There is usually no problem getting eggs. I confine each wild or lab-mated female in a quart jar put on its side and scatter a handful of grass sedge the length of the jar so that the female will flutter on top of it. Females are fed individually each morning on sugar-water-soaked pieces of paper towel in petri dishes, then put into the jars. I cover the open end of each jar with a piece of nylon stocking held with a rubber band, then line the jars up on their sides on a shelf with a fluorescent light with two 40-watt tubes about 8 inches above.
    [Show full text]
  • Selection for Imperfection: a Review of Asymmetric Genitalia 2 in Araneomorph Spiders (Araneae: Araneomorphae)
    bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Selection for imperfection: A review of asymmetric genitalia 2 in araneomorph spiders (Araneae: Araneomorphae). 3 4 5 6 F. ANDRES RIVERA-QUIROZ*1, 3, MENNO SCHILTHUIZEN2, 3, BOOPA 7 PETCHARAD4 and JEREMY A. MILLER1 8 1 Department Biodiversity Discovery group, Naturalis Biodiversity Center, 9 Darwinweg 2, 2333CR Leiden, The Netherlands 10 2 Endless Forms Group, Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, 11 The Netherlands 12 3 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE 13 Leiden, The Netherlands. 14 4 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 15 12121 Thailand. 16 17 18 19 Running Title: Asymmetric genitalia in spiders 20 21 *Corresponding author 22 E-mail: [email protected] (AR) 23 bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Abstract 25 26 Bilateral asymmetry in the genitalia is a rare but widely dispersed phenomenon in the 27 animal tree of life. In arthropods, occurrences vary greatly from one group to another 28 and there seems to be no common explanation for all the independent origins.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Cactoblastis Cactorum
    2 Preface The research and outreach programs described in the following report are the result of an ongo- ing partnership between the U.S. Geological Survey Biological Resources Discipline, the Na- tional Biological Information Infrastructure, and Mississippi State University. Funding for these programs was provided by an award from USGS BRD to MSU under cooperative agreements 08HQAG0139 and G10AC00404, a Gulf Coast Cooperative Ecosystem Studies Unit Coopera- tive and Joint Venture Agreement. The MSU program was managed by the Geosystems Re- search Institute. The USGS BRD Invasive Species Program manager was Sharon Gross and NBII Invasive Species Information Node manager was Annie Simpson. This report should be cited as: Madsen, J.D., P. Amburn, R. Brown, E. Dibble, G. Ervin, D. Shaw, C. Abbott, G. Baker, K. Bloem, C. Brooks, D. Irby, S. Lee, V. Maddox, R. Rose, R. Schulz, L. Wallace, L. Wasson, M. Welch, R. Wersal, D. McBride, and N. Madsen. 2011. Research to Support Integrated Manage- ment Systems of Aquatic and Terrestrial Invasive Species: Annual Report, 2010. Geosystems Research Institute GRI#5047, Mississippi State University, Mississippi State, MS. For comments or questions, contact Dr. John D. Madsen at [email protected]. 3 Table of Contents Introduction Page 5 Participants Page 6 Collaboration Page 7 Task 1. Aquatic Invasive Plants Page 9 Task 1.1. GIS Model of Invasive Aquatic Plant Distribution and Abundance Based on Watershed Nutrient Loading Rates Page 10 Task 1.2. Nonindigenous Aquatic Plant Database Plant Observation Entry Page 11 Task 2. National Early Detection and Rapid Response Webpage Development Page 13 Task 2.1.
    [Show full text]
  • Microhabitat Conditions Associated with the Distribution of Postdiapause Larvae of Euphydryas Editha Quino (Lepidoptera: Nymphalidae) Author(S): Kendall H
    RO-4-123 Microhabitat Conditions Associated with the Distribution of Postdiapause Larvae of Euphydryas editha quino (Lepidoptera: Nymphalidae) Author(s): Kendall H. Osborne and Richard A. Redak Source: Annals of the Entomological Society of America, 93(1):110-114. 2000. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1603/0013-8746(2000)093[0110:MCAWTD]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1603/0013-8746%282000%29093%5B0110%3AMCAWTD %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION AND BIODIVERSITY Microhabitat Conditions Associated with the Distribution of Postdiapause Larvae of Euphydryas editha quino (Lepidoptera: Nymphalidae) 1 KENDALL H. OSBORNE AND RICHARD A. REDAK Department of Entomology, University of California, Riverside, CA 92521 Ann. Entomol. Soc. Am. 93(1): 110Ð114 (2000) ABSTRACT Microhabitats of postdiapause larvae of Euphydryas editha quino (Behr) were found to differ from random habitat points in percentage cover, grass, shade, shrub, and host plant (Plantago erecta E.
    [Show full text]
  • Three New Species of the Oonopid Spider Genus Ischnothyreus (Araneae: Oonopidae) from Tioman Island (Malaysia)
    Zootaxa 3161: 37–47 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Three new species of the oonopid spider genus Ischnothyreus (Araneae: Oonopidae) from Tioman Island (Malaysia) YVONNE KRANZ-BALTENSPERGER Natural History Museum, Bernastrasse 15, CH-3005 Bern, Switzerland. E-mail: [email protected] Abstract Three new species of the genus Ischnothyreus (I. tioman, I. tekek and I. namo) are described from Tioman Island off the eastern coast of Peninsular Malaysia. Two of the described species show peculiar cheliceral modifications that are dis- cussed with respect to similar structures found in other families. Key words: taxonomy, systematics, morphology, Asia Introduction With currently 755 described species in 83 genera (Platnick 2011), goblin spiders (Oonopidae) are an extremely diverse spider family. Most of them are ground-dwellers and live in litter or under bark, but some species are also found in the tree canopy (Fannes et al. 2008). They are small (0.5–4.0 mm), haplogyne, usually six-eyed spiders, and are most diverse in the tropical and subtropical regions of the world (Jocqué & Dippenaar-Schoeman 2006). The genus Ischnothyreus, established by Simon in 1893, currently comprises 41 species. Occurring worldwide, the genus is most abundant in the Oriental region (Platnick 2011). Recently, 17 new species were reported from Borneo (Kranz-Baltensperger 2011). The genus is also present in Australia (Edward & Harvey 2009). Males of Ischnothyreus have strongly sclerotized palps and modified endites, the females can be recognized by the winding genital tube. In this contribution three new species of Ischnothyreus are described from Tioman Island, a small island close to mainland Malaysia (Fig.
    [Show full text]
  • Phylogenomics Reveals Major Diversification Rate Shifts in The
    bioRxiv preprint doi: https://doi.org/10.1101/517995; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Phylogenomics reveals major diversification rate shifts in the evolution of silk moths and 2 relatives 3 4 Hamilton CA1,2*, St Laurent RA1, Dexter, K1, Kitching IJ3, Breinholt JW1,4, Zwick A5, Timmermans 5 MJTN6, Barber JR7, Kawahara AY1* 6 7 Institutional Affiliations: 8 1Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA 9 2Department of Entomology, Plant Pathology, & Nematology, University of Idaho, Moscow, ID 10 83844 USA 11 3Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 12 4RAPiD Genomics, 747 SW 2nd Avenue #314, Gainesville, FL 32601. USA 13 5Australian National Insect Collection, CSIRO, Clunies Ross St, Acton, ACT 2601, Canberra, 14 Australia 15 6Department of Natural Sciences, Middlesex University, The Burroughs, London NW4 4BT, UK 16 7Department of Biological Sciences, Boise State University, Boise, ID 83725, USA 17 *Correspondence: [email protected] (CAH) or [email protected] (AYK) 18 19 20 Abstract 21 The silkmoths and their relatives (Bombycoidea) are an ecologically and taxonomically 22 diverse superfamily that includes some of the most charismatic species of all the Lepidoptera. 23 Despite displaying some of the most spectacular forms and ecological traits among insects, 24 relatively little attention has been given to understanding their evolution and the drivers of 25 their diversity.
    [Show full text]