Nerve Growth Factor Applied Onto the Olfactory Epithelium Alleviates

Total Page:16

File Type:pdf, Size:1020Kb

Nerve Growth Factor Applied Onto the Olfactory Epithelium Alleviates Brain Research 887 (2000) 53±62 www.elsevier.com/locate/bres Research report Nerve growth factor applied onto the olfactory epithelium alleviates degenerative changes of the olfactory receptor neurons following axotomy Hiroki Yasunoa,b , Keijiro Fukazawa b , Tetsuo Fukuoka a , Eiji Kondo a , Masafumi Sakagami b , Koichi Noguchia,* aDepartment of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo 663-8501, Japan bDepartment of Otolaryngology, Hyogo College of Medicine, Hyogo 663-8501, Japan Accepted 12 September 2000 Abstract The olfactory neuroepithelium of the mammalian nervous system manifests continuous neurogenesis throughout life. Recent studies suggest that neurotrophic factors and their receptors may play a role in the regulation of development and regeneration in the olfactory system. However, there have been very few in vivo studies investigating the effect of exogenous neurotrophic factors in the olfactory system. In the present study, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were administered into the rat olfactory mucosa for 5 days just after the transection of the olfactory nerve. We then examined the effect of exogenous neurotrophic factors on the degenerative changes in axotomized olfactory receptor neurons (ORNs). Further, we examined the location of their receptors, Trk A and Trk B. We found that both mature and immature ORNs expressed more intense signals for olfactory marker protein and beta-tubulin mRNAs, respectively, when NGF was applied to the axotomized olfactory neuroepithelium for 5 days, compared to the ORNs of saline-treated controls. BDNF at a 10 mg total dose did not show this effect. The effect of NGF applied onto the olfactory epithelium is consistent with the immunohistochemical ®nding that Trk A was present in the dendrites and axon bundles in normal and axotomized ORNs. These results suggest that NGF may protect the degenerative changes in mature and immature ORNs following axotomy through the binding to the Trk A receptor located on the surface of the olfactory epithelium. 2000 Elsevier Science B.V. All rights reserved. Theme: Sensory systems Topic: Olfactory senses Keywords: Olfactory nerve; Olfactory marker protein; Beta-tubulin; Protein gene product 9.5; NGF; BDNF 1. Introduction receptor neurons (ORNs) derived from the observation that a developmentally heterogenous population of receptor In mammals, the olfactory neuroepithelium (OE), neurons is present in adult animals, and autoradiographic situated within the nasal cavity, has the ability to regener- studies have shown that immature neurons in the basal cell ate new neurons continually throughout life from a popula- layer of the OE of adult animals incorporate3 H-thymidine tion of precursor cells present in the basal cell layer [5,34]. These immature neurons progressively move to [15,16]. The concept of continued turnover of olfactory more super®cial layers of the epithelium to become mature ORNs. The process of turnover of ORNs can be modi®ed *Corresponding author. Tel.: 181-798-45-6415; fax: 181-798-45- following the injury of mature ORNs, such as physical or 6417. chemical damage to the OE proper, the axons of the ORNs E-mail address: [email protected] (K. Noguchi). (olfactory nerve), or the olfactory bulb [8,40]. For exam- 0006-8993/00/$ ± see front matter 2000 Elsevier Science B.V. All rights reserved. PII: S0006-8993(00)02966-8 54 H. Yasuno et al. / Brain Research 887 (2000) 53 ±62 ple, changes in ORNs following the transection of the 2. Materials and method olfactory nerve have been extensively examined. A few days after transection, massive degeneration and neuronal 2.1. Animal procedures programmed cell death of the ORNs occurred and new ORNs, derived from a stem cell population in the OE, All animal experiments conformed to the regulations of generate axons which grow along the olfactory nerve to the the Hyogo College of Medicine Committee on Animal olfactory bulb. Research and were carried out in accordance with the The normal OE is a ciliated pseudostrati®ed columnar guidelines of the NIH on animal care. A total of 24 male epithelium. The basal cells are located at the base of the Sprague-Dawley rats weighing 200±250 g were used. All epithelium and immature ORNs are situated in the lower experimental procedures were performed on rats which layer of the epithelium. The immature ORNs express were deeply anesthetized with sodium pentobarbital (50 growth associated protein 43 (GAP-43/B50) [39,40], mg/kg body weight, i.p.). Additional doses of anesthetics which is expressed during axonal growth and neural were given as needed. development, and tubulin [25,32], which participates in Rats received local anesthetic (1% carbocaine, 200 m1) spindle formation in dividing cells. A third type of cell, the to the site of the skin incision on the middle of the head. mature ORNs, are localized in the middle layer of the The left skull, rostral to the bone suture bregma, was epithelium and express olfactory marker protein (OMP) opened using a micro drill and the left olfactory bulb was [4,6,10,27,30,43], a 19 kDa cytoplasmic protein. Immature exposed. A microsurgery scalpel was inserted to a depth of and mature neurons express neural cell adhesion molecules 4 mm against the olfactory bulb side of the cribriform plate [28], which are important during all stages of neurode- and the ®la olfactoria were transected according to the velopment and are especially important for synaptic struc- method reported by Harding et al. [19]. In a preliminary turing and protein gene product 9.5 (PGP 9.5) [23,36], experiment, we con®rmed that our method could success- which is a neurospeci®c peptide. A fourth type of cell in fully transect the olfactory nerves by checking the thick- the OE are supporting cells, which are located in the upper ness of the olfactory epithelium. Next, NGF (20 mg/ml, layer of the epithelium. Injury of ORNs also affects the recombinant rat NGF, R&D Systems, Minneapolis, MN, neurochemical expression pattern and axotomized ORNs USA), or BDNF (20 mg/ml, recombinant human BDNF, lose almost all OMP immunoreactive pro®les after about a Sumitomo Pharmaceutical, Osaka, Japan) was adminis- week [31]. tered twice a day for 5 days. Rats received NGF or BDNF It is well known that several growth factors play a solution using a Hamilton syringe intermittently for 15 min critical role in the regulation of neurogenesis in the until a total volume of 50 ml of solution had been injected developing central nervous system. The typical neuro- into the left nasal cavity. In control rats, saline was trophic factors, nerve growth factor (NGF) and brain- administered. The total dose of 10 mg of NGF or BDNF derived neurotrophic factor (BDNF), are known to have was administered over a 5 day period. This dose was crucial roles in the differentiation, survival, morphogenesis determined according to the doses of neurotrophins, topical and regeneration of sensory neurons [2,20,24,26,37]. Re- injections of which were reported previously (6 mg/day cently, high-af®nity receptors of the neurotrophic factor NGF [11,41], 5 mg/day BDNF [35], 12 mg/day BDNF tyrosine kinases (Trks) have been cloned; NGF is the [12]), and considering the very limited area of the olfac- preferred ligand of Trk A [7] and BDNF is the preferred tory epithelium. ligand of Trk B [13]. A number of studies have suggested that endogenous neurotrophins play a role in the regulation 2.2. In situ hybridization histochemistry of neurogenesis within normal development of the OE and altered turnover of OE following injury to the ORNs. For Five days after surgery, rats were deeply anesthetized example, NGF injected into the olfactory bulb is trans- with sodium pentobarbital and perfused transcardially with ported to the OE for 18 h in the mouse [29]. Antibodies to 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). NGF injected in the olfactory bulb induce degeneration of The left olfactory mucosa was dissected, post®xed over- ORNs [38]. ORNs can be matured in vitro by treatment night, followed by immersion in 20% sucrose in phosphate with neurotrophins, especially treatment with a combina- buffer for cryoprotection. After 1 or 2 days, olfactory tion of NGF and BDNF [33]. However, there has been no mucosae were frozen with powdered dry ice, cut trans- in vivo experiments in which exogenous neurotrophins versely with a cryostat into 10 mm thick sections, thaw- were applied into the nasal cavity. In this study, we mounted onto Vectabond-coated slides (Vector Laborator- administered NGF or BDNF into rats' olfactory mucosa, ies, Burlingame, CA, USA) and stored at 2808C until use. and examined in vivo the effect on axotomized ORNs. The An olfactory marker protein-speci®c probe, a mature ORN dependent measures examined were altered mRNA expres- marker, and a beta-tubulin-speci®c probe, an immature sion of neurochemical markers using in situ hybridization ORN marker, were used. The probes consisted of 48-base histochemistry, and we also examined their receptors, Trk oligonucleotides and the OMP probe was complementary A and Trk B, using immunohistochemistry. to bases 439±486 and beta-tubulin probe to bases 18±65 of H. Yasuno et al. / Brain Research 887 (2000) 53 ±62 55 the respective cDNAs. These probes were labeled with drated in a graded ethanol series, cleared in xylene, and 35S-deoxyadenosine triphosphate (NEN, Boston, MA, coverslipped. USA) and terminal deoxynucleotidyl transferase (Amer- sham, Buckinghamshire, UK), giving a speci®c activity of 2.4. Quantitative analysis 1.031099 ±1.5310 cpm/mg. Tissue sections were hybrid- ized after thawing, without any pretreatment, overnight at Each experimental group consisted of six rats. For the in 428C in humidi®ed boxes with 53105 c.p.m.
Recommended publications
  • The Olfactory Receptor Associated Proteome
    INTERNATIONAL GRADUATE SCHOOL OF NEUROSCIENCES (IGSN) RUHR UNIVERSITÄT BOCHUM THE OLFACTORY RECEPTOR ASSOCIATED PROTEOME Doctoral Dissertation David Jonathan Barbour Department of Cell Physiology Thesis advisor: Prof. Dr. Dr. Dr. Hanns Hatt Bochum, Germany (30.12.05) ABSTRACT Olfactory receptors (OR) are G-protein-coupled membrane receptors (GPCRs) that comprise the largest vertebrate multigene family (~1,000 ORs in mouse and rat, ~350 in human); they are expressed individually in the sensory neurons of the nose and have also been identified in human testis and sperm. In order to gain further insight into the underlying molecular mechanisms of OR regulation, a bifurcate proteomic strategy was employed. Firstly, the question of stimulus induced plasticity of the olfactory sensory neuron was addressed. Juvenile mice were exposed to either a pulsed or continuous application of an aldehyde odorant, octanal, for 20 days. This was followed by behavioural, electrophysiological and proteomic investigations. Both treated groups displayed peripheral desensitization to octanal as determined by electro-olfactogram recordings. This was not due to anosmia as they were on average faster than the control group in a behavioural food discovery task. To elucidate differentially regulated proteins between the control and treated mice, fluorescent Difference Gel Electrophoresis (DIGE) was used. Seven significantly up-regulated and ten significantly down-regulated gel spots were identified in the continuously treated mice; four and twenty-four significantly up- and down-regulated spots were identified for the pulsed mice, respectively. The spots were excised and proteins were identified using mass spectrometry. Several promising candidate proteins were identified including potential transcription factors, cytoskeletal proteins as well as calcium binding and odorant binding proteins.
    [Show full text]
  • Spontaneous Neural Activity Is Required for the Establishment and Maintenance of the Olfactory Sensory Map
    Neuron, Vol. 42, 553–566, May 27, 2004, Copyright 2004 by Cell Press Spontaneous Neural Activity Is Required for the Establishment and Maintenance of the Olfactory Sensory Map C. Ron Yu,1,2 Jennifer Power,2 Gilad Barnea,2 mus and cortex, results from complementary gradients Sean O’Donnell,3 Hannah E.V. Brown,4 of ephrin receptors on retinal afferents and ephrins ex- Joseph Osborne,3 Richard Axel,2,3,4,* pressed by the multiple targets in the brain (Wilkinson, and Joseph A. Gogos2,5,* 2001). These retinotopic representations deconstruct 1Department of Anatomy and Cell Biology the visual scene into submaps that refine the image, 2 Center for Neurobiology and Behavior including ocular dominance columns and orientation 3 Department of Biochemistry columns, as well as cortical blobs that uniquely respond and Molecular Biophysics to color, motion, and spatial frequency (Van Essen et al., 4 Howard Hughes Medical Institute 1992). These refinements are sensitive to visual activity, 5 Department of Physiology and Cellular Biophysics and this has led to efforts to distinguish the relative College of Physicians and Surgeons contributions of innate determinants (timing of axon ar- Columbia University rival and molecular cues) and experiential or activity- New York, New York 10032 dependent mechanisms in the generation of the visual circuitry (Katz and Shatz, 1996). The problem is perhaps best illustrated by early recordings by Hubel and Wiesel Summary that demonstrated that cortical neurons respond prefer- entially to one or the other eye and segregate into ocular We have developed a genetic approach to examine dominance columns (LeVay et al., 1978; Wiesel and Hu- the role of spontaneous activity and synaptic release bel, 1963).
    [Show full text]
  • Proteomic Atlas of the Human Olfactory Bulb
    JOURNAL OF PROTEOMICS 75 (2012) 4005– 4016 Available online at www.sciencedirect.com www.elsevier.com/locate/jprot Proteomic atlas of the human olfactory bulb Joaquín Fernández-Irigoyena, Fernando J. Corralesb, Enrique Santamaríaa,⁎ aProteomics Unit, Biomedical Research Center (CIB), Navarra Health Service, 31008 Pamplona, Spain bProteomics Unit, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain ARTICLE INFO ABSTRACT Article history: The olfactory bulb (OB) is the first site for the processing of olfactory information in the Received 12 March 2012 brain and its deregulation is associated with neurodegenerative disorders. Although Accepted 7 May 2012 different efforts have been made to characterize the human brain proteome in depth, the Available online 15 May 2012 protein composition of the human OB remains largely unexplored. We have performed a comprehensive analysis of the human OB proteome employing protein and peptide Keywords: fractionation methods followed by LC-MS/MS, identifying 1529 protein species, correspond- Olfactory bulb ing to 1466 unique proteins, which represents a 7-fold increase in proteome coverage with Brain respect to previous OB proteome descriptions from translational models. Bioinformatic Proteomics analyses revealed that protein components of the OB participated in a plethora of biological Mass spectrometry process highlighting hydrolase and phosphatase activities and nucleotide and RNA binding Bioinformatics activities. Interestingly, 631 OB proteins identified were not previously described in protein datasets derived from large-scale Human Brain Proteome Project (HBPP) studies. In particular, a subset of these differential proteins was mainly involved in axon guidance, opioid signaling, neurotransmitter receptor binding, and synaptic plasticity. Taken together, these results increase our knowledge about the molecular composition of the human OB and may be useful to understand the molecular basis of the olfactory system and the etiology of its disorders.
    [Show full text]
  • Expressing Exogenous Functional Odorant Receptors in Cultured Olfactory Sensory Neurons Huaiyang Chen1, Sepehr Dadsetan2, Alla F Fomina2 and Qizhi Gong*1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Neural Development BioMed Central Methodology Open Access Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons Huaiyang Chen1, Sepehr Dadsetan2, Alla F Fomina2 and Qizhi Gong*1 Address: 1Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616, USA and 2Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA Email: Huaiyang Chen - [email protected]; Sepehr Dadsetan - [email protected]; Alla F Fomina - [email protected]; Qizhi Gong* - [email protected] * Corresponding author Published: 11 September 2008 Received: 22 May 2008 Accepted: 11 September 2008 Neural Development 2008, 3:22 doi:10.1186/1749-8104-3-22 This article is available from: http://www.neuraldevelopment.com/content/3/1/22 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment.
    [Show full text]
  • Genomics of Mature and Immature Olfactory Sensory Neurons Melissa D
    University of Kentucky UKnowledge Physiology Faculty Publications Physiology 8-15-2012 Genomics of Mature and Immature Olfactory Sensory Neurons Melissa D. Nickell University of Kentucky, [email protected] Patrick Breheny University of Kentucky, [email protected] Arnold J. Stromberg University of Kentucky, [email protected] Timothy S. McClintock University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physiology_facpub Part of the Genomics Commons, and the Physiology Commons Repository Citation Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; and McClintock, Timothy S., "Genomics of Mature and Immature Olfactory Sensory Neurons" (2012). Physiology Faculty Publications. 66. https://uknowledge.uky.edu/physiology_facpub/66 This Article is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Physiology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Genomics of Mature and Immature Olfactory Sensory Neurons Notes/Citation Information Published in Journal of Comparative Neurology, v. 520, issue 12, p. 2608-2629. Copyright © 2012 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Nickell, M. D., Breheny, P., Stromberg, A. J., and McClintock, T. S. (2012). Genomics of mature and immature olfactory sensory neurons. Journal of Comparative Neurology, 520: 2608–2629, which has been published in final form at http://dx.doi.org/ 10.1002/cne.23052. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
    [Show full text]
  • Mechanisms of Ciliary Targeting of the Olfactory Cyclic Nucleotide- Gated Channel
    Mechanisms of Ciliary Targeting of the Olfactory Cyclic Nucleotide- Gated Channel by Paul Michael Jenkins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Pharmacology) in The University of Michigan 2010 Doctoral Committee: Associate Professor Jeffrey Randall Martens, Chair Professor Lori L. Isom Professor Benjamin L. Margolis Associate Professor Kristen J. Verhey © Paul Michael Jenkins All Rights Reserved 2010 To my family ii ACKNOWLEDGEMENTS I would like to first extend my sincerest gratitude to my research mentor, Dr. Jeffrey R. Martens. The time I have spent in his laboratory has shaped me both professionally and personally. His drive and dedication to science serve as a model that I strive towards every day. The past few years have been extremely rewarding for me due to his friendship, patience, and continual mentoring. I would not be where I am today without his guidance. I would also like to acknowledge my thesis committee members, Dr. Lori Isom, Dr. Ben Margolis and Dr. Kristen Verhey. I have been extremely lucky to have a committee that not only acted as thesis advisors, but also as collaborators, mentors, and friends. I would like to thank the numerous members of the Martens laboratory, present and former: Kristin Arendt, Dave Dudek, Nikhil Iyer, Sajida Jackson, Qiuju Li, Dyke McEwen, Jeremy McIntyre, Sarah Schumacher, Laurie Svoboda, Kristin van Genderen, Eileen Vesely, Tiffney Widner, Liz Williams, Kendra Yum, and Lian Zhang. Your antics in lab have kept me alternating
    [Show full text]
  • A Role for STOML3 in Olfactory Sensory Transduction
    Research Article: New Research | Sensory and Motor Systems A role for STOML3 in olfactory sensory transduction https://doi.org/10.1523/ENEURO.0565-20.2021 Cite as: eNeuro 2021; 10.1523/ENEURO.0565-20.2021 Received: 28 December 2020 Revised: 25 January 2021 Accepted: 8 February 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Agostinelli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. A role for STOML3 in olfactory sensory transduction Abbreviated title: STOML3 in olfactory transduction Authors: Emilio Agostinelli1†, Kevin Y. Gonzalez-Velandia1†, Andres Hernandez-Clavijo1, Devendra Kumar Maurya1§, Elena Xerxa1, Gary R Lewin2, Michele Dibattista3‡, Anna Menini1‡, Simone Pifferi1,4‡ 1 Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy. 2 Molecular Physiology of Somatic Sensation, Department of Neuroscience, Max Delbrück Center for Molecular Medicine, D-13122 Berlin, Germany. 3 Department of Basic Medical Sciences, Neuroscience and Sensory
    [Show full text]
  • Archivio Istituzionale Open Access Dell'università Di Torino Transitory
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Transitory and activity-dependent expression of Neurogranin in olfactory bulb tufted cells during mouse postnatal development. This is the author's manuscript Original Citation: Transitory and activity-dependent expression of Neurogranin in olfactory bulb tufted cells during mouse postnatal development. / Gribaudo S.; Bovetti S.; Friard O.; Denorme M.; Oboti L.; Fasolo A.; De Marchis S.. - In: JOURNAL OF COMPARATIVE NEUROLOGY. - ISSN 1096-9861. - 520(2012), pp. 3055-3069. Availability: This version is available http://hdl.handle.net/2318/107513 since 2017-05-18T11:16:01Z Published version: DOI:10.1002/cne.23150 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 25 September 2021 This is an author version of the contribution published on: Questa è la versione dell’autore dell’opera: [The Journal of Comparative Neurology, 520 (14), 2012, DOI: 10.1002/cne.23150] ovvero [Gribaudo S., Bovetti S., Friard O., Denorme M., Oboti L., Fasolo A., De Marchis S. 520 (14), Wiley, 2012, pagg.3055-3069] The definitive version is available at: La versione definitiva è disponibile alla URL: [http://onlinelibrary.wiley.com/doi/10.1002/cne.23150/abstract;jsessionid=DA945D 1BAD21815004ADF2F5441730B9.f02t02] Transitory and Activity-Dependent Expression of Neurogranin in Olfactory Bulb Tufted Cells During Mouse Postnatal Development S.
    [Show full text]
  • Region Speci C Amyloid-Β Accumulation in the Olfactory
    Region specic amyloid-β accumulation in the olfactory system inuences olfactory sensory neuronal dysfunction in 5xFAD mice Gowoon Son Daegu Gyeongbuk Institute of Science and Technology Seung-Jun Yoo Daegu Gyeongbuk Institute of Science and Technology Shinwoo Kang Gachon University Ameer Rasheed Daegu Gyeongbuk Institute of Science and Technology Da Hae Jung Daegu Gyeongbuk Institute of Science and Technology Hyunjun Park Gachon University Bongki Cho Daegu Gyeongbuk Institute of Science and Technology Harry W.M. Steinbusch Universiteit Maastricht School for Mental Health and Neuroscience Keun-A Chang Gachon University Yoo-Hun Suh Gachon University Cheil Moon ( [email protected] ) DGIST https://orcid.org/0000-0002-9741-7229 Research Keywords: Alzheimer’s disease, Olfactory dysfunction, β-amyloid, 5xFAD, Olfactory sensory neuron, Zonal organization, Odor detection test, Ca2+ imaging, Topographic analysis, Neuronal turnover Posted Date: November 11th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-53345/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 4th, 2021. See the published version at https://doi.org/10.1186/s13195-020-00730-2. Page 1/25 Abstract Background: Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-β (Aβ), which is one of the toxic factors upregulated early in AD, has been identied in many studies, even in the peripheral areas. The pathology involving olfactory sensory neurons (OSNs) remains poorly understood. Methods: Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants.
    [Show full text]
  • Alters the Connectivity of Olfactory Neurons in the Absence of Amyloid Plaques in Vivo
    ARTICLE Received 23 Feb 2012 | Accepted 18 Jul 2012 | Published 21 Aug 2012 DOI: 10.1038/ncomms2013 Aβ alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo Luxiang Cao1, Benjamin R. Schrank1, Steve Rodriguez1, Eric G. Benz1, Thomas W. Moulia1, Gregory T. Rickenbacher1, Alexis C. Gomez1, Yona Levites2, Sarah R. Edwards1, Todd E. Golde2, Bradley T. Hyman1, Gilad Barnea3 & Mark W. Albers1 The amyloid beta peptide aggregates into amyloid plaques at presymptomatic stages of Alzheimer’s disease, but the temporal relationship between plaque formation and neuronal dysfunction is poorly understood. Here we demonstrate that the connectivity of the peripheral olfactory neural circuit is perturbed in mice overexpressing human APPsw (Swedish mutation) before the onset of plaques. Expression of human APPsw exclusively in olfactory sensory neurons also perturbs connectivity with associated reductions in odour-evoked gene expression and olfactory acuity. By contrast, olfactory sensory neuron axons project correctly in mice overexpressing wild-type human amyloid precursor protein throughout the brain and in mice overexpressing M671V human APP, a missense mutation that reduces amyloid beta production, exclusively in olfactory sensory neurons. Furthermore, expression of Aβ40 or Aβ42 solely in the olfactory epithelium disrupts the olfactory sensory neuron axon targeting. Our data indicate that altering the structural connectivity and function of highly plastic neural circuits is one of the pleiotropic actions of soluble human amyloid beta. 1 Department of Neurology, MassGeneral Institute of Neurodegenerative Disease, Harvard Medical School, Boston, Massachusetts 02129, USA. 2 Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA. 3 Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
    [Show full text]
  • Olfactory Neural Circuitry for Attraction to Amino Acids Revealed by Transposon-Mediated Gene Trap Approach in Zebrafish
    Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish Tetsuya Koidea, Nobuhiko Miyasakaa, Kozo Morimotoa, Kazuhide Asakawab, Akihiro Urasakib, Koichi Kawakamib,c, and Yoshihiro Yoshiharaa,1 aLaboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; and bDivision of Molecular and Developmental Biology, National Institute of Genetics, and cDepartment of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan Edited by John E. Dowling, Harvard University, Cambridge, MA, and approved April 29, 2009 (received for review January 15, 2009) In fish, amino acids are food-related important olfactory cues to elicit ically distinct sensory neurons: ciliated OSNs, microvillous OSNs, an attractive response. However, the neural circuit underlying this and crypt cells. Each type of those neurons is supposed to express olfactory behavior is not fully elucidated. In the present study, we different classes of chemosensory receptors and signal transduction applied the Tol2 transposon-mediated gene trap method to dissect molecules, project axons to distinct regions of the OB, and mediate the zebrafish olfactory system genetically. Four zebrafish lines different physiological responses (10–12). The microvillous OSNs (SAGFF27A, SAGFF91B, SAGFF179A, and SAGFF228C) were estab- expressing V2R-type olfactory receptors and transient receptor lished in which the modified transcription activator Gal4FF was potential channel C2 innervate the lateral chain glomeruli that expressed in distinct subsets of olfactory sensory neurons (OSNs). The respond to amino acids, which are potential feeding cues (11, OSNs in individual lines projected axons to partially overlapping but 13–16).
    [Show full text]
  • Directed Expression of the Growth-Associated Protein B-50
    The Journal of Neuroscience, December 1995, 15(12): 7953-7965 Directed Expression of the Growth-Associated Protein B-50/GAP-43 to Olfactory’ Neurons in Transgenic Mice Results in Changes in Axon Morphology and Extraglomerular Fiber Growth Anthony J. G. D. Holtmaat,is2 Paul A. Dijkhuizen,’ A. Beate Oestreicher,* Herms J. Romijn,’ Nathalie M. T. Van der Lugt,3 Anton Bert-q3 Frank L. Margolis,4 Willem Hendrik Gispen,* and Joost Verhaagenl,* ‘Netherlands Institute for Brain Research, 1105 AZ Amsterdam-ZO, The Netherlands, *Rudolf Magnus Institute for Neuroscience, Department of Medical Pharmacology, 3584 CJ Utrecht, The Netherlands, 3The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands, and 4Roche Institute of Molecular Biology, Roche Research Center, Department of Neurosciences, Nutley, New Jersey 07110 B-50/GAP-43, a neural growth-associated phosphoprotein, Adult nervous systems are comprised of a multitude of discrete is thought to play a role in neuronal plasticity and nerve nerve tracts. The formation and maintenance of these tracts is fiber formation since it is expressed at high levels in de- under the stringent control of intra- and extracellular molecules. veloping and regenerating neurons and in growth cones. The latter include growth factors, cell adhesion molecules, re- Using a construct containing the coding sequence of B-50/ pulsive guidance cues and extracellular matrix components. A GAP-43 under the control of regulatory elements of the ol- protein speculated to be crucial in the intracellular mechanisms factory marker protein (OMP) gene, transgenic mice were that regulate nerve fiber formation is the growth-associated pro- generated to study the effect of directed expression of tein B-SO/GAP-43.
    [Show full text]