Full Text (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Full Text (PDF) B-ENT , 2009, 5, Suppl. 13, 21-37 Defence mechanisms of olfactory neuro-epithelium: mucosa regeneration, metabolising enzymes and transporters J.-B. Watelet *, M. Strolin-Benedetti ** and R. Whomsley *** *Department of Otorhinolaryngology, Ghent University, Belgium; **UCB sa, Colombes, France; ***Shire Pharmaceuticals, Basingstoke, Hampshire, UK Key-words. Olfactory; regeneration; cytochrome; transporters Abstract. Defence mechanisms of olfactory neuro-epithelium: mucosa regeneration, metabolising enzymes and trans - porters. The olfactory neuro-epithelium is highly sensitive to chemicals and its direct microbiological environment. It also plays a role as an interface between the airways and the nervous system, and so it has developed several defence instruments for rapid regeneration or for the detoxification of the immediate environment. This review illustrates three of these defence mechanisms: regeneration of the epithelium, local production of metabolising enzymes and xenobiotic transporters. Toxicants can inflict damage by a direct toxic response. Alternatively, they may require metabolic activation to produce the proximate toxicant. In addition to detoxifying inhaled and systemically derived xenobiotics, the local olfactory metabolism may fulfil multiple functions such as the modification of inhaled odorant, the modulation of endogenous signalling molecules and the protection of other tissues such as the CNS and lungs from inhaled toxicants. Finally, the permeability of nasal and olfactory mucosa is an important efficacy parameter for some anti-allergic drugs delivered by intranasal administration or inhalation. Efflux or update transporters expressed in these tissues may therefore significant - ly influence the pharmacokinetics of drugs administered topically. Introduction matic control or transporter acti - affect this highly differentiated vation, have been the subject of mucosa. Most of what we know Inspired air is brought high into several recent publications. about the toxic action of inhaled the nasal cavity to come in contact This review will provide an compounds is derived from experi - with the olfactory nerves, trig - overview of three major defence mental animal studies. gering the sense of smell, which is mechanisms for toxic or chemical intimately associated with taste. 1 insults to the olfactory mucosa. 1.1. Epidemiology The neuro-epithelium has several The inhalation of a number of instruments for ensuring optimal 1. Chemical injury of the olfac - environmental and industrial olfactory function. The olfactory tory epithelium chemicals can lead to olfactory neuro-epithelium is highly sensi - dysfunction. Even if the list of tive to the chemical or microbio - This section does not look at physi - theoretically toxic chemicals is logical environment and it acts as cal (e.g. irradiation...) or pharma - impressive, they are thought to be an interface between the airways cological injuries to the olfactory responsible for smell disorders in and the nervous system. As a mucosa. Many of the toxicity only 2% of patients. 5 The degree result, it is suspected that it facili - mechanisms are still under inves - of olfactory damage seems to be tates the direct transfection of bac - tigation and the literature is main - related to the timing and duration teria or viruses 2 or the transporta - ly based on case reports, making of the exposure, the concentration tion of chemicals 3,4 into the dura any generalisation hazardous. of the agent, and the intrinsic and nervous system. On the other The limited accessibility to biop - toxicity of the agent. It therefore hand, the defence mechanisms sies of human olfactory epitheli - remains difficult to establish a deployed by the olfactory neuro- um, in conjunction with their complete list of environmental epithelium for rapid regeneration small size, has resulted in an toxicants. Furthermore, the multi - or for detoxification of the imme - almost complete lack of informa - plicity of cofactors makes this diate environment, such as enzy - tion about how toxic compounds analysis even more complex. 22 J.-B. Watelet et al. Table 1 Many dusts produced in industry Major toxicants and industrial agents that may induce smell disorders have also been associated with Classes Agents Reported effect olfactory dysfunction, including grain, silicone, cotton, paper, Major toxic chemicals Benzene or benzol Hyposmia/anosmia cement, lead, coal, chromium, and Butyl acetate Hyposmia/anosmia nickel. Carbon disulphide Hyposmia/anosmia Chronic metal toxicity was Chlorine Hyposmia clearly illustrated in the case of Ethyl acetate Hyposmia/anosmia cadmium during the 1950s. Up Formaldehyde Hyposmia to 60% of people exposed to Hydrogen Hyposmia/anosmia cadmium for more than 10 years 6 Selenide Hyposmia presented an olfactory disorder. Paint solvents : Hyposmia/anosmia The olfactory toxicity of solvents acetone (e.g. acetone, acetophenone, ben - mineral turpentine (turps) zenes...) is mainly due to their true turpentine high lipophilicity. Olfactory naphtha toluene deficit increases with cumulative white spirit exposure. Finally, chronic expo - xylene sure to gases (such as carbon methyl ethyl ketone disulphide, carbon monoxide, Sulphuric acid Hyposmia sulphur dioxide, formaldehyde...) Trichloroethylene Hyposmia/anosmia can also directly affect the Major industrial agents Ashes Hyposmia olfactory mucosa. For example, Cadmium Hyposmia/anosmia exposure to ozone induces an Chalk Hyposmia increase in olfactory thresholds in 7 Chromium Hyposmia healthy controls but there is an adaptation phase after the initial Iron carboxyl Hyposmia experiments. Lead Hyposmia Nickel Hyposmia/anosmia 1.3. Principles underlying Ozone Temporary hyposmia damage to the olfactory mucosa Silicone dioxide Hyposmia Smell disorders secondary to toxic exposure can be due to multiple pathogenesis mechanisms: inflam - mation of the nasal mucosa leading to obstruction, neuro - Table 1 lists the major environ - 1.2.2. Chronic toxicity sensorial lesions, central disorders mental toxicants and their clinical On the other hand, when doses are or a combination of the above. consequences. lower and presented for a long This review will focus mainly period of time, the diagnosis can 1.2. Clinical presentation on peripheral neurosensorial be more difficult to establish and, disorders related to toxic injuries 1.2.1. Acute toxicity because of the long course of to the neuro-epithelium. However, The relationship between toxi - events, many confounding factors it is possible that some toxicants cants and accidental smell disor - also need to be taken into account: could also have a central impact ders is easier to identify when the e.g. age, viral infections, trau - on the smell function, even though exposure is massive and sudden. mas... the supporting data is very frag - The smell disorder can occur Chronic exposure to low levels mentary. within the first seconds or the first of benzene, butyl acetate, for - hours after exposure and can lead maldehyde, and paint solvent has 1.3.1. Histological damage to hyposmia or a transitory or per - been commonly reported with Attempts to link clinical anosmia manent anosmia. associated olfactory dysfunction. to olfactory membrane abnor - Defence mechanisms of olfactory mucosa 23 malities have provided relevant information about the clinical consequences of olfactory tissue damage. 8 After exposure to olfactotoxins, cytotoxicity at the level of the olfactory mucosa is seen almost immediately (in less than 24 h). The tissue damage due to perchloroethylene gas is more persistent in the nasal mucosa of the olfactory region than in the respiratory region. Two weeks after exposure, ciliated epithelial cells, as well as a pseudostratified nonciliated columnar epithelium, begin to appear in the area Figure 1 previously covered by olfactory Chemical structure of 2,6-methylsulphonyl-substituted dichlorobenzene (a) and 3- epithelium and remain for up to methylindole (b), regularly used for anosmia models. 3 months after exposure. A base - ment membrane is also present under the ciliated epithelium, sug - gesting a possible persistence of 1.3.2. Direct or indirect toxicity glands, and an apparent redistribu - basal cells. The olfactory epitheli - tion of CYP immunoreactivity um may therefore be replaced by Toxicants can exert their damaging within sustentacular cells. The ciliated respiratory epithelium. properties in different ways. Some treatment of mice with metyra - The lamina propria of the olfacto - agents, such as methylbromide pone, a CYP inhibitor, at 10 min ry mucosa, however, loses its nor - and 3-methylindole (Figure 1b), prior to and 2, 4, 6, and 8 h after a mal structure, with atrophy of the produce a direct toxic response. 12,13 single dichlobenil injection, pro - olfactory nerves and Bowman’s Other compounds, such as vided some protection against the glands. 9 Interestingly, whereas dimethylamine and 3-methyl - damaging effects of dichlobenil. 18 2,5-methylsulfonyl-substituted sulphate, require metabolic activa - Complementary results suggested dichlorobenzene (diCl-MeSO2-B) tion to produce the proximate that, in mice, 3-aminobenzamide, induces no signs of toxicity in the toxicant . 14-17 another inhibitor of CYP, can olfactory mucosa at doses as high Finally, in addition their direct also reduce the local toxicity as 130 mg/kg (i.p. injection), toxic effects, some toxicants can of dichlobenil in the olfactory necrosis of Bowman’s glands also have a strong impact on the mucosa, probably because of
Recommended publications
  • The Olfactory Receptor Associated Proteome
    INTERNATIONAL GRADUATE SCHOOL OF NEUROSCIENCES (IGSN) RUHR UNIVERSITÄT BOCHUM THE OLFACTORY RECEPTOR ASSOCIATED PROTEOME Doctoral Dissertation David Jonathan Barbour Department of Cell Physiology Thesis advisor: Prof. Dr. Dr. Dr. Hanns Hatt Bochum, Germany (30.12.05) ABSTRACT Olfactory receptors (OR) are G-protein-coupled membrane receptors (GPCRs) that comprise the largest vertebrate multigene family (~1,000 ORs in mouse and rat, ~350 in human); they are expressed individually in the sensory neurons of the nose and have also been identified in human testis and sperm. In order to gain further insight into the underlying molecular mechanisms of OR regulation, a bifurcate proteomic strategy was employed. Firstly, the question of stimulus induced plasticity of the olfactory sensory neuron was addressed. Juvenile mice were exposed to either a pulsed or continuous application of an aldehyde odorant, octanal, for 20 days. This was followed by behavioural, electrophysiological and proteomic investigations. Both treated groups displayed peripheral desensitization to octanal as determined by electro-olfactogram recordings. This was not due to anosmia as they were on average faster than the control group in a behavioural food discovery task. To elucidate differentially regulated proteins between the control and treated mice, fluorescent Difference Gel Electrophoresis (DIGE) was used. Seven significantly up-regulated and ten significantly down-regulated gel spots were identified in the continuously treated mice; four and twenty-four significantly up- and down-regulated spots were identified for the pulsed mice, respectively. The spots were excised and proteins were identified using mass spectrometry. Several promising candidate proteins were identified including potential transcription factors, cytoskeletal proteins as well as calcium binding and odorant binding proteins.
    [Show full text]
  • Spontaneous Neural Activity Is Required for the Establishment and Maintenance of the Olfactory Sensory Map
    Neuron, Vol. 42, 553–566, May 27, 2004, Copyright 2004 by Cell Press Spontaneous Neural Activity Is Required for the Establishment and Maintenance of the Olfactory Sensory Map C. Ron Yu,1,2 Jennifer Power,2 Gilad Barnea,2 mus and cortex, results from complementary gradients Sean O’Donnell,3 Hannah E.V. Brown,4 of ephrin receptors on retinal afferents and ephrins ex- Joseph Osborne,3 Richard Axel,2,3,4,* pressed by the multiple targets in the brain (Wilkinson, and Joseph A. Gogos2,5,* 2001). These retinotopic representations deconstruct 1Department of Anatomy and Cell Biology the visual scene into submaps that refine the image, 2 Center for Neurobiology and Behavior including ocular dominance columns and orientation 3 Department of Biochemistry columns, as well as cortical blobs that uniquely respond and Molecular Biophysics to color, motion, and spatial frequency (Van Essen et al., 4 Howard Hughes Medical Institute 1992). These refinements are sensitive to visual activity, 5 Department of Physiology and Cellular Biophysics and this has led to efforts to distinguish the relative College of Physicians and Surgeons contributions of innate determinants (timing of axon ar- Columbia University rival and molecular cues) and experiential or activity- New York, New York 10032 dependent mechanisms in the generation of the visual circuitry (Katz and Shatz, 1996). The problem is perhaps best illustrated by early recordings by Hubel and Wiesel Summary that demonstrated that cortical neurons respond prefer- entially to one or the other eye and segregate into ocular We have developed a genetic approach to examine dominance columns (LeVay et al., 1978; Wiesel and Hu- the role of spontaneous activity and synaptic release bel, 1963).
    [Show full text]
  • Proteomic Atlas of the Human Olfactory Bulb
    JOURNAL OF PROTEOMICS 75 (2012) 4005– 4016 Available online at www.sciencedirect.com www.elsevier.com/locate/jprot Proteomic atlas of the human olfactory bulb Joaquín Fernández-Irigoyena, Fernando J. Corralesb, Enrique Santamaríaa,⁎ aProteomics Unit, Biomedical Research Center (CIB), Navarra Health Service, 31008 Pamplona, Spain bProteomics Unit, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain ARTICLE INFO ABSTRACT Article history: The olfactory bulb (OB) is the first site for the processing of olfactory information in the Received 12 March 2012 brain and its deregulation is associated with neurodegenerative disorders. Although Accepted 7 May 2012 different efforts have been made to characterize the human brain proteome in depth, the Available online 15 May 2012 protein composition of the human OB remains largely unexplored. We have performed a comprehensive analysis of the human OB proteome employing protein and peptide Keywords: fractionation methods followed by LC-MS/MS, identifying 1529 protein species, correspond- Olfactory bulb ing to 1466 unique proteins, which represents a 7-fold increase in proteome coverage with Brain respect to previous OB proteome descriptions from translational models. Bioinformatic Proteomics analyses revealed that protein components of the OB participated in a plethora of biological Mass spectrometry process highlighting hydrolase and phosphatase activities and nucleotide and RNA binding Bioinformatics activities. Interestingly, 631 OB proteins identified were not previously described in protein datasets derived from large-scale Human Brain Proteome Project (HBPP) studies. In particular, a subset of these differential proteins was mainly involved in axon guidance, opioid signaling, neurotransmitter receptor binding, and synaptic plasticity. Taken together, these results increase our knowledge about the molecular composition of the human OB and may be useful to understand the molecular basis of the olfactory system and the etiology of its disorders.
    [Show full text]
  • Expressing Exogenous Functional Odorant Receptors in Cultured Olfactory Sensory Neurons Huaiyang Chen1, Sepehr Dadsetan2, Alla F Fomina2 and Qizhi Gong*1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Neural Development BioMed Central Methodology Open Access Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons Huaiyang Chen1, Sepehr Dadsetan2, Alla F Fomina2 and Qizhi Gong*1 Address: 1Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616, USA and 2Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA Email: Huaiyang Chen - [email protected]; Sepehr Dadsetan - [email protected]; Alla F Fomina - [email protected]; Qizhi Gong* - [email protected] * Corresponding author Published: 11 September 2008 Received: 22 May 2008 Accepted: 11 September 2008 Neural Development 2008, 3:22 doi:10.1186/1749-8104-3-22 This article is available from: http://www.neuraldevelopment.com/content/3/1/22 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment.
    [Show full text]
  • Genomics of Mature and Immature Olfactory Sensory Neurons Melissa D
    University of Kentucky UKnowledge Physiology Faculty Publications Physiology 8-15-2012 Genomics of Mature and Immature Olfactory Sensory Neurons Melissa D. Nickell University of Kentucky, [email protected] Patrick Breheny University of Kentucky, [email protected] Arnold J. Stromberg University of Kentucky, [email protected] Timothy S. McClintock University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physiology_facpub Part of the Genomics Commons, and the Physiology Commons Repository Citation Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; and McClintock, Timothy S., "Genomics of Mature and Immature Olfactory Sensory Neurons" (2012). Physiology Faculty Publications. 66. https://uknowledge.uky.edu/physiology_facpub/66 This Article is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Physiology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Genomics of Mature and Immature Olfactory Sensory Neurons Notes/Citation Information Published in Journal of Comparative Neurology, v. 520, issue 12, p. 2608-2629. Copyright © 2012 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Nickell, M. D., Breheny, P., Stromberg, A. J., and McClintock, T. S. (2012). Genomics of mature and immature olfactory sensory neurons. Journal of Comparative Neurology, 520: 2608–2629, which has been published in final form at http://dx.doi.org/ 10.1002/cne.23052. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
    [Show full text]
  • Mechanisms of Ciliary Targeting of the Olfactory Cyclic Nucleotide- Gated Channel
    Mechanisms of Ciliary Targeting of the Olfactory Cyclic Nucleotide- Gated Channel by Paul Michael Jenkins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Pharmacology) in The University of Michigan 2010 Doctoral Committee: Associate Professor Jeffrey Randall Martens, Chair Professor Lori L. Isom Professor Benjamin L. Margolis Associate Professor Kristen J. Verhey © Paul Michael Jenkins All Rights Reserved 2010 To my family ii ACKNOWLEDGEMENTS I would like to first extend my sincerest gratitude to my research mentor, Dr. Jeffrey R. Martens. The time I have spent in his laboratory has shaped me both professionally and personally. His drive and dedication to science serve as a model that I strive towards every day. The past few years have been extremely rewarding for me due to his friendship, patience, and continual mentoring. I would not be where I am today without his guidance. I would also like to acknowledge my thesis committee members, Dr. Lori Isom, Dr. Ben Margolis and Dr. Kristen Verhey. I have been extremely lucky to have a committee that not only acted as thesis advisors, but also as collaborators, mentors, and friends. I would like to thank the numerous members of the Martens laboratory, present and former: Kristin Arendt, Dave Dudek, Nikhil Iyer, Sajida Jackson, Qiuju Li, Dyke McEwen, Jeremy McIntyre, Sarah Schumacher, Laurie Svoboda, Kristin van Genderen, Eileen Vesely, Tiffney Widner, Liz Williams, Kendra Yum, and Lian Zhang. Your antics in lab have kept me alternating
    [Show full text]
  • A Role for STOML3 in Olfactory Sensory Transduction
    Research Article: New Research | Sensory and Motor Systems A role for STOML3 in olfactory sensory transduction https://doi.org/10.1523/ENEURO.0565-20.2021 Cite as: eNeuro 2021; 10.1523/ENEURO.0565-20.2021 Received: 28 December 2020 Revised: 25 January 2021 Accepted: 8 February 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Agostinelli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. A role for STOML3 in olfactory sensory transduction Abbreviated title: STOML3 in olfactory transduction Authors: Emilio Agostinelli1†, Kevin Y. Gonzalez-Velandia1†, Andres Hernandez-Clavijo1, Devendra Kumar Maurya1§, Elena Xerxa1, Gary R Lewin2, Michele Dibattista3‡, Anna Menini1‡, Simone Pifferi1,4‡ 1 Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy. 2 Molecular Physiology of Somatic Sensation, Department of Neuroscience, Max Delbrück Center for Molecular Medicine, D-13122 Berlin, Germany. 3 Department of Basic Medical Sciences, Neuroscience and Sensory
    [Show full text]
  • Archivio Istituzionale Open Access Dell'università Di Torino Transitory
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Transitory and activity-dependent expression of Neurogranin in olfactory bulb tufted cells during mouse postnatal development. This is the author's manuscript Original Citation: Transitory and activity-dependent expression of Neurogranin in olfactory bulb tufted cells during mouse postnatal development. / Gribaudo S.; Bovetti S.; Friard O.; Denorme M.; Oboti L.; Fasolo A.; De Marchis S.. - In: JOURNAL OF COMPARATIVE NEUROLOGY. - ISSN 1096-9861. - 520(2012), pp. 3055-3069. Availability: This version is available http://hdl.handle.net/2318/107513 since 2017-05-18T11:16:01Z Published version: DOI:10.1002/cne.23150 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 25 September 2021 This is an author version of the contribution published on: Questa è la versione dell’autore dell’opera: [The Journal of Comparative Neurology, 520 (14), 2012, DOI: 10.1002/cne.23150] ovvero [Gribaudo S., Bovetti S., Friard O., Denorme M., Oboti L., Fasolo A., De Marchis S. 520 (14), Wiley, 2012, pagg.3055-3069] The definitive version is available at: La versione definitiva è disponibile alla URL: [http://onlinelibrary.wiley.com/doi/10.1002/cne.23150/abstract;jsessionid=DA945D 1BAD21815004ADF2F5441730B9.f02t02] Transitory and Activity-Dependent Expression of Neurogranin in Olfactory Bulb Tufted Cells During Mouse Postnatal Development S.
    [Show full text]
  • Region Speci C Amyloid-Β Accumulation in the Olfactory
    Region specic amyloid-β accumulation in the olfactory system inuences olfactory sensory neuronal dysfunction in 5xFAD mice Gowoon Son Daegu Gyeongbuk Institute of Science and Technology Seung-Jun Yoo Daegu Gyeongbuk Institute of Science and Technology Shinwoo Kang Gachon University Ameer Rasheed Daegu Gyeongbuk Institute of Science and Technology Da Hae Jung Daegu Gyeongbuk Institute of Science and Technology Hyunjun Park Gachon University Bongki Cho Daegu Gyeongbuk Institute of Science and Technology Harry W.M. Steinbusch Universiteit Maastricht School for Mental Health and Neuroscience Keun-A Chang Gachon University Yoo-Hun Suh Gachon University Cheil Moon ( [email protected] ) DGIST https://orcid.org/0000-0002-9741-7229 Research Keywords: Alzheimer’s disease, Olfactory dysfunction, β-amyloid, 5xFAD, Olfactory sensory neuron, Zonal organization, Odor detection test, Ca2+ imaging, Topographic analysis, Neuronal turnover Posted Date: November 11th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-53345/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 4th, 2021. See the published version at https://doi.org/10.1186/s13195-020-00730-2. Page 1/25 Abstract Background: Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-β (Aβ), which is one of the toxic factors upregulated early in AD, has been identied in many studies, even in the peripheral areas. The pathology involving olfactory sensory neurons (OSNs) remains poorly understood. Methods: Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants.
    [Show full text]
  • Alters the Connectivity of Olfactory Neurons in the Absence of Amyloid Plaques in Vivo
    ARTICLE Received 23 Feb 2012 | Accepted 18 Jul 2012 | Published 21 Aug 2012 DOI: 10.1038/ncomms2013 Aβ alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo Luxiang Cao1, Benjamin R. Schrank1, Steve Rodriguez1, Eric G. Benz1, Thomas W. Moulia1, Gregory T. Rickenbacher1, Alexis C. Gomez1, Yona Levites2, Sarah R. Edwards1, Todd E. Golde2, Bradley T. Hyman1, Gilad Barnea3 & Mark W. Albers1 The amyloid beta peptide aggregates into amyloid plaques at presymptomatic stages of Alzheimer’s disease, but the temporal relationship between plaque formation and neuronal dysfunction is poorly understood. Here we demonstrate that the connectivity of the peripheral olfactory neural circuit is perturbed in mice overexpressing human APPsw (Swedish mutation) before the onset of plaques. Expression of human APPsw exclusively in olfactory sensory neurons also perturbs connectivity with associated reductions in odour-evoked gene expression and olfactory acuity. By contrast, olfactory sensory neuron axons project correctly in mice overexpressing wild-type human amyloid precursor protein throughout the brain and in mice overexpressing M671V human APP, a missense mutation that reduces amyloid beta production, exclusively in olfactory sensory neurons. Furthermore, expression of Aβ40 or Aβ42 solely in the olfactory epithelium disrupts the olfactory sensory neuron axon targeting. Our data indicate that altering the structural connectivity and function of highly plastic neural circuits is one of the pleiotropic actions of soluble human amyloid beta. 1 Department of Neurology, MassGeneral Institute of Neurodegenerative Disease, Harvard Medical School, Boston, Massachusetts 02129, USA. 2 Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA. 3 Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
    [Show full text]
  • Olfactory Neural Circuitry for Attraction to Amino Acids Revealed by Transposon-Mediated Gene Trap Approach in Zebrafish
    Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish Tetsuya Koidea, Nobuhiko Miyasakaa, Kozo Morimotoa, Kazuhide Asakawab, Akihiro Urasakib, Koichi Kawakamib,c, and Yoshihiro Yoshiharaa,1 aLaboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; and bDivision of Molecular and Developmental Biology, National Institute of Genetics, and cDepartment of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan Edited by John E. Dowling, Harvard University, Cambridge, MA, and approved April 29, 2009 (received for review January 15, 2009) In fish, amino acids are food-related important olfactory cues to elicit ically distinct sensory neurons: ciliated OSNs, microvillous OSNs, an attractive response. However, the neural circuit underlying this and crypt cells. Each type of those neurons is supposed to express olfactory behavior is not fully elucidated. In the present study, we different classes of chemosensory receptors and signal transduction applied the Tol2 transposon-mediated gene trap method to dissect molecules, project axons to distinct regions of the OB, and mediate the zebrafish olfactory system genetically. Four zebrafish lines different physiological responses (10–12). The microvillous OSNs (SAGFF27A, SAGFF91B, SAGFF179A, and SAGFF228C) were estab- expressing V2R-type olfactory receptors and transient receptor lished in which the modified transcription activator Gal4FF was potential channel C2 innervate the lateral chain glomeruli that expressed in distinct subsets of olfactory sensory neurons (OSNs). The respond to amino acids, which are potential feeding cues (11, OSNs in individual lines projected axons to partially overlapping but 13–16).
    [Show full text]
  • Directed Expression of the Growth-Associated Protein B-50
    The Journal of Neuroscience, December 1995, 15(12): 7953-7965 Directed Expression of the Growth-Associated Protein B-50/GAP-43 to Olfactory’ Neurons in Transgenic Mice Results in Changes in Axon Morphology and Extraglomerular Fiber Growth Anthony J. G. D. Holtmaat,is2 Paul A. Dijkhuizen,’ A. Beate Oestreicher,* Herms J. Romijn,’ Nathalie M. T. Van der Lugt,3 Anton Bert-q3 Frank L. Margolis,4 Willem Hendrik Gispen,* and Joost Verhaagenl,* ‘Netherlands Institute for Brain Research, 1105 AZ Amsterdam-ZO, The Netherlands, *Rudolf Magnus Institute for Neuroscience, Department of Medical Pharmacology, 3584 CJ Utrecht, The Netherlands, 3The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands, and 4Roche Institute of Molecular Biology, Roche Research Center, Department of Neurosciences, Nutley, New Jersey 07110 B-50/GAP-43, a neural growth-associated phosphoprotein, Adult nervous systems are comprised of a multitude of discrete is thought to play a role in neuronal plasticity and nerve nerve tracts. The formation and maintenance of these tracts is fiber formation since it is expressed at high levels in de- under the stringent control of intra- and extracellular molecules. veloping and regenerating neurons and in growth cones. The latter include growth factors, cell adhesion molecules, re- Using a construct containing the coding sequence of B-50/ pulsive guidance cues and extracellular matrix components. A GAP-43 under the control of regulatory elements of the ol- protein speculated to be crucial in the intracellular mechanisms factory marker protein (OMP) gene, transgenic mice were that regulate nerve fiber formation is the growth-associated pro- generated to study the effect of directed expression of tein B-SO/GAP-43.
    [Show full text]