Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan (Luma Apiculata) and Peumo (Cryptocarya Alba)

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan (Luma Apiculata) and Peumo (Cryptocarya Alba) antibiotics Article Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan (Luma apiculata) and Peumo (Cryptocarya alba) Jitka Viktorová 1, Rohitesh Kumar 1, Kateˇrina Rehoˇrovˇ á 1, Lan Hoang 1 , Tomas Ruml 1 , Carlos R. Figueroa 2 , Monika Valdenegro 3 and Lida Fuentes 4,* 1 Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; [email protected] (J.V.); [email protected] (R.K.); [email protected] (K.R.);ˇ [email protected] (L.H.); [email protected] (T.R.) 2 Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca 3465548, Chile; cfi[email protected] 3 Agronomy School, Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; [email protected] 4 Regional Center for Studies in Healthy Food (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001, Avenida Universidad, Valparaíso 2340000, Chile * Correspondence: [email protected] Received: 22 June 2020; Accepted: 21 July 2020; Published: 25 July 2020 Abstract: Arrayan and peumo fruits are commonly used in the traditional medicine of Chile. In this study, the concentration of the extracts halving the bacterial viability and biofilms formation and disruption of the drug-sensitive and drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa was determined. The chemical composition of extracts was analyzed by high-resolution liquid chromatography coupled with mass spectrometry (U-HPLC/MS). The arrayan extract (Inhibitory concentration IC 0.35 0.01 mg/mL) was more effective than peumo extract (IC 0.53 0.02 mg/mL) 50 ± 50 ± in the inhibition of S. aureus planktonic cells. Similarly, the arrayan extract was more effective in inhibiting the adhesion (S. aureus IC 0.23 0.02 mg/mL, P. aeruginosa IC 0.29 0.02 mg/mL) than 50 ± 50 ± peumo extracts (S. aureus IC 0.47 0.03 mg/mL, P. aeruginosa IC 0.35 0.01 mg/mL). Both extracts 50 ± 50 ± inhibited quorum sensing in a concentration-dependent manner, and the most significant was the autoinducer-2 type communication inhibition by arrayan extract. Both extracts also disrupted preformed biofilm of P. aeruginosa (arrayan IC 0.56 0.04 mg/mL, peumo IC 0.59 0.04 mg/mL). 50 ± 50 ± However, neither arrayan nor peumo extracts disrupted S. aureus mature biofilm. U-HPLC/MS showed that both fruit extracts mainly possessed quercetin compounds; the peumo fruit extract also contained phenolic acids and phenylpropanoids. Our results suggested that both extracts could be used as natural antimicrobials for some skin and nosocomial infections. Keywords: traditional medicine; drug-resistant bacteria; high-resolution HPLC/MS; biofilm disruption; quorum sensing 1. Introduction As part of the diets, many fruits of native species have been used as a traditional medicine in the South American region [1,2]. The Chilean trees, arrayan [Luma apiculata (DC.) Burret] and peumo [Cryptocarya alba (Molina) Looser], are ancestral species used in food and medicinal preparations [3,4]; however, the antimicrobial properties of both species are have not yet been described in detail. Arrayan (Luma apiculata) is a Myrtaceae [5] endemic plant from the Valparaiso to Aysen regions of Chile (latitude 33◦ to 45◦ S). It grows in the temperate forests of Chile and Argentina. Its fruit is an edible black or purple berry (Figure1A), with an intense flavor, aromatic, and a pleasant sweet Antibiotics 2020, 9, 444; doi:10.3390/antibiotics9080444 www.mdpi.com/journal/antibiotics Antibiotics 20202020, 9, x 444 2 of 13 14 edible black or purple berry (Figure 1A), with an intense flavor, aromatic, and a pleasant sweet taste. Lumataste. speciesLuma species (namely (namely L. apiculataL. apiculata and L. chequenand L.) chequenhave been) have previously been previously described described as a rich source as a rich of phenolicsource of compounds phenolic compounds with high antioxidant with high antioxidant activity [4]. activity Extracts [ 4of]. ripe Extracts fruits of of ripe arrayan fruits showed of arrayan the presenceshowed the of presenceflavonol of and flavonol anthocyanins, and anthocyanins, with high with highoxygen oxygen radical radical absorption absorption capacity capacity and concentrationconcentration-dependent-dependent vascular protectio protectionn under high glucose conditions [6] [6].. Moreover, Moreover, aqueous extracts demonstrated inhibition of the the collagen collagen-induced-induced aggregation aggregation of platelets platelets in in human human blood blood [7] [7],, indicatingindicating thethe potencypotency toto treat treat wounds wounds and and inflammations. inflammations. Further, Further, the the addition addition of dryof dry leaves leaves into into the thelettuce lettuce substratum substratum resulted resulted in betterin better control control of Meloidogyneof Meloidogyne hapla haplapopulation, population, nematode nematode known known as as a avegetable vegetable pathogen, pathogen, which which produces produces tiny tiny galls galls [ 8[8].]. ArrayanArrayan hashas alsoalso shownshown activityactivity against Herpes simplex virus type 2 [9] [9].. Figure 1. Branches with leaves and fruits of arrayan and peumo. ( (AA)) Arrayan [ [Luma apiculata (DC.)(DC.) Burret.Burret.]] *; (B) PeumoPeumo [[CryptocaryaCryptocarya albaalba(Molina) (Molina) Looser] Looser] **. ** Photography. Photography credit credit to to Carlos Carlos R. R. Figueroa Figueroa (*) (*)and and Lida Lida Fuentes Fuentes (**). (**). PPeumoeumo belongs belongs to to the the Lauraceae Lauraceae family family and and is isspread spread from from the the Maule Maule to toAraucania Araucania regions regions of Chileof Chile (latitude (latitude 35 35to ◦38toS) 38. The◦ S). ripe The fruit ripe is fruit a red is to a smooth red to smooth pink berry pink (Figure berry 1B (Figure), crowned1B), crowned with the remainswith the of remains the stamens of the and stamens calyx andlobes calyx. It has lobes. a large It hasseed a simil largear seedto a similarnut. Its toleaves a nut. and Its bark leaves are usedand barkin traditional are used inmedicine traditional to treat medicine liver diseases to treat liver and diseasesrheumatism and [10]. rheumatism The essential [10]. Theoil prepared essential byoil the prepared distillation by the of distillationpeumo showed of peumo activity showed against activityNosema againstceranae, Nosemathe originator ceranae of, the nosemosis originator in honeybeeof nosemosis [11]; in against honeybee insect [11 Sitophilus]; against zeamais insect Sitophilus Motschulsky zeamais, knownMotschulsky, as a maize known weevil, as acausing maize significantweevil, causing loses during significant cereals loses’ storage during [12] cereals’; and against storage Musca [12]; domestica and against L. [13]Musca. Moreover, domestica the L.leaves [13]. extractMoreover, demonstrated the leaves extract a protective demonstrated effect against a protective ethyl e ffmethaneect against sulph ethylonate methane-induced sulphonate-induced mutagenesis in Drosophilamutagenesis melanogaster in Drosophila [14] melanogaster. The edible[14 peumo]. The skin edible has peumo a large skin number has a largeof polyphenol number ofic polyphenolic compounds [15]compounds, related [to15 high], related antioxidant to high capacity antioxidant [15,16] capacity. Besides [15 ,the16]. other Besides biologically the other active biologically compounds, active cryptofolionecompounds, cryptofolione and its dihydro and its-derivative dihydro-derivative were isolated were isolatedfrom the from fruits the fruits of C. of C.alba alba [17][17. ].In In the the trypanocidal assay,assay, cryptofolione cryptofolione at at 250 250µg µg/mL/mL reduced reduced the the number number of trypomastigotes of trypomastigotes by 77%, by while77%, whileits dihydro-derivative its dihydro-derivative was inactive. was inactive However,. However, cryptofolione cryptofolione at tenfold at tenfold lower concentration lower concentration (25 µg/mL) (25 µg/mL)reduced reduced the viability the viability of macrophages, of macrophages demonstrating, demonstrating a cytotoxic a cytotoxic effect instead effect ofinstead selectivity of selectivity towards Trypanosomatowards Trypanosoma cruzi [17]. cruzi [17]. The antimicrobial activity of fruit extracts extracts,, including the native fruit fruitss of Chile, has usually be beenen related to total phenolic content and compounds compounds such as as chlorogenic chlorogenic acid, quercetin, quercetin, ellagic acid, and quercetinquercetin-3-galactoside-3-galactoside [18 [18–21]21].. T Thehe hydroxyl hydroxyl groups of polyphenolic compounds play a significant significant role in inhibit inhibitinging the key enzymatic activities of bacteria and inducing cell toxicity [[22]22].. TThishis study aimed to characterize the antimicrobial activity and the phytochemical profile profile of fruitfruit-extracts-extracts and seek potential uses of arrayan and peumo species in the medicinal treatment.treatment. 2. Results 2.1. Inhibition of Multidrug-Resistant Bacterial Strains Antibiotics 2020, 9, 444 3 of 14 2. Results 2.1. Inhibition of Multidrug-Resistant Bacterial Strains As drug-resistant strains, we used clinical isolates obtained from the Collection of the Laboratory of Medical Microbiology (Czech Laboratory, lnc., NEM) resistant to several drugs. Overall, arrayan extract was effective in inhibiting both the drug-resistant and drug-sensitive strains of S. aureus, with almost the same IC50 values (Table1). However, the
Recommended publications
  • Physiochemical and Antibacterial Characterization of Fruits of Three Chilean Trees
    72 Fruits (2), 87–96 | ISSN 0248-1294 print, 1625-967X online | https://doi.org/10.17660/th.2017/72.2.4 | © ISHS 2017 Original article Citronella mucronata (Cardiopteridaceae), Pitavia punctata (Rutaceae)Physiochemical and Beilschmiediaand antibacterial berteroana characterization (Lauraceae), of fruits three of endemic and threatened Chilean trees , G.F. Narváez2, M.F. Morales3 3 4 and C.R. Figueroa 1 5,a F.A.12 Sáez , H.M. Bello , C. Balbontín 3 Master Program in Forest Sciences, Faculty of Forest Sciences, University of Concepción, Concepción, Chile 4 Faculty of Forest Sciences, University of Concepción, Concepción, Chile Research Lab of Antibacterial Agents, Faculty of Biological Sciences, University of Concepción, Concepción, Chile 5 Small Fruits and Berry Crops Research, Institute for Agricultural Research (INIA)-Quilamapu, Chillán, Chile Phytohormone Research Laboratory, Institute of Biological Sciences, University of Talca, Talca, Chile Summary Significance of this study Introduction – Several native tree species are What is already known on this subject? scarcely studied in relation to fruit properties. In or- • Citronella mucronata, Pitavia punctata and Beilschmie- der to bring about information of these plant resourc- dia berteroana are threatened endemic trees of central es, the characterization of ripening-associated prop- erties of the fruit of three endemic and threatened studied. Chilean trees (Citronella mucronata, Pitavia punctata Chile whose fruit properties have been scarcely and Beilschmiedia berteroana) was performed in the What are the new findings? present study. Materials and methods – The physio- • C. mucronata and P. punctata chemical characterization of two developmental fruit a high amount of pectin and bacteriostatic effect, stages in each species included the measurement of fruits extracts showed soluble solid content (SSC), titratable acidity (TA), pH, for both fruits.
    [Show full text]
  • New Plantings in the Arboretum the YEAR in REVIEW
    Four new have been Four new Yoshino cherry trees have Yoshinobeen planted along planted Azalea Way. cherry trees along Azalea New Plantings in the Arboretum THE YEAR IN REVIEW T EX T B Y R AY L A R SON P HO T OS B Y N IA ll D UNNE n the five years that I have been curator, 2018 was the most active in terms of new plantings in the Arboretum. A majority of these centered around the new Arboretum Loop Trail and adjacent areas, many of which were enhanced, rehabilitated and Iaugmented. We also made improvements to a few other collection and garden areas with individual and smaller plantings. Following is a summary of some of the more noticeable new plantings you might encounter during your next visit. Winter 2019 v 3 Arboretum Entrance Perhaps the most obvious major planting occurred in March, just north of the Graham Visitors Center, with the creation of a new, large bed at the southeast corner of the intersection of Arboretum Drive and Foster Island Road. This intersection changed a lot as part of the Loop Trail construction—with the addition of new curbs and crosswalks—and we wanted to create a fitting entrance to the Arboretum at its north end. The new planting was also intended to alleviate some of the soil compaction and social trails that had developed on the east side of Arboretum Drive during trail construction. What’s more, we wanted to encourage pedes- trians to use the new gravel trail on the west side of the Drive to connect from the lower parking lots to the Visitors Center—rather than walk in the road.
    [Show full text]
  • Effects of Forest Fragmentation on Biodiversity in the Andes Region Efectos De Fragmentación De Los Bosques Sobre La Biodivers
    Universidad de Concepción Dirección de Posgrado Facultad de Ciencias Forestales PROGRAMA DE DOCTORADO EN CIENCIAS FORESTALES Effects of forest fragmentation on biodiversity in the Andes region Efectos de fragmentación de los bosques sobre la biodiversidad en la región de los andes Tesis para optar al grado de Doctor en Ciencias Forestales JIN KYOUNG NOH Concepción-Chile 2019 Profesor Guía: Cristian Echeverría Leal, Ph.D. Profesor Co-guía: Aníbal Pauchard, Ph.D. Dpto. de Manejo de Bosques y Medioambiente Facultad de Ciencias Forestales Universidad de Concepción ii Effects of forest fragmentation on biodiversity in the Andes region Comisión Evaluadora: Cristian Echeverría (Profesor guía) Ingeniero Forestal, Ph.D. Aníbal Pauchard (Profesor co-guía) Ingeniero Forestal, Ph.D. Francis Dube (Comisión Evaluador) Ingeniero Forestal, Doctor Horacio Samaniego (Comisión Evaluador) Ingeniero Forestal, Ph.D. Directora de Posgrado: Darcy Ríos Biologa, Ph.D. Decano Facultad de Ciencias Forestales: Jorge Cancino Ingeniero Forestal, Ph.D. iii DEDICATORIA 활짝 웃으며 내 손잡고, 길고 힘들었던 여정을 동행해 준 나의 사랑하는 남편 파블로, 바쁜 엄마를 이해하고 위로하고 사랑해주는 나의 소중한 두 꼬맹이 테오와 벤자민, 조건없는 사랑으로 믿고 이끌고 도와주신 존경하고 사랑하는 아빠 (노창균)와 엄마 (최문경)께 이 논문을 바칩니다. Para mi esposo, Pablo Cuenca, por su extraordinaria generosidad, fortaleza y dulzura. Para mis hijos, Teo y Benjamin, que son mi mayor fortaleza y motivación. Para mis padres, Chang Gyun Noh y Moon Kyung Choi quienes me brindaron su amor incondicional y me motivaron a seguir adelante. iv ACKNOWLEDGMENTS I would like to acknowledge with great pleasure all people and organizations mention below for their assistance and support. My deepest appreciation to Dr.
    [Show full text]
  • Chile: a Journey to the End of the World in Search of Temperate Rainforest Giants
    Eliot Barden Kew Diploma Course 53 July 2017 Chile: A Journey to the end of the world in search of Temperate Rainforest Giants Valdivian Rainforest at Alerce Andino Author May 2017 1 Eliot Barden Kew Diploma Course 53 July 2017 Table of Contents 1. Title Page 2. Contents 3. Table of Figures/Introduction 4. Introduction Continued 5. Introduction Continued 6. Aims 7. Aims Continued / Itinerary 8. Itinerary Continued / Objective / the Santiago Metropolitan Park 9. The Santiago Metropolitan Park Continued 10. The Santiago Metropolitan Park Continued 11. Jardín Botánico Chagual / Jardin Botanico Nacional, Viña del Mar 12. Jardin Botanico Nacional Viña del Mar Continued 13. Jardin Botanico Nacional Viña del Mar Continued 14. Jardin Botanico Nacional Viña del Mar Continued / La Campana National Park 15. La Campana National Park Continued / Huilo Huilo Biological Reserve Valdivian Temperate Rainforest 16. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 17. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 18. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued / Volcano Osorno 19. Volcano Osorno Continued / Vicente Perez Rosales National Park 20. Vicente Perez Rosales National Park Continued / Alerce Andino National Park 21. Alerce Andino National Park Continued 22. Francisco Coloane Marine Park 23. Francisco Coloane Marine Park Continued 24. Francisco Coloane Marine Park Continued / Outcomes 25. Expenditure / Thank you 2 Eliot Barden Kew Diploma Course 53 July 2017 Table of Figures Figure 1.) Valdivian Temperate Rainforest Alerce Andino [Photograph; Author] May (2017) Figure 2. Map of National parks of Chile Figure 3. Map of Chile Figure 4. Santiago Metropolitan Park [Photograph; Author] May (2017) Figure 5.
    [Show full text]
  • Potpourri Planting” – Be Brave!! Some Aspects of Tree Planting & Aftercare
    Avoid weak “potpourri planting” – be brave!! Some Aspects of Tree Planting & Aftercare Poor stock, poor staking, no watering, no mulching “Cynical Tokenism” (Alan Simson) Plonking by Plonkers Poor Positioning? Right tree Right place? Clay soil - Smearing – Gypsum may help [Calcium sulphate] Amazing success planting in rubble blinded with soil Good aeration + great gaseous exchange O2 in Co2 out Stockholm – Structural soil + crushed rock + nutrients + Biochar + aeration 1. Selected surfacing 2. Upper sub base minimum 300mm 3. Root directors 4. Aeration and irrigation inlet cover 5. Rootball 6. Treebunker posts 7. Soil infill 8. Irrigation pipe 9. Geotextile 10. Lower sub base usually 100mm deep. Nursery Stock Quality A good bare-rooted tree Less good - reject Pot-bound root systems are OK – but you must damage them! Planting pits – square? As wide as possible and only as deep as the root system. Mound Planting On heavy clay or shallow soils. But is this proper mound planting? Backfill and Soil Ameliorants Snake Oil?: Worth considering?: • Mycorrhizal inoculants • Organic matter [10% max] and/or grit • Seaweed extract • Sugar • Planting compost? • Probiotics • Auxins • Rigel-G • Hydro gels • Biochar • Bark & wood chips [mulch] ‘Garden’ Placenta Aftercare Weed control Glyphosate? Strimmer/Mower damage Let’s just forget about it… Case Study - Dead Maple in Richmond, Surrey – Summer 2012 One of the wettest on record Formative Pruning – Eliminating future Defects Non Bio-degradable Plastic-Coated Galvanised Wire on root ball and slow degradable
    [Show full text]
  • Lahuén Ñadi ‡ 114 ‡ Monumentos Naturales De Chile
    09.- ‡ Lahuén Ñadi ‡ 114 ‡ Monumentos Naturales de Chile Helecho película (hymenophyllum pectinatum). Lahuén Ñadi ‡ 115 Natural Monument (NM) Declaration Date: January 10, 2000. Fecha de creación como Monumento Natural (MN): 10 de enero del año 2000. Location: Region X of The Lakes, Llanquihue Province, Puerto Montt County. Ubicación: X Región de los Lagos, provincia de Llanquihue, comuna de Puerto Montt. Surface area: 200 hectares1. Superficie: 200 hectáreas1. Motive for conservation: It is a small relic of an old-growth forest, representative of the temperate rainforests that Motivo de conservación: Es un pequeño bosque relicto, covered the entirety of the intermediate depression of Chile representativo de los bosques húmedos templados de la prior to the European colonization period, particularly zona sur de Chile que cubrían la depresión intermedia de la the German colonization that took place during the 19th región antes de la colonización europea, particularmente century. The forest contains alerce trees that are over 1,800 alemana, durante el siglo XIX. Destacan los alerces, algunos years old. Old-growth alerce trees are nearly extinct, con hasta 1.800 años de edad. Esta especie casi se extinguió, but continue to exist in protected areas like this. y hoy sólo sobrevive gracias a áreas protegidas como ésta. 1 www.conaf.cl Reviewed July 3, 2012. 1 www.conaf.cl Revisado 3-7-2012 116 ‡ Monumentos Naturales de Chile Lahuén Ñadi ‡ 117 118 ‡ Monumentos Naturales de Chile Dosel de alerces. Name origin: The name derives from the indigenous Mapudungún Origen del nombre: Proviene del mapudungún, lengua language, spoken by the Huilliche people who used to inhabit utilizada por los huilliches que habitaban la zona.
    [Show full text]
  • Comparing Generalized Linear Models and Random Forest to Model Vascular Plant Species Richness Using Lidar Data in a Natural Forest in Central Chile
    Remote Sensing of Environment 173 (2016) 200–210 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Comparing Generalized Linear Models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile J. Lopatin a,b,⁎,1,K.Dolosa,1,H.J.Hernándezb, M. Galleguillos c,d, F.E. Fassnacht a a Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany b Laboratory of Geomatics and Landscape Ecology, Faculty of Forest and Nature Conservation, University of Chile, 11315 Santa Rosa, Santiago, Chile c Department of Environmental Sciences, School of Agronomic Sciences, University of Chile, 11315 Santiago, Chile d Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile article info abstract Article history: Biodiversity is considered to be an essential element of the Earth system, driving important ecosystem services. Received 6 May 2015 However, the conservation of biodiversity in a quickly changing world is a challenging task which requires cost- Received in revised form 13 November 2015 efficient and precise monitoring systems. In the present study, the suitability of airborne discrete-return LiDAR Accepted 23 November 2015 data for the mapping of vascular plant species richness within a Sub-Mediterranean second growth native forest Available online xxxx ecosystem was examined. The vascular plant richness of four different layers (total, tree, shrub and herb richness) was modeled using twelve LiDAR-derived variables. As species richness values are typically count data, the cor- Keywords: Species richness responding asymmetry and heteroscedasticity in the error distribution has to be considered.
    [Show full text]
  • Native Plant Diversity and Composition Across a Pinus Radiata D.Don Plantation Landscape in South-Central Chile—The Impact Of
    Article Native Plant Diversity and Composition Across a Pinus radiata D.Don Plantation Landscape in South-Central Chile—The Impact of Plantation Age, Logging Roads and Alien Species Steffi Heinrichs 1,*, Aníbal Pauchard 2,3 and Peter Schall 1 1 Department Silviculture and Forest Ecology of the Temperate Zones, University of Goettingen, 37077 Göttingen, Germany; [email protected] 2 Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 3349001, Chile; [email protected] 3 Institute of Ecology and Biodiversity (IEB), Santiago 8320000, Chile * Correspondence: [email protected]; Tel.: +49-551-395-974 Received: 18 July 2018; Accepted: 12 September 2018; Published: 14 September 2018 Abstract: Alien tree plantations are expanding globally with potential negative effects for native biodiversity. We investigated plant species diversity and composition in a Pinus radiata landscape in south-central Chile, a biodiversity hotspot, by sampling understory vegetation in different plantation age classes, along forest roads and in natural forest remnants in order to find effective conservation measures for native biodiversity. Plantations, including different age classes and roadsides, maintained high native species richness at the landscape scale but supported a completely different community composition than natural forests. Thus, natural forest remnants must be conserved as plantations cannot replace them. Certain natural forest species occurred frequently in mature plantations and can represent starting points for retaining natural elements in plantations. Generalist native and alien species benefited from plantation management, mainly in young plantations and along roadsides. Stand maturation and a closed canopy, though, reduced alien species occurrences within plantations. Along roads, shade-tolerant aliens should be monitored and removed as they can potentially invade natural forests.
    [Show full text]
  • Principles and Practice of Forest Landscape Restoration Case Studies from the Drylands of Latin America Edited by A.C
    Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,000 government and NGO members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in 60 offices and hundreds of partners in public, NGO and private sectors around the world. www.iucn.org Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor This book is dedicated to the memory of Margarito Sánchez Carrada, a student who worked on the research project described in these pages. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the European Commission concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Wildlife Travel Chile 2018
    Chile, species list and trip report, 18 November to 5 December 2018 WILDLIFE TRAVEL v Chile 2018 Chile, species list and trip report, 18 November to 5 December 2018 # DATE LOCATIONS AND NOTES 1 18 November Departure from the UK. 2 19 November Arrival in Santiago and visit to El Yeso Valley. 3 20 November Departure for Robinson Crusoe (Más a Tierra). Explore San Juan Bautista. 4 21 November Juan Fernández National Park - Plazoleta del Yunque. 5 22 November Boat trip to Morro Juanango. Santuario de la Naturaleza Farolela Blanca. 6 23 November San Juan Bautista. Boat to Bahía del Padre. Return to Santiago. 7 24 November Departure for Chiloé. Dalcahue. Parque Tepuhueico. 8 25 November Parque Tepuhueico. 9 26 November Parque Tepuhueico. 10 27 November Dalcahue. Quinchao Island - Achao, Quinchao. 11 28 November Puñihuil - boat trip to Isla Metalqui. Caulin Bay. Ancud. 12 29 November Ferry across Canal de Chacao. Return to Santiago. Farellones. 13 30 November Departure for Easter Island (Rapa Nui). Ahu Tahai. Puna Pau. Ahu Akivi. 14 1 December Anakena. Te Pito Kura. Anu Tongariki. Rano Raraku. Boat trip to Motu Nui. 15 2 December Hanga Roa. Ranu Kau and Orongo. Boat trip to Motu Nui. 16 3 December Hanga Roa. Return to Santiago. 17 4 December Cerro San Cristóbal and Cerro Santa Lucía. Return to UK. Chile, species list and trip report, 18 November to 5 December 2018 LIST OF TRAVELLERS Leader Laurie Jackson West Sussex Guides Claudio Vidal Far South Expeditions Josie Nahoe Haumaka Tours Front - view of the Andes from Quinchao. Chile, species list and trip report, 18 November to 5 December 2018 Days One and Two: 18 - 19 November.
    [Show full text]
  • Assessment of Combined Toxicity of Heavy Metals from Industrial Wastewaters on Photobacterium Phosphoreum T3S
    Appl Water Sci DOI 10.1007/s13201-016-0385-4 ORIGINAL ARTICLE Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S 1,2 1 2 1 2 BibiSaima Zeb • Zheng Ping • Qaisar Mahmood • Qiu Lin • Arshid Pervez • 2 2 2 Muhammad Irshad • Muhammad Bilal • Zulfiqar Ahmad Bhatti • Shahida Shaheen2 Received: 19 May 2015 / Accepted: 19 January 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This research work is focusing on the toxicities Introduction of heavy metals of industrial origin to anaerobic digestion of the industrial wastewater. Photobacterium phospho- The presence of heavy metals in excess amounts inter- reum T3S was used as an indicator organism. The acute feres with the beneficial uses of water because of the toxicities of heavy metals on P. phosphoreum T3S were toxicity of heavy metals and the biomagnification effect assessed during 15-min half inhibitory concentration brought on by its accumulation on ecology (Chang et al. (IC50) as indicator at pH 5.5–6. Toxicity assays involved 2006; Altas 2009). During recent times, heavy metals the assessment of multicomponent mixtures using TU and were focus of attention owing to their hazardous nature MTI approaches. The results of individual toxicity indi- and subsequent toxicity studies. Various workers have cated that the toxicity of Cd, Cu and Pb on P. phospho- assessed the combined toxicity of heavy metals (Su reum increased with increasing concentrations and there et al. 2012;Quetal.2013; Mochida et al. 2006). It has was a linear correlation. The 15-min IC50 values of Cd, Cu been argued that the effects caused by combinations of and Pb were 0.537, 1.905 and 1.231 mg/L, respectively, various heavy metals may be more threatening and and their toxic order was Cd [ Pb [ Cu.
    [Show full text]
  • Introduction
    Guidance for Assay Development & HTS March 2007 Version 5 Section I: Introduction Introduction Copyright © 2005, Eli Lilly and Company and the National Institutes of Health Chemical Genomics Center. All Rights Reserved. For more information, please review the Privacy Policy and Site Usage and Agreement. Table of Contents A. INTRODUCTION This document is written to provide guidance to investigators that are interested in developing assays useful for the evaluation of compound collections to identify chemical probes that modulate the activity of biological targets. Originally written as a guide for therapeutic projects teams within a major pharmaceutical company, this manual has been adapted to provide guidelines for: a. Identifying potential assay formats compatible with High Throughput Screen (HTS), and Structure Activity Relationship (SAR) b. Developing optimal assay reagents c. Optimizing assay protocol with respect to sensitivity, dynamic range, signal intensity and stability d. Adopting screening assays to automation and scale up in microtiter plate formats e. Statistical validation of the assay performance parameters f. Secondary follow up assays for chemical probe validation and SAR refinement g. Data standards to be followed in reporting screening and SAR assay results. General definition of biological assays This manual is intended to provide guidance in the area of biological assay development, screening and compound evaluation. In this regard an assay is defined by a set of reagents that produce a detectable signal allowing a biological process to be quantified. In general, the quality of an assay is defined by the robustness and reproducibility of this signal in the absence of any test compounds or in the presence of inactive compounds.
    [Show full text]