Bertiella Studeri Infection, China

Total Page:16

File Type:pdf, Size:1020Kb

Bertiella Studeri Infection, China LETTERS Bertiella studeri was 0.1 cm, and the total length of all may exist in soil to maintain natural proglottids was 13 cm; each segment infection, and the definitive host is Infection, China was 0.68–1.10 cm in width. Eggs (N = infected by eating or otherwise com- To the Editor: Bertiella is a genus 53) were examined microscopically; ing into contact with contaminated of tapeworm in the family they were roundish or oval, an aver- soil or food. Animal infection has µ Anoplocephalidae, many species of age of 45.31 m diameter (range been recorded in some provinces in µ which exist as parasites of nonhuman 37.93–50.00 m), and clearly showed China, and human bertiellosis has primates. Two species of the genus, typical pyriform apparatus, with visi- been recorded in Sri Lanka (4), Saudi Bertiella studeri and B. mucronata, ble hooklets (Figure). Other laborato- Arabia (5), Vietnam (6), Japan (7), can infect humans (1). More than 50 ry examinations showed hemoglobin India (8), Thailand, Malaysia, and × cases of human infection have been level of 110 g/L, erythrocytes 3.9 other Asian countries. However, 12 × 9 recorded, and the geographic distribu- 10 cells/L, and leukocytes 8.0 10 according to the most recent Chinese tion of cases shows that the tapeworm cells/L. Although 2 species can para- authoritative text, Human Parasit- exists in countries in Asia, Africa, and sitize humans, the geographic distri- ology (9), no human bertiellosis has the Americas. We report a B. studeri bution and egg size of these species been recorded in China. Humans are infection in a person; to our knowl- differ (2). B. mucronata has smaller infected by unconsciously swallowing edge, this case of bertiellosis is the eggs and is found only in the New infected mites, and in Mauritius, chil- first in China. World. On the basis of the size of the dren were infected by eating guavas The patient was a 3.5-year-old proglottids (3), larger eggs with pyri- that had fallen on the soil (10). Other Chinese boy from Suzhou City, Anhui form apparatus and hooklets, and geo- human infections may have occurred, Province. The boy had a 6-month his- graphic distribution, the infecting ces- but infected persons may have had tory of frequent abdominal pain. His tode was identified as B. studeri. mild symptoms and not noticed parents had noticed living “parasites” The origin of infection was not expelling the segments, so local doc- in his feces for 3 months; a segment of confirmed; the only clue was that the tors may have considered the cases to the worm was expelled every 2 or 3 boy’s parents had once raised tame have been caused by a common ces- days. According to the symptoms, monkeys in a zoo. When the boy was tode. To prevent human bertiellosis, doctors at the local hospital diagnosed 2 years old, he often played in the the relationship between human cases his condition as Taenia solium infec- wildland, which is part of the zoo near and the natural host must be investi- tion and prescribed praziquantel, but the forest, and frequently fed and gated. no drug was available in the hospital played with the captured monkeys. or local drugstores. Consequently, the Further questioning showed that the Acknowledgments parents brought the child to Bengbu boy had also been in frequent contact We thank Guan-Ling Wu, Yong Medical College for further diagnosis with wild monkeys. We could not Wang, You-Fang Gu, Bai-Qing Li, Ze and treatment. confirm whether he had been infected Min, and Bei Yao for assisting with our lit- The patient appeared healthy; rou- by eating monkey food contaminated erature collection and manuscript writing. tine medical examination showed nor- with mites. mal heart, lung, liver, and spleen, and The lifecycle of the cestode Xin Sun,*† Qiang Fang,*† he had no fever. Though the patient requires 2 hosts; nonhuman primates Xing-Zhi Chen,*† Shou-Feng Hu,*† had intermittent epigastric pain, the are generally the final host, while ori- Hui Xia,*† and Xue-Mei Wang*† abdomen was soft and tender. A total batid mites are the intermediate host, *Bengbu Medical College, Bengbu, China; of 133 proglottids were collected in which the infective cysticercoid of and †Anhui Provincial Key Laboratory of from the feces. Their average length the cestode develops. Orbatid mites Infection and Immunity, Bengbu, China References 1. Beaver PC, Jung RC, Cupp EW. Cyclophyllidean tapeworms. In: Beaver PC, Jung RC, Cupp EW, editors. Clinical parasitology. 9th ed. Philadelphia: Lea and Febiger; 1984. p 505–6. 2. Galan-Puchades MT, Fuentes MV, Mas- Coma S. Morphology of Bertiella studeri (Blanchard, 1891) sensu Stunkard (1940) Figure. Eggs collected from proglottids. Left panel shows the length of the egg, scale bar (Cestoda: Anoplocephalidae) of human ori- = 10µm; middle panel shows the hooklets in the egg; right panel shows the pyriform appa- gin and a proposal of criteria for the specif- ratus in the egg (under convert microscope). 176 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 1, January 2006 LETTERS ic diagnosis of bertiellosis. Folia Parasitol 6. Xuan le T, Anantaphruti MT, Tuan PA, Tu 9. Bao H-E. In: Bertiella studeri. Guanling (Praha). 2000;47:23–8. le X, Hien TV. The first human infection WU, editor. Human parasitology. 3rd ed. 3. Frean J, Dini L. Unusual anoplocephalid with Bertiella studeri in Vietnam. Southeast Beijing: People’s Health Publishing House; tapeworm infections in South Africa. Asian J Trop Med Public Health. 2005. p. 569–70. Annals of the Australasian College of 2003;34:298–300. 10. Bhagwant S. Human Bertiella studeri (fam- Tropical Medicine. 2004;5:8–11. 7. Ando K, Ito T, Miura K, Matsuoka H, ily Anoplocephalidae) infection of probable 4. Gallella SD, Gunawardena GS, Chinzei Y. Infection of an adult in Mie Southeast Asian origin in Mauritian chil- Karunaweera ND. Bertiella studeri infec- Prefecture, Japan, by Bertiella studeri. dren and an adult. Am J Trop Med Hyg. tion: resistance to niclosamide. Ceylon Med Southeast Asian J Trop Med Public Health. 2004;70:225–8. J. 2004;49:65. 1996;27:200–1. 5. El-Dib NA, Al-Rufaii A, El-Badry AA, Al- 8. Panda DN, Panda MR. Record of Bertiella Address for correspondence: Xin Sun, Zoheiry AA, Abd El-Aal AA. Human infec- studeri (Blanchard, 1891), an anoplo- Department of Parasitology, Bengbu Medical tion with Bertiella species in Saudi Arabia. cephalid tapeworm, from a child. Ann Trop Saudi Pharmaceutical Journal. 2004;12: Med Parasitol. 1994;88:451–2. College, Anhui Provincial Key Laboratory of 168–9. Infection and Immunity, 801 Zhihuai Rd, The opinions expressed by authors contributing to this journal do not necessarily reflect the Bengbu 233003, China; fax: 86-552-317-1333; opinions of the Centers for Disease Control and Prevention or the institutions with which the email: [email protected] authors are affiliated. Search past issues Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 1, January 2006 177.
Recommended publications
  • Gastrointestinal Helminthic Parasites of Habituated Wild Chimpanzees
    Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Gastrointestinal helminthic parasites of habituated wild chimpanzees (Pan troglodytes verus) in the Taï NP, Côte d’Ivoire − including characterization of cultured helminth developmental stages using genetic markers Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Sonja Metzger Tierärztin aus München Berlin 2014 Journal-Nr.: 3727 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Georg von Samson-Himmelstjerna Zweiter Gutachter: Univ.-Prof. Dr. Heribert Hofer Dritter Gutachter: Univ.-Prof. Dr. Achim Gruber Deskriptoren (nach CAB-Thesaurus): chimpanzees, helminths, host parasite relationships, fecal examination, characterization, developmental stages, ribosomal RNA, mitochondrial DNA Tag der Promotion: 10.06.2015 Contents I INTRODUCTION ---------------------------------------------------- 1- 4 I.1 Background 1- 3 I.2 Study objectives 4 II LITERATURE OVERVIEW --------------------------------------- 5- 37 II.1 Taï National Park 5- 7 II.1.1 Location and climate 5- 6 II.1.2 Vegetation and fauna 6 II.1.3 Human pressure and impact on the park 7 II.2 Chimpanzees 7- 12 II.2.1 Status 7 II.2.2 Group sizes and composition 7- 9 II.2.3 Territories and ranging behavior 9 II.2.4 Diet and hunting behavior 9- 10 II.2.5 Contact with humans 10 II.2.6
    [Show full text]
  • Anoplocephalidés Parasites De L'intestin Et Des Canaux Biliaires Des
    Retour au menu Rev. Elev. Méd. vét. Pays trop., 1979, 32 (4): 371-378. Anoplocéphalides parasites de l'intestin et des canaux biliaires des herbivores sauvages d'Afrique centrale par M. GRABER et J. THAL RÉSUMÉ La présente étude passe en revue les Cestodes de la famille des Anoplo­ cephalidae recueillis entre 1954 et 1972 chez les antilopes et chez les buffles (au total 314) d'Afrique centrale (République Centrafricaine, Tchad, Nord Cameroun). Onze espèces différentes ont été inventoriées. Stilesia hepatica, l'agent de la stilesiose hépatique, affecte un animal sur huit. On le trouve principalement chez l'hippotrague (85 p. 100) et le water­ buck (68 p. 100), plus rarement chez le rcdunca et le cob de Buffon (10 p. 100). Le téniasis intestinal est à base de Stilesia globipunctata, d'Avitellina (sur­ tout centripunctata), de Moniezia et de Thysaniezia ovilla. Il frappe un ruminant sur cinq. La plupart des espèces sont atteintes dans des proportions variables avec, parfois, des taux élevés (de 40 à 70 p. 100) notamment chez la gazelle dama, l'ourébi, le céphalophe couronné, l'oryx et l'hippotrague. Les auteurs donnent quelques renseignements sur la répartition géogra­ phique de ces Cestodes, ainsi que sur leur rôle pathogène qui, sauf exception, paraît peu important. lis comparent Je téniasis des ruminants domestiques et le téniasis des ruminants sauvages de cette région d'Afrique. INTRODUCTION MATÉRIEL ET MÉTHODE La collection de parasites d'herbivores sau­ 1. Matériel vages rassemblée, de 1969 à 1972, dans le centre et le Sud du Tchad (Ors Provos!, Borredon et Cent cinquante-sept autopsies complètes ont Chailloux) au Nord Cameroun (Dr Macon) été effectuées se répartissant ainsi : et dans l'Est de la République Centrafricaine Buba/us (Syncerus) cajfer, Sparrman, le buffle : (R.
    [Show full text]
  • Epidemiology and Diagnosis of Anoplocephala Perfoliata in Horses from Southern Alberta, Canada
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository University of Lethbridge Research Repository OPUS http://opus.uleth.ca Theses Arts and Science, Faculty of 2008 Epidemiology and diagnosis of anoplocephala perfoliata in horses from Southern Alberta, Canada Skotarek, Sara L. Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2008 http://hdl.handle.net/10133/681 Downloaded from University of Lethbridge Research Repository, OPUS EPIDEMIOLOGY AND DIAGNOSIS OF ANOPLOCEPHALA PERFOLIATA IN HORSES FROM SOUTHERN ALBERTA, CANADA SARA L. SKOTAREK BSc., Malaspina University-College, 2005 A Thesis Submitted to the School of Graduate Studies Of the University of Lethbridge In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Biological Science University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Sara L. Skotarek May, 2008 ABSTRACT The cestode Anoplocephala perfoliata is known to cause fatal colic in horses. The epidemiology of the cestode has rarely been evaluated in Canada. I detected A. perfoliata eggs in 4-18% of over 1000 faecal samples collected over 2 years. Worm intensity ranged from 1 to >1000 worms. Pastured horses were infected more often than non-pastured horses, especially in western Alberta, likely reflecting their higher rates of exposure to mite intermediate hosts. In a comparison of diagnostic techniques, fecal egg counts were the least accurate. Western blot analysis had the highest sensitivity to detect antibodies to the cestode (100%), but had lower specificity. A serological enzyme-linked immunosorbent assay (ELISA) had a lower sensitivity (70%) for detection of antibodies than described in previous studies.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Molecular Systematics and Holarctic Phylogeography of Cestodes of the Genus Anoplocephaloides Baer, 1923 S
    Zoologica Scripta Molecular systematics and Holarctic phylogeography of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) in lemmings (Lemmus, Synaptomys) VOITTO HAUKISALMI,LOTTA M. HARDMAN,VADIM B. FEDOROV,ERIC P. HOBERG & HEIKKI HENTTONEN Submitted: 27 March 2015 Haukisalmi, V., Hardman, L.M., Fedorov, V.B., Hoberg, E.P., Henttonen, H. (2016). Accepted: 2 July 2015 Molecular systematics and Holarctic phylogeography of cestodes of the genus Anoplo- doi:10.1111/zsc.12136 cephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) in lemmings (Lemmus, Synap- tomys). —Zoologica Scripta, 45,88–102. The present molecular systematic and phylogeographic analysis is based on sequences of cytochrome c oxidase subunit 1 (cox1) (mtDNA) and 28S ribosomal DNA and includes 59 isolates of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplo- cephalidae) from arvicoline rodents (lemmings and voles) in the Holarctic region. The emphasis is on Anoplocephaloides lemmi (Rausch 1952) parasitizing Lemmus trimucronatus and Lemmus sibiricus in the northern parts of North America and Arctic coast of Siberia, and Anoplocephaloides kontrimavichusi (Rausch 1976) parasitizing Synaptomys borealis in Alaska and British Columbia. The cox1 data, 28S data and their concatenated data all suggest that A. lemmi and A. kontrimavichusi are both non-monophyletic, each consisting of two separate, well-defined clades, that is independent species. As an example, the sister group of the clade 1ofA. lemmi, evidently representing the ‘type clade’ of this species, is the clade 1 of A. kontrimavichusi. For A. kontrimavichusi, it is not known which one is the type clade. There is also fairly strong evidence for the non-monophyly of Anoplocephaloides dentata (Galli-Valerio, 1905)-like species, although an earlier phylogeny suggested that this multi- species assemblage may be monophyletic.
    [Show full text]
  • A Review of the Endoparasites of the Lemurs of Madagascar
    A review of the endoparasites of the lemurs of Madagascar Mitchell T. Irwin1 & Jean-Luc Raharison2 Key words: Lemurs, parasites, Madagascar, 1Redpath Museum, McGill University, 859 Sherbrooke Nematoda, Platyhelminthes, Acanthocephala, St. W, Montreal, Quebec, Canada H3A 2K6 Protozoa E-mail: [email protected] 2Département de Biologie Animale, Université Résumé détaillé d’Antananarivo, BP 906, Antananarivo 101, Madagascar Les lémuriens de Madagascar ont été bien étudiés E-mail: [email protected] dans les années et décennies récentes, car les chercheurs tentent de discerner l’étendue de leurs adaptations écologiques et de leur diversité phylogénétique. Toutefois, notre connaissance de Abstract l’histoire naturelle des parasites de lémuriens reste The lemurs of Madagascar have received intense vraiment incomplète. Il y a eu une période brève research attention in recent years and decades, as de grand progrès, dans les années 1950 et 1960, researchers attempt to discern the extent of their durant laquelle les chercheurs ont nommé et décrit ecological adaptations and phylogenetic diversity. beaucoup d’espèces de parasites de lémuriens; In contrast, the natural history of lemur parasites ces travaux étaient menés surtout par quelques is currently poorly understood and understudied. chercheurs français pré- et post-indépendance. After a brief period of great progress in naming and Cependant, après cette période, très peu d’études describing lemur parasites in the 1950s and 1960s, ont été entreprises pour continuer cette tradition. Les few researchers have studied lemur parasites, and études récentes, par ailleurs, sont surtout axées sur recent studies tend to be more ecologically oriented l’écologie (par exemple en considérant l’impact du (e.g.
    [Show full text]
  • Bertiella Studeri Infection in Children, Sri Lanka Anjalie Amarasinghe, Thanh H
    Bertiella studeri Infection in Children, Sri Lanka Anjalie Amarasinghe, Thanh H. Le, Susiji Wickramasinghe This study provides the molecular analysis of the We provide a detailed molecular and phylogenetic de- scription of Bertiella studeri tapeworms infecting children B. studeri tapeworms infecting children in Sri Lanka in Sri Lanka. Our findings can be used to identify multiple and describes phylogenetic relationships for this spe- species of Bertiella tapeworms that can infect human cies. The Ethics Review Committee in the Faculty of hosts in the Old World. Medicine, University of Peradeniya, Sri Lanka ap- proved this study (protocol no. 2019/EC/03). he genus Bertiella, which has 29 known tapeworm Tspecies, belongs to the subfamily Anoplocephalinae The Study of the Anoplocephalidae family (1). These tapeworms We conducted a retrospective study using tapeworm are common parasites in the small intestine of pri- proglottids (Appendix Figure 1, https://wwwnc.cdc. mates (2). Of these species, only B. studeri, B. mucro- gov/EID/article/26/8/20-0324-App1.pdf) from 24 nata, and B. satyri (3), which was recently redescribed pediatric patients referred to the Department of Para- as a different species (4), can infect humans (4,5). sitology, Faculty of Medicine, University of Peradeni- Children acquire this infection usually by eating con- ya, Peradeniya, Sri Lanka, during 2007–2017. Patients taminated fruits or by ingesting contaminated soil. were all <10 years of age (range 3.5–9 years). No other The earliest identified cases of human bertiellosis in epidemiologic data were available. Sri Lanka occurred in 1975; these cases and 1 further We extracted genomic DNA separately using a case were reported in 1976.
    [Show full text]
  • PATHOGENESIS and BIOLOGY of ANOPLOCEPHALINE CESTODES of DOMESTIC ANIMALS Vs Narsapur
    PATHOGENESIS AND BIOLOGY OF ANOPLOCEPHALINE CESTODES OF DOMESTIC ANIMALS Vs Narsapur To cite this version: Vs Narsapur. PATHOGENESIS AND BIOLOGY OF ANOPLOCEPHALINE CESTODES OF DO- MESTIC ANIMALS. Annales de Recherches Vétérinaires, INRA Editions, 1988, 19 (1), pp.1-17. hal-00901779 HAL Id: hal-00901779 https://hal.archives-ouvertes.fr/hal-00901779 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Review article PATHOGENESIS AND BIOLOGY OF ANOPLOCEPHALINE CESTODES OF DOMESTIC ANIMALS VS NARSAPUR Department of Parasitology, Bombay Veterinary College, Parel, Bombay-400 012, India Plan Goldberg (1951) did not notice any observable injurious effects nor any significant retardation of Introduction growth in lambs heavily infected, experimentally with Moniezia expansa. Haematological studies by Pathogenesis ofAnoplocephaline cestodes Deshpande et al (1980b) did not show any altera- tion in the values of haemoglobin, packed cell Biology ofAnoplocephaline cestodes volumes and erythrocyte counts during prepatency of experimental monieziasis. But many of the Rus- Developmental stages in oribatid hosts sian workers have noted of pathogeni- Conditions of development high degree city, and adverse effects on weight gains and on of meat and wool. In Tableman Oribatid intermediate hosts yields lambs, (1946) recorded cases of convulsions and death and Han- Oribatid species as intermediate hosts sen et al (1950) retarded weight gains and anaemia Oribatid host specificity due to pure Moniezia infections.
    [Show full text]
  • Molecular Phylogeny of Anoplocephalid Tapeworms (Cestoda: Anoplocephalidae) Infecting Humans and Non-Human Primates
    1278 Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates JANA DOLEŽALOVÁ1,2,3*, PETER VALLO2,4, KLÁRA J. PETRŽELKOVÁ2,4,5,6,IVONAFOITOVÁ7, WISNU NURCAHYO8, ANTOINE MUDAKIKWA9, CHIE HASHIMOTO10, MILAN JIRKŮ5, JULIUS LUKEŠ5,11,12, TOMÁŠ SCHOLZ5,11 and DAVID MODRÝ2,3,5 1 Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého tř.1/3, 612 00 Brno, Czech Republic 2 Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého tř.1/3, 612 00 Brno, Czech Republic 3 CEITEC – Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Palackého tř.1/3, 612 00 Brno, Czech Republic 4 Institute of Vertebrate Biology, ASCR, v.v.i., Květná 8, 603 65 Brno, Czech Republic 5 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic 6 Liberec Zoo, Liberec, Masarykova 1347/31, 460 01 Liberec, Czech Republic 7 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic 8 Department of Parasitology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia 9 Rwanda Development Board, Gishushu, Nyarutarama Road, P.O. Box 6239 Kigali, Rwanda 10 Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan 11 Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic 12 Canadian Institute for Advanced Research, Toronto, Ontario M5 G 1Z8, Canada (Received 24 October 2014; revised 26 March 2015; accepted 21 April 2015; first published online 5 June 2015) SUMMARY Anoplocephalid tapeworms of the genus Bertiella Stiles and Hassall, 1902 and Anoplocephala Blanchard, 1848, found in the Asian, African and American non-human primates are presumed to sporadic ape-to-man transmissions.
    [Show full text]
  • Prevalence, Incidence and Molecular Characterization of Tape Worms in Al
    Prevalence, incidence and molecular characterization of tape worms in Al Taif governorate, KSA and the effectiveness of Spirulina platensis as a biological control in vitro Bedor O. Al-Otaibi Taif University College of Science Nabila S. Degheidy Taif University College of Science Jamila Al-Malki ( [email protected] ) Taif University College of Science Research Keywords: Moniezea expansa, Moniezea benedene, Avitellina centripunctata, Thysaniezia giardia, Stilesia hepatic, Prevalence, Incidence, Molecular characterization, Biological control, Spirulina platensis Posted Date: January 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-143645/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract Background Tapeworms are parasites that infect sheep and cattle and live in the small intestine, causing many problems, including diarrhea and weight loss, which leads to losses in livestock breeding. One of the most common tapeworms that infects sheep, goats and cattle Moniezea expansa, Moniezea benedene, Avitellina centripunctata, Thysaniezia giardia and Stilesia hepatic. Methods A total (965) of small intestine were collected from postmortem sheep of slaughter house of Al Taif abattoir during the period from October 2018 to September 2019. The PCR product of cox1 gene (364 bp) was sequenced and then data were aligned with the same fragment of cox1 gene for other related helminths parasites. In vitro determination of the anthelmintic ecacy of Spirulina platensis on adult Moniezia. Results The results reported that about 9.94% of selected sheep were infected with tape worms in native breed. Concerning the seasonal incidence of tape worms among sheep, the results revealed that the highest percentage was recorded during winter season (11.3%), while the lowest percentage was recorded during the spring (7.72%).
    [Show full text]
  • <I>Paranoplocephala Sciuri</I> (Cestoda: Anoplocephalidae), A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1-2007 Paranoplocephala sciuri (Cestoda: Anoplocephalidae), a Parasite of the Northern Flying Squirrel (Glaucomys sabrinus), with a Discussion of Its Systematic Status Robert L. Rausch University of Washington, [email protected] Voitto Haukisalmi Finnish Forest Research Institute, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Rausch, Robert L. and Haukisalmi, Voitto, "Paranoplocephala sciuri (Cestoda: Anoplocephalidae), a Parasite of the Northern Flying Squirrel (Glaucomys sabrinus), with a Discussion of Its Systematic Status" (2007). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 343. https://digitalcommons.unl.edu/parasitologyfacpubs/343 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Comp. Parasitol. 74(1), 2007, pp. 1–8 Paranoplocephala sciuri (Rausch, 1947) (Cestoda: Anoplocephalidae), a Parasite of the Northern Flying Squirrel (Glaucomys sabrinus), with a Discussion of Its Systematic Status 1,3 2 VOITTO HAUKISALMI AND ROBERT L. RAUSCH 1 Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland (e-mail: voitto.haukisalmi@metla.fi) and 2 Department of Comparative Medicine, University of Washington School of Medicine, Box 357190, Seattle, Washington 98195-7190, U.S.A.
    [Show full text]
  • ISSN 0036-4665 ISSN 1678-9946 on Line EDITORS EMERITUS EDITORS Prof
    Established: 1959. The year 2015 is the 57th anniversary of continuous publication ISSN 0036-4665 ISSN 1678-9946 on line EDITORS EMERITUS EDITORS Prof. Dr. Thales F. de Brito Prof. Dr. Luis Rey (Founding Editor) Prof. Dr. Thelma S. Okay Prof. Dr. Carlos da Silva Lacaz Associate Editor: Prof. Dr. Pedro Paulo Chieffi EDITORIAL BOARD Alan L. de Melo (Belo Horizonte, MG) Fernando A. Corrêa (S. Paulo, SP) Maria L. Higuchi (S. Paulo, SP) Alberto Duarte (S. Paulo, SP) Fernando Montero-Gei (San José, Costa Rica) Mario Mariano (S. Paulo, SP) Angela Restrepo M. (Medellin, Colombia) Flair J. Carrilho (S. Paulo, SP) Mirian N. Sotto (S. Paulo, SP) Anna Sara S. Levin (S. Paulo, SP) Gil Benard (S. Paulo, SP) Moisés Goldbaum (S. Paulo, SP) Antonio A. Barone (S. Paulo, SP) Gioconda San-Blas (Caracas, Venezuela) Moysés Mincis (S. Paulo, SP) Antonio Carlos Nicodemo (S. Paulo, SP) Govinda Visvesvara (Atlanta, USA) Moysés Sadigursky (Salvador, BA) Antonio Sesso (S. Paulo, SP) Heitor F. Andrade Jr. (S. Paulo, SP) Myrthes T. Barros (S. Paulo, SP) Antonio W. Ferreira (S. Paulo, SP) Hiro Goto (S. Paulo, SP) Nilma Cintra Leal (Recife, PE) Barnett L. Cline (New Orleans, USA) Ises A. Abrahamsohn (S. Paulo, SP) Paulo C. Cotrim (São Paulo, SP) Carlos F. S. Amaral (Belo Horizonte, MG) João Carlos Pinto Dias (Belo Horizonte, MG) Paulo M. Z. Coelho (Belo Horizonte, MG) Celso Granato (S. Paulo, SP) João Renato Rebello Pinho (Sao Paulo, SP) Regina Abdulkader (S. Paulo, SP) Cesar A. Cuba Cuba (Brasília, DF) José Ângelo A. Lindoso (S. Paulo, SP) Ricardo Negroni (B.
    [Show full text]