Molecular Phylogeny of Anoplocephalid Tapeworms (Cestoda: Anoplocephalidae) Infecting Humans and Non-Human Primates

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of Anoplocephalid Tapeworms (Cestoda: Anoplocephalidae) Infecting Humans and Non-Human Primates 1278 Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates JANA DOLEŽALOVÁ1,2,3*, PETER VALLO2,4, KLÁRA J. PETRŽELKOVÁ2,4,5,6,IVONAFOITOVÁ7, WISNU NURCAHYO8, ANTOINE MUDAKIKWA9, CHIE HASHIMOTO10, MILAN JIRKŮ5, JULIUS LUKEŠ5,11,12, TOMÁŠ SCHOLZ5,11 and DAVID MODRÝ2,3,5 1 Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého tř.1/3, 612 00 Brno, Czech Republic 2 Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého tř.1/3, 612 00 Brno, Czech Republic 3 CEITEC – Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Palackého tř.1/3, 612 00 Brno, Czech Republic 4 Institute of Vertebrate Biology, ASCR, v.v.i., Květná 8, 603 65 Brno, Czech Republic 5 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic 6 Liberec Zoo, Liberec, Masarykova 1347/31, 460 01 Liberec, Czech Republic 7 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic 8 Department of Parasitology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia 9 Rwanda Development Board, Gishushu, Nyarutarama Road, P.O. Box 6239 Kigali, Rwanda 10 Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan 11 Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic 12 Canadian Institute for Advanced Research, Toronto, Ontario M5 G 1Z8, Canada (Received 24 October 2014; revised 26 March 2015; accepted 21 April 2015; first published online 5 June 2015) SUMMARY Anoplocephalid tapeworms of the genus Bertiella Stiles and Hassall, 1902 and Anoplocephala Blanchard, 1848, found in the Asian, African and American non-human primates are presumed to sporadic ape-to-man transmissions. Variable nuclear (5.8S-ITS2; 28S rRNA) and mitochondrial genes (cox1; nad1) of isolates of anoplocephalids originating from different primates (Callicebus oenanthe, Gorilla beringei, Gorilla gorilla, Pan troglodytes and Pongo abelii) and humans from various regions (South America, Africa, South-East Asia) were sequenced. In most analyses, Bertiella formed a monophyletic group within the subfamily Anoplocephalinae, however, the 28S rRNA sequence-based analysis indicated paraphyletic relationship between Bertiella from primates and Australian marsupials and rodents, which should thus be regarded as different taxa. Moreover, isolate determined as Anoplocephala cf. gorillae from mountain gorilla clustered within the Bertiella clade from primates. This either indicates that A. gorillae deserves to be included into the genus Bertiella, or, that an unknown Bertiella species infects also mountain gorillas. The analyses allowed the genetic differentia- tion of the isolates, albeit with no obvious geographical or host-related patterns. The unexpected genetic diversity of the isolates studied suggests the existence of several Bertiella species in primates and human and calls for revision of the whole group, based both on molecular and morphological data. Key words: Bertiella, Anoplocephala, phylogeny, primates, zoonotic potential. INTRODUCTION components of parasite communities. However, oc- casional infections by representatives of the subfam- The adult stages of tapeworms of the cyclophylli- ilies Linstowiinae (Mathevotaenia Akhumian, 1946) dean family Anoplocephalidae Cholodkovsky, and Inermicapsiferinae (Thysanotaenia Beddard, 1902, are intestinal parasites of mammals, birds 1911) have also been reported (Beveridge, 1994). and reptiles (Beveridge, 1994). In primates, several Although the genus Anoplocephala mostly includes species of the subfamily Anoplocephalinae mostly species from hyraxes, odd-toed ungulates and ele- from the genera Anoplocephala, Bertiella and phants, Anoplocephala gorillae Nybelin, 1927, was Moniezia Blanchard, 1891, represent typical described from eastern gorillas (Gorilla beringei) and is considered to be a common parasite in the * Corresponding author. Department of Physiology, Rwandan and Ugandan mountain gorilla popula- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého tions (Sleeman et al. 2000; Rothman et al. 2008). tř.1/3, 612 00 Brno, Czech Republic. E-mail: petrasovaj@ In contrast, almost no cestodes have been found in atlas.cz western gorillas (Gorilla gorilla) of Gabon Parasitology (2015), 142, 1278–1289. © Cambridge University Press 2015 doi:10.1017/S003118201500058X Diversity of anoplocephalid tapeworms in primates 1279 Fig. 1. The phylogenetic trees of anoplocephaline cestodes: (A) position of Bertiella based on morphological-characters (Beveridge, 1994); (B) position of Bertiella based on analysis of the 28S rRNA gene (Hardman et al. 2012). (Landsoud-Soukate et al. 1995) and in G. gorilla America and South-East Asia, respectively from various localities in the Congo basin (author’s (Gómez-Puerta et al. 2009; Foitová et al. 2011). unpublished data); only Lilly et al. (2002) reported Diagnostics of the anoplocephaline infections are anoplocephalid eggs in two fecal samples of G. based mostly on the identification of gravid proglot- gorilla in the southern Dzanga-Ndoki National tids or eggs that possess a typical pyriform apparatus Park, Central African Republic, yet without (Schmidt, 1986; Denegri and Perez-Serrano, 1997); specific identification. Other anoplocephalids, such yet identifying these parasites to the species level in as Moniezia rugosa Lühe, 1895, were encountered clinical material from primates remains rather rather exceptionally in New World primates from difficult. the families Atelidae and Cebidae (Dunn, 1963; In the last decade, molecular approaches helped to Fiennes, 1967), with no recent records being resolve the phylogenetic relationships of several available. genera of the Anoplocephalinae, including Bertiella More common tapeworms in primates are (see e.g. Haukisalmi et al. 2010; Hardman et al. members of the genus Bertiella, although other 2012; Taleb-Hossenkhan and Bhagwant, 2012). members of this genus parasitize a broad spectrum Not surprisingly, molecular analyses showed that of mammalian hosts including marsupials, flying previous morphology-based classification may not lemurs and rodents in Africa, Asia, Australia and reflect the actual relationships within the subfamily. South America (Denegri and Perez-Serrano, 1997). In morphology-based phylogeny by Beveridge The type species, Bertiella studeri, was described (1994), Bertiella and Triplotaenia Boas, 1902, were from a common chimpanzee Pan troglodytes by sister genera, whereas the genus Anoplocephala was Blanchard (1891). Thereafter, more than 40 species basal taxon of the subfamily (Fig. 1A). Molecular- have been assigned to the genus (Schmidt, 1986; based phylogeny by Hardman et al. (2012), Caira et al. 2012), ten of them being known to however, showed a sister relationship between infect primates (Schmidt, 1986; Denegri and Bertiella and Anoplocephala, with the genera Perez-Serrano, 1997; Galán-Puchades et al. 2000). Schizorchis Hansen, 1948, and Mosgovoyia Infections by three of the typical primate tape- Spasskii, 1951, emerging as basal taxa (Fig. 1B). worms, B. studeri (Blanchard, 1891), Bertiella The genus Bertiella deserves special attention, as mucronata (Meyner, 1895) and Bertiella satyri previous studies did not include any isolates from (Blanchard, 1891), are sporadically reported also primates (Hardman et al. 2012), or the used molecu- from humans (Chandler, 1925; Cameron, 1929; lar marker was not sufficient for the establishment of Denegri and Perez-Serrano, 1997; Bhagwant, 2004; intra-generic relationships within the cestodes Foitová et al. 2011). Human infections with B. (Taleb-Hossenkhan and Bhagwant, 2012). studeri were reported mostly from India, the The present study provides the first molecular Russian Far-East and Africa (Bhagwant, 2004; El- insight into the diversity of Bertiella and Dib et al. 2004), or from non-residents that visited Anoplocephala from humans and non-human pri- these regions (Cameron, 1929; Galán-Puchades mates from Africa, Asia, Europe and South America, et al. 2000), while B. mucronata and B. satyri were and describes their host specificity and phylogenetic confined to men and primates living in South relationships. Jana Petrášová-Doležalová and others 1280 Table 1. The locality, source of DNA and GenBank accession numbers of particular genes of cestodes from non-human primates and humans. The extended dataset includes an isolate from horse Host species/ Source of 5.8S- Cestode isolate locality Habitat DNA cox1 nad1 ITS2 28S Bertiella sp. H.s. BR c/s Proglottid – JQ771110 JQ771093 Bertiella studeria H.s. ES c/s Proglottid JQ771102 JQ771111 JQ771094 Bertiella satyrib P.a. ID c/s Proglottid JQ771103 JQ771112 JQ771195 Bertiella mucronatac C.o. PE c/s Proglottid JQ771104 JQ771113 JQ771096 Bertiella sp. P.t. UG w Proglottid JQ771105 JQ771114 JQ771097 KJ888951 Bertiella sp. P.t. KE c/s Proglottid JQ771106 JQ771115 JQ771098 Bertiella sp. P.t. GW w Eggs ––– Bertiella sp. G.g. CF w Proglottid – JQ771116 JQ771099 KJ888952 Anoplocephala cf. G.b. RW w Eggs – JQ771117 JQ771100 gorillae Anoplocephala E.c. CZ c/s Eggs JQ771109 JQ771118 – perfoliata H.s., Homo sapiens; P.a., Pongo abelii; C.o., Callicebus oenanthe; P.t., Pan troglodytes; G.g., Gorilla gorilla; G.b., Gorilla beringei;
Recommended publications
  • Gastrointestinal Helminthic Parasites of Habituated Wild Chimpanzees
    Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Gastrointestinal helminthic parasites of habituated wild chimpanzees (Pan troglodytes verus) in the Taï NP, Côte d’Ivoire − including characterization of cultured helminth developmental stages using genetic markers Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Sonja Metzger Tierärztin aus München Berlin 2014 Journal-Nr.: 3727 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Georg von Samson-Himmelstjerna Zweiter Gutachter: Univ.-Prof. Dr. Heribert Hofer Dritter Gutachter: Univ.-Prof. Dr. Achim Gruber Deskriptoren (nach CAB-Thesaurus): chimpanzees, helminths, host parasite relationships, fecal examination, characterization, developmental stages, ribosomal RNA, mitochondrial DNA Tag der Promotion: 10.06.2015 Contents I INTRODUCTION ---------------------------------------------------- 1- 4 I.1 Background 1- 3 I.2 Study objectives 4 II LITERATURE OVERVIEW --------------------------------------- 5- 37 II.1 Taï National Park 5- 7 II.1.1 Location and climate 5- 6 II.1.2 Vegetation and fauna 6 II.1.3 Human pressure and impact on the park 7 II.2 Chimpanzees 7- 12 II.2.1 Status 7 II.2.2 Group sizes and composition 7- 9 II.2.3 Territories and ranging behavior 9 II.2.4 Diet and hunting behavior 9- 10 II.2.5 Contact with humans 10 II.2.6
    [Show full text]
  • Anoplocephalidés Parasites De L'intestin Et Des Canaux Biliaires Des
    Retour au menu Rev. Elev. Méd. vét. Pays trop., 1979, 32 (4): 371-378. Anoplocéphalides parasites de l'intestin et des canaux biliaires des herbivores sauvages d'Afrique centrale par M. GRABER et J. THAL RÉSUMÉ La présente étude passe en revue les Cestodes de la famille des Anoplo­ cephalidae recueillis entre 1954 et 1972 chez les antilopes et chez les buffles (au total 314) d'Afrique centrale (République Centrafricaine, Tchad, Nord Cameroun). Onze espèces différentes ont été inventoriées. Stilesia hepatica, l'agent de la stilesiose hépatique, affecte un animal sur huit. On le trouve principalement chez l'hippotrague (85 p. 100) et le water­ buck (68 p. 100), plus rarement chez le rcdunca et le cob de Buffon (10 p. 100). Le téniasis intestinal est à base de Stilesia globipunctata, d'Avitellina (sur­ tout centripunctata), de Moniezia et de Thysaniezia ovilla. Il frappe un ruminant sur cinq. La plupart des espèces sont atteintes dans des proportions variables avec, parfois, des taux élevés (de 40 à 70 p. 100) notamment chez la gazelle dama, l'ourébi, le céphalophe couronné, l'oryx et l'hippotrague. Les auteurs donnent quelques renseignements sur la répartition géogra­ phique de ces Cestodes, ainsi que sur leur rôle pathogène qui, sauf exception, paraît peu important. lis comparent Je téniasis des ruminants domestiques et le téniasis des ruminants sauvages de cette région d'Afrique. INTRODUCTION MATÉRIEL ET MÉTHODE La collection de parasites d'herbivores sau­ 1. Matériel vages rassemblée, de 1969 à 1972, dans le centre et le Sud du Tchad (Ors Provos!, Borredon et Cent cinquante-sept autopsies complètes ont Chailloux) au Nord Cameroun (Dr Macon) été effectuées se répartissant ainsi : et dans l'Est de la République Centrafricaine Buba/us (Syncerus) cajfer, Sparrman, le buffle : (R.
    [Show full text]
  • Epidemiology and Diagnosis of Anoplocephala Perfoliata in Horses from Southern Alberta, Canada
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository University of Lethbridge Research Repository OPUS http://opus.uleth.ca Theses Arts and Science, Faculty of 2008 Epidemiology and diagnosis of anoplocephala perfoliata in horses from Southern Alberta, Canada Skotarek, Sara L. Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2008 http://hdl.handle.net/10133/681 Downloaded from University of Lethbridge Research Repository, OPUS EPIDEMIOLOGY AND DIAGNOSIS OF ANOPLOCEPHALA PERFOLIATA IN HORSES FROM SOUTHERN ALBERTA, CANADA SARA L. SKOTAREK BSc., Malaspina University-College, 2005 A Thesis Submitted to the School of Graduate Studies Of the University of Lethbridge In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Biological Science University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Sara L. Skotarek May, 2008 ABSTRACT The cestode Anoplocephala perfoliata is known to cause fatal colic in horses. The epidemiology of the cestode has rarely been evaluated in Canada. I detected A. perfoliata eggs in 4-18% of over 1000 faecal samples collected over 2 years. Worm intensity ranged from 1 to >1000 worms. Pastured horses were infected more often than non-pastured horses, especially in western Alberta, likely reflecting their higher rates of exposure to mite intermediate hosts. In a comparison of diagnostic techniques, fecal egg counts were the least accurate. Western blot analysis had the highest sensitivity to detect antibodies to the cestode (100%), but had lower specificity. A serological enzyme-linked immunosorbent assay (ELISA) had a lower sensitivity (70%) for detection of antibodies than described in previous studies.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Molecular Systematics and Holarctic Phylogeography of Cestodes of the Genus Anoplocephaloides Baer, 1923 S
    Zoologica Scripta Molecular systematics and Holarctic phylogeography of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) in lemmings (Lemmus, Synaptomys) VOITTO HAUKISALMI,LOTTA M. HARDMAN,VADIM B. FEDOROV,ERIC P. HOBERG & HEIKKI HENTTONEN Submitted: 27 March 2015 Haukisalmi, V., Hardman, L.M., Fedorov, V.B., Hoberg, E.P., Henttonen, H. (2016). Accepted: 2 July 2015 Molecular systematics and Holarctic phylogeography of cestodes of the genus Anoplo- doi:10.1111/zsc.12136 cephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) in lemmings (Lemmus, Synap- tomys). —Zoologica Scripta, 45,88–102. The present molecular systematic and phylogeographic analysis is based on sequences of cytochrome c oxidase subunit 1 (cox1) (mtDNA) and 28S ribosomal DNA and includes 59 isolates of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplo- cephalidae) from arvicoline rodents (lemmings and voles) in the Holarctic region. The emphasis is on Anoplocephaloides lemmi (Rausch 1952) parasitizing Lemmus trimucronatus and Lemmus sibiricus in the northern parts of North America and Arctic coast of Siberia, and Anoplocephaloides kontrimavichusi (Rausch 1976) parasitizing Synaptomys borealis in Alaska and British Columbia. The cox1 data, 28S data and their concatenated data all suggest that A. lemmi and A. kontrimavichusi are both non-monophyletic, each consisting of two separate, well-defined clades, that is independent species. As an example, the sister group of the clade 1ofA. lemmi, evidently representing the ‘type clade’ of this species, is the clade 1 of A. kontrimavichusi. For A. kontrimavichusi, it is not known which one is the type clade. There is also fairly strong evidence for the non-monophyly of Anoplocephaloides dentata (Galli-Valerio, 1905)-like species, although an earlier phylogeny suggested that this multi- species assemblage may be monophyletic.
    [Show full text]
  • Parasite Ecology and the Conservation Biology of Black Rhinoceros (Diceros Bicornis)
    Parasite Ecology and the Conservation Biology of Black Rhinoceros (Diceros bicornis) by Andrew Paul Stringer A thesis submitted to Victoria University of Wellington in fulfilment of the requirement for the degree of Doctor of Philosophy Victoria University of Wellington 2016 ii This thesis was conducted under the supervision of: Dr Wayne L. Linklater Victoria University of Wellington Wellington, New Zealand The animals used in this study were treated ethically and the protocols used were given approval from the Victoria University of Wellington Animal Ethics Committee (ref: 2010R6). iii iv Abstract This thesis combines investigations of parasite ecology and rhinoceros conservation biology to advance our understanding and management of the host-parasite relationship for the critically endangered black rhinoceros (Diceros bicornis). My central aim was to determine the key influences on parasite abundance within black rhinoceros, investigate the effects of parasitism on black rhinoceros and how they can be measured, and to provide a balanced summary of the advantages and disadvantages of interventions to control parasites within threatened host species. Two intestinal helminth parasites were the primary focus of this study; the strongyle nematodes and an Anoplocephala sp. tapeworm. The non-invasive assessment of parasite abundance within black rhinoceros is challenging due to the rhinoceros’s elusive nature and rarity. Hence, protocols for faecal egg counts (FECs) where defecation could not be observed were tested. This included testing for the impacts of time since defecation on FECs, and whether sampling location within a bolus influenced FECs. Also, the optimum sample size needed to reliably capture the variation in parasite abundance on a population level was estimated.
    [Show full text]
  • A Review of the Endoparasites of the Lemurs of Madagascar
    A review of the endoparasites of the lemurs of Madagascar Mitchell T. Irwin1 & Jean-Luc Raharison2 Key words: Lemurs, parasites, Madagascar, 1Redpath Museum, McGill University, 859 Sherbrooke Nematoda, Platyhelminthes, Acanthocephala, St. W, Montreal, Quebec, Canada H3A 2K6 Protozoa E-mail: [email protected] 2Département de Biologie Animale, Université Résumé détaillé d’Antananarivo, BP 906, Antananarivo 101, Madagascar Les lémuriens de Madagascar ont été bien étudiés E-mail: [email protected] dans les années et décennies récentes, car les chercheurs tentent de discerner l’étendue de leurs adaptations écologiques et de leur diversité phylogénétique. Toutefois, notre connaissance de Abstract l’histoire naturelle des parasites de lémuriens reste The lemurs of Madagascar have received intense vraiment incomplète. Il y a eu une période brève research attention in recent years and decades, as de grand progrès, dans les années 1950 et 1960, researchers attempt to discern the extent of their durant laquelle les chercheurs ont nommé et décrit ecological adaptations and phylogenetic diversity. beaucoup d’espèces de parasites de lémuriens; In contrast, the natural history of lemur parasites ces travaux étaient menés surtout par quelques is currently poorly understood and understudied. chercheurs français pré- et post-indépendance. After a brief period of great progress in naming and Cependant, après cette période, très peu d’études describing lemur parasites in the 1950s and 1960s, ont été entreprises pour continuer cette tradition. Les few researchers have studied lemur parasites, and études récentes, par ailleurs, sont surtout axées sur recent studies tend to be more ecologically oriented l’écologie (par exemple en considérant l’impact du (e.g.
    [Show full text]
  • Technical Bulletin Pfizer Animal Health New Studies Associate Equine Tapeworm Infection with Colic
    EMX08048 Pfizer Animal Health Technical Bulletin April 2009 New Studies Associate Equine Tapeworm Infection with Colic Bobby Cowles, DVM, MS, MBA John M. Donecker, VMD, MS, Dipl ABVP (equine) Robert E. Holland, Jr., DVM, PhD Pfizer Animal Health New York, NY 10017 Key Points • Recent studies reported at the 2007 International Conference of the World Association for the Advancement of Veterinary Parasitology provide new information on the clinical relevance of equine tapeworm infection, including enteric pathology that potentially results in colic. • In a European study, ileocecal lesions including necrotizing enteritis and neuronal degeneration were identified in 35 horses with active tapeworm infection. More than 70% of the ileocecal lesions were classified as either moderate (grade 2) or severe (grade 3), indicating that advanced tapeworm-induced pathology existed in most infected horses. • All 6 horses with heavy tapeworm burdens (n >100) had severe, grade 3 ileocecal lesions. Seven horses (20%) with light (n <30) or moderate (n = 30-100) tapeworm burdens also had grade 3 lesions, indicating that even horses with low-intensity infections are at risk of severe necrotic enteritis. • Neuronal degeneration was most severe in grade 3 cases, affecting ganglions in the myoenteric and submucosal plexi of the gut wall and providing neuropathologic evidence of the association between equine tapeworm infection and increased incidence of colic. • In a second study, prevalence of tapeworm infection in 157 horses was randomly evaluated at necropsy during a 12-month period. Anoplocephala perfoliata was identified in 27% of the horses, exceeding what fecal testing would indicate in many herds. Horses <2 years of age, perhaps due to immunologic susceptibility, were at greater risk of tapeworm infection than adult horses.
    [Show full text]
  • Bertiella Studeri Infection in Children, Sri Lanka Anjalie Amarasinghe, Thanh H
    Bertiella studeri Infection in Children, Sri Lanka Anjalie Amarasinghe, Thanh H. Le, Susiji Wickramasinghe This study provides the molecular analysis of the We provide a detailed molecular and phylogenetic de- scription of Bertiella studeri tapeworms infecting children B. studeri tapeworms infecting children in Sri Lanka in Sri Lanka. Our findings can be used to identify multiple and describes phylogenetic relationships for this spe- species of Bertiella tapeworms that can infect human cies. The Ethics Review Committee in the Faculty of hosts in the Old World. Medicine, University of Peradeniya, Sri Lanka ap- proved this study (protocol no. 2019/EC/03). he genus Bertiella, which has 29 known tapeworm Tspecies, belongs to the subfamily Anoplocephalinae The Study of the Anoplocephalidae family (1). These tapeworms We conducted a retrospective study using tapeworm are common parasites in the small intestine of pri- proglottids (Appendix Figure 1, https://wwwnc.cdc. mates (2). Of these species, only B. studeri, B. mucro- gov/EID/article/26/8/20-0324-App1.pdf) from 24 nata, and B. satyri (3), which was recently redescribed pediatric patients referred to the Department of Para- as a different species (4), can infect humans (4,5). sitology, Faculty of Medicine, University of Peradeni- Children acquire this infection usually by eating con- ya, Peradeniya, Sri Lanka, during 2007–2017. Patients taminated fruits or by ingesting contaminated soil. were all <10 years of age (range 3.5–9 years). No other The earliest identified cases of human bertiellosis in epidemiologic data were available. Sri Lanka occurred in 1975; these cases and 1 further We extracted genomic DNA separately using a case were reported in 1976.
    [Show full text]
  • PATHOGENESIS and BIOLOGY of ANOPLOCEPHALINE CESTODES of DOMESTIC ANIMALS Vs Narsapur
    PATHOGENESIS AND BIOLOGY OF ANOPLOCEPHALINE CESTODES OF DOMESTIC ANIMALS Vs Narsapur To cite this version: Vs Narsapur. PATHOGENESIS AND BIOLOGY OF ANOPLOCEPHALINE CESTODES OF DO- MESTIC ANIMALS. Annales de Recherches Vétérinaires, INRA Editions, 1988, 19 (1), pp.1-17. hal-00901779 HAL Id: hal-00901779 https://hal.archives-ouvertes.fr/hal-00901779 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Review article PATHOGENESIS AND BIOLOGY OF ANOPLOCEPHALINE CESTODES OF DOMESTIC ANIMALS VS NARSAPUR Department of Parasitology, Bombay Veterinary College, Parel, Bombay-400 012, India Plan Goldberg (1951) did not notice any observable injurious effects nor any significant retardation of Introduction growth in lambs heavily infected, experimentally with Moniezia expansa. Haematological studies by Pathogenesis ofAnoplocephaline cestodes Deshpande et al (1980b) did not show any altera- tion in the values of haemoglobin, packed cell Biology ofAnoplocephaline cestodes volumes and erythrocyte counts during prepatency of experimental monieziasis. But many of the Rus- Developmental stages in oribatid hosts sian workers have noted of pathogeni- Conditions of development high degree city, and adverse effects on weight gains and on of meat and wool. In Tableman Oribatid intermediate hosts yields lambs, (1946) recorded cases of convulsions and death and Han- Oribatid species as intermediate hosts sen et al (1950) retarded weight gains and anaemia Oribatid host specificity due to pure Moniezia infections.
    [Show full text]
  • Prevalence, Incidence and Molecular Characterization of Tape Worms in Al
    Prevalence, incidence and molecular characterization of tape worms in Al Taif governorate, KSA and the effectiveness of Spirulina platensis as a biological control in vitro Bedor O. Al-Otaibi Taif University College of Science Nabila S. Degheidy Taif University College of Science Jamila Al-Malki ( [email protected] ) Taif University College of Science Research Keywords: Moniezea expansa, Moniezea benedene, Avitellina centripunctata, Thysaniezia giardia, Stilesia hepatic, Prevalence, Incidence, Molecular characterization, Biological control, Spirulina platensis Posted Date: January 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-143645/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract Background Tapeworms are parasites that infect sheep and cattle and live in the small intestine, causing many problems, including diarrhea and weight loss, which leads to losses in livestock breeding. One of the most common tapeworms that infects sheep, goats and cattle Moniezea expansa, Moniezea benedene, Avitellina centripunctata, Thysaniezia giardia and Stilesia hepatic. Methods A total (965) of small intestine were collected from postmortem sheep of slaughter house of Al Taif abattoir during the period from October 2018 to September 2019. The PCR product of cox1 gene (364 bp) was sequenced and then data were aligned with the same fragment of cox1 gene for other related helminths parasites. In vitro determination of the anthelmintic ecacy of Spirulina platensis on adult Moniezia. Results The results reported that about 9.94% of selected sheep were infected with tape worms in native breed. Concerning the seasonal incidence of tape worms among sheep, the results revealed that the highest percentage was recorded during winter season (11.3%), while the lowest percentage was recorded during the spring (7.72%).
    [Show full text]
  • Studiesoncestode13dout.Pdf
    57 ( (jsyft f(i^m(£D:vHFy: : Rv Q . / 3)l(e)ire)l(B ' tg)1 3M@MS||sl its' ILLINOIS BIOLOGICAL MONOGRAPHS PUBLISHED QUARTERLY UNDER THE AUSPICES OF THE GRADUATE SCHOOL BY THE UNIVERSITY OF ILLINOIS VOLUME I Urbana, Illinois 1914-15 Editorial Committee Stephen Alfred Forbes William Trelease Henry Baldwin Ward \ TABLE OF CONTENTS Volume I NUMBERS PAGES i and 2 A Revision of the Cestode Family Proteocephalidae. By George Roger La Rue. With 16 plates i-35<> ( Distributed November 30, 1914) 3 Studies on the Cestode Family Anoplocephalidae. By Herman Douthitt. With 6 plates 351-446 (Distributed March 8, 1915) 4 Some North American Larval Trematodes. By William Walter Cort. With 8 plates 447-532 (Distributed June 28. 1915) 732170 ILLINOIS BIOLOGICAL MONOGRAPHS ' Vol.1 January, 1915 No. 3 Editorial Committee Stephen Alfred Forbes William Trelease Henry Baldwin Ward Published under the Auspices of the Graduate School by the University of Illinois Copyright, 1915 By the University of Illinois STUDIES ON THE CESTODE FAMILY ANOPLOCEPHALID^ WITH SIX PLATES BY HERMAN DOUTHITT Contributions from the Zoological Laboratory of the University of Illinois under the direction of Henry B. Ward, No. 38 TABLE OF CONTENTS PAGE Introduction 5 Anatomical Discussions of Species and Genera Andrya primordialis 5 Andrya communis 8 Andrya macrocephala 10 Andrya translucida 13 The Genus Andrya 16 Anoplocephala wimerosa 17 Anoplocephala variabilis 20 Anoplocephala infrequens 24 The Genus Anoplocephala 26 Schizotaenia americana 28 Schizotaenia variabilis .• _... 33 Schizotaenia
    [Show full text]