Chlorophyll Catabolism in Senescing Plant Tissues

Total Page:16

File Type:pdf, Size:1020Kb

Chlorophyll Catabolism in Senescing Plant Tissues Proc. Natl. Acad. Sci. USA Vol. 84, pp. 1901-1905, April 1987 Botany Chlorophyll catabolism in senescing plant tissues: In vivo breakdown intermediates suggest different degradative pathways for Citrus fruit and parsley leaves (chlorophyliide/pheophorbide/pheophytin/ethylene/chlorophyliase) DEKEL AMIR-SHAPIRA, ELIEZER E. GOLDSCHMIDT*, AND ARIE ALTMAN Department of Horticulture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel Communicated by Kenneth V. Thimann, November 3, 1986 ABSTRACT High-pressure liquid chromatography was Reports on "changed chlorophylls" (11, 12) were not con- used to separate chlorophyll derivatives in acetone extracts firmed by more recent studies. from senescing Citrus fruit peel, autumnal Melia azedarach L. Renewed interest in the area of chlorophyll catabolism in leaves, and dark-held detached parsley (Petroselinum sativum recent years has produced developments along several lines L.) leaves. Chlorophyllide a and another polar, dephytylated of investigation. derivative accumulated in large amounts in senescing Citrus (i) The chlorophyllase enzyme has been thoroughly puri- peel, particularly in fruit treated with ethylene. Ethylene also fied and characterized (13, 14), and its localization in induced a 4-fold increase in the specific activity of Citrus chloroplasts seems well established (15, 16). Correlative chlorophyllase (chlorophyll chlorophyllidohydrolase, EC evidence in senescing leaves (17) and the upsurge of 3.1.1.14). Detailed kinetics based on a hexane/acetone solvent chlorophyllase in ethylene-treated Citrus fruit (16, 18-20) partition system showed that the in vivo increase in dephytyl- further support its role in senescent chlorophyll catabolism. ated derivatives coincided with the decrease in total chloro- (ii) Several oxidative and peroxidative enzyme systems phyll. Polar, dephytylated derivatives accumulated also in capable of degrading chlorophyll have been described (21, senescingMelia leaves. Senescing parsley leaves revealed a very 22), including a model system in which thylakoids fortified different picture. The gradual disappearance of chlorophyll a with linolenic acid rapidly degraded chlorophyll (23). The was accompanied by an increase in pheophytin a and by the presence of an enzyme system responsible for removal ofthe transient appearance of several phytylated derivatives. Only Mg2+ from the tetrapyrrole ring has also been hinted (24, t). pheophytin a and an adjacent peak were left when all the (iii) In vivo spectroscopy of senescing fruit has been chlorophyll a had disappeared. The pathways for breakdown used of chlorophyll in the Citrus and parsley senescence systems are for detection of biochemical/biophysical pigment changes discussed. associated with ripening and senescence (25). (iv) Characterization and identification of small amounts of breakdown products have been achieved in a cases Chlorophyll plays a central role in the life processes ofplants. few Little is known, however, about its degradative metabolism. (26-30). Of particular interest is the recent identification of The chlorophyllase system (chlorophyll chlorophyll- 132-hydroxychlorophyll a as a breakdown intermediate in a idohydrolase, EC 3.1.1.14) was discovered more than 70 model system (29) and probably also in senescing bean and years ago by Willstatter and Stoll (1), who suggested that barley leaves (30). removal of the phytyl group could be the first step in The progress in detection of breakdown intermediates has chlorophyll catabolism. Difficulties in the study of chloro- been made possible mainly through the introduction ofHPLC phyllase, mainly because of the insolubility of both enzyme systems (31-33). In the present study, HPLC was used to and substrate in aqueous media, raised questions as to its screen for breakdown intermediates in senescing Citrus fruit biochemical significance (3). The progress in the study of peel and in Melia and parsley leaf systems. In the Citrus and membranal enzymes through the use of detergents opened Melia systems, HPLC and additional corroborating evidence the way for modem assay and characterization of this point to the in vivo function of chlorophyllase, whereas in enzyme system (4, 5). Doubts still prevailed, however, parsley the HPLC data suggest a different path of degrada- regarding the physiological significance of chlorophyllase, tion. and its role in the natural breakdown of chlorophyll during MATERIALS AND METHODS senescence has not been unequivocally demonstrated (3, 6, Plant Material. Mature green tangerine fruit (Citrus 7). reticulata hybrids var. Murcott and Topaz) were harvested The problem of chlorophyll catabolism in plant tissues has from the orchard and allowed to senesce in glass cylinders been around for many years without any significant progress. under a humid stream of air containing 20 A.l of ethylene per The major difficulty seems to lie in the fact, already noted by liter at 250C in the dark. Controls were gassed with a humid Seybold many years ago (8), that chlorophyll seems to stream of air. disappear from plant tissues without leaving any visibly Leaves of Melia azedarach L., China tree, were collected detectable clues. Searches for breakdown intermediates in from individual trees growing on campus during late summer. senescing leaves (6, 9) and fruit (10) have revealed diminish- Parsley leaves (Petroselinum sativum L.), purchased daily ing amounts of chlorophylls a and b and traces of chloro- in the market, were allowed to senesce in the dark at 250C in phyllides and pheophytins (6), the latter often suspected to be Petri dishes containing moist filter paper covered with artefacts formed during extraction and chromatography. a Abbreviation: RT, retention time. The publication costs of this article were defrayed in part by page charge *To whom reprint requests should be addressed. payment. This article must therefore be hereby marked "advertisement" tZiegler, R., Guha, N. & Schnell, B. Meeting: Deutsche Botanische in accordance with 18 U.S.C. §1734 solely to indicate this fact. Gesellschaft, Sept. 12-18, 1982, Freiburg, F.R.G., Abstr. 473. Downloaded by guest on October 5, 2021 1901 1902 Botany: Amir-Shapira et al. Proc. Natl. Acad. Sci. USA 84 (1987) Saran net, on which the leaves were laid to avoid direct 4:6:1 (vol/vol), the mixture was shaken vigorously and contact with water. centrifuged at 12,000 x g for 10 min to separate the phases. Pigment Standards for HPLC. Chlorophylls a and b were Chlorophyllide a was determined in the acetone phase prepared from fresh parsley leaves as described by Bazzaz spectrophotometrically by using an extinction coefficient of and Rebeiz (34), stored dry at -15'C, and redissolved in 7.49 x 10-2 M-l cm-1 at 667 nm (5). Although the enzymatic diethyl ether prior to use. Chlorophyllides a and b were reaction progressed linearly for 30 min, the activity was prepared by treating their respective chlorophylls with calculated according to the 10-min readings. chlorophyllase obtained from Citrus fruit peel chloroplasts Estimation of Total Chlorophyll and Dephytylated Deriva- (see below). The chlorophyllides were transferred into ace- tives. For estimation of total chlorophyll contents, the tissue tone, dried under N2, and stored dry at -15'C. Pheophytins was extracted in cold 80% acetone, and the absorbance was a and b were obtained by adding 13% HCl to diethyl ether measured at 645 and 663 nm (38, 39). solutions of their respective chlorophylls (35). Pheophor- For estimation ofdephytylated chlorophyll derivatives, the bides a and b were prepared by the same method (35) from tissue was extracted in 20 vol of cold acetone/0.1 M NH40H, their respective chlorophyllides. 9:1 (vol/vol), in the dark (34). The extract was filtered Pigment Extracts for HPLC. The outer, colored layer of through Whatman no. 1 filter paper. Ten milliliters of hexane Citrus fruit peel and Melia and parsley leaflets were homog- was added to 10 ml of the extract. After vigorous shaking and enized in the dark at -15'C in acetone (0.5 g/5 ml; Ultra centrifugation, both the acetone and the hexane phases were Turrax homogenizer), dried under N2, and stored at -150C. ready for spectrophotometry. The spectral peak of the Samples were redissolved at -150C in acetone and filtered acetone phase, which contained the dephytylated deriva- through Schleicher & Schuell Dassel Millipore 0.45-gm tives, was at 662.4-663.3 nm, and the peak of the hexane pore-size filters prior to analysis by HPLC. fraction was at 659.3 nm. Relative amounts of pigments in the Reagents for HPLC. Absolute methanol, hexane, ethyl acetone and hexane fractions were calculated from these acetate, and acetone were purchased from Merck. PIC A (33) absorbance peaks, taking into account the volume ratios was purchased from Waters Associates and was diluted obtained (acetone/hexane, 5.2:14.8). according to the manufacturer's directions to give a 5 mM tetrabutylammonium phosphate solution of pH 7.0. Water RESULTS was distilled in glass. The HPLC Pigment Separation System. The system devel- HPLC Equipment and Operation. An HP 1090 liquid oped in the present study is based on previously published chromatography solvent delivery system equipped with an HPLC pigment separation programs, mainly HP 85B computer, an HP 3390 integrator, an HP 7470 plotter, those of and an HP 9121 diskette drive was used. A 125 x 4 mm (i.d.) Schwartz et al. (32) and Fuesler et al. (33). Our system Lichrosphere 100 CH-18 column by Merck was used. Mix- enables separation of both phytylated and nonphytylated tures of solvents were used in a stepwise elution program. chlorophyll derivatives on a single chromatogram (Fig. 1). Solvent A consisted of 7:3 (vol/vol) methanol/PIC A (Wa- The polar nonphytylated derivatives are eluted rather early ters). Solvent B consisted of ethyl acetate. First the (chlorophyllide a in 3.3 min; pheophorbide a in 7.2 min). The chromatogram was developed with 80:20 (vol/vol) solvent phytylated derivatives are eluted much later (chlorophyll b in A/solvent B for 10 min, followed by solvent A alone for the 38.4 min; chlorophyll a in 47 min; pheophytin a in 61.4 min).
Recommended publications
  • 1 Introduction
    Introduction 1 1 Introduction Tetrapyrroles belong to a group of molecules with a common structure. They are synthesized in a branched pathway, in which various end products are formed to different amounts. The most abundant cyclic tetrapyrroles are chlorophyll (Chl) and heme, which are characterized by a chelated magnesium and ferrous ion, respectively. Chlorophyll is involved in light absorption and energy transduction during photosynthesis. Heme is a cofactor of hemoglobin, cytochromes, P450 mixed-function oxygenases, and catalases. Other members of the class of tetrapyrroles include siroheme (the prosthetic group of nitrite and sulphite reductases) and phytochromobilin, the chromophore of phytochrome, which is involved in light perception. Tetrapyrrole biosynthesis has been the subject of numerous studies over several decades. But genetic and biochemical characterization of tetrapyrrole biosynthesis has progressed by using approaches to genetically dissect the tetrapyrrole biosynthetic pathway. Pigment-deficient mutants and antisense technology have proved to be useful for examining the mechanisms of metabolic control or for analyzing biochemically the enzymatic steps which are affected by the mutation or by the antisense RNA expression. Tetrapyrrole intermediates are highly photoreactive. They can easily be excited and transfer the energy or electrons to O2. Then reactive oxygen species (ROS) are produced upon exposure to light and oxygen. Under normal growth conditions the risk of photooxidative damage from intermediates in tetrapyrrole biosynthesis is low. Excessive accumulation of such intermediates is the result of deregulation of tetrapyrrole biosynthesis. Toxic effects of porphyrins are evident in human patients with deficiencies of one of the enzymes of heme biosynthesis. These patients are suffering from metabolic diseases, which are called porphyrias (Moore, 1993).
    [Show full text]
  • TION of BUCKWHEAT. It Has Been Known for a Long Time That Certain
    PHOTOSENSITIZATION OF ANIMALS AFTER THE INGES- TION OF BUCKWHEAT. BY CHARLES SHEARD, PH.D., HAROLD D. CAYLOR, M.D., AND CARL SCHLOTTHAUER, D.V.M. (From tke Section on Pkysics and Biophysical Research, tke Section on Surgical Pathology, and the Division of Experimental Palhdogy and Surgery, Mayo Clinic and The Mayo Foundation, Rochester, Minnesota.) (Received for publication,~'March 1, 1928.) It has been known for a long time that certain animals, following the ingestion of various substances, are rendered sensitive to certain types of radiant energy. The present study covers biologic and physical observations on the degree of sensitization, the character of the sensitizing light and the nature of the photodynamic substance of buckwheat. White rabbits, mice, rats, goats, swine, dogs and varicolored guinea pigs were studied. Sunlight, carbon arc lamp (Efka or Hoffman) with Conradty-Norris vacuum carbon electrodes and quartz mercury vapor arcs (Victor X-Ray Corporation), both with and without various filters, were employed for irradiation. All of these sources contain infra-red, visible and ultra-violet radiations. I~SLr~ OF LITERATURE. Considerable literature, especially European, has appeared on the subject of diseases in animals and man brought about by optical sensitization. Somewhat detailed accounts of the contributions relative to diseases due to exogenous sensi- tization are to be found in the brochures by Hausmann and by Mayer. Years ago European stockmen found that in certain animals which had ingested buckwheat (plant or seed), erythema, itching, edema and convulsions developed and, in many cases, paralysis and death, on exposure to out-of-door sunshine. However, untoward symptoms did not arise if the animals were kept indoors or in partial darkness and they recovered from the sensitization induced by eating certain plants if they were removed from the light early in the onset of the symp- toms.
    [Show full text]
  • Influence of Alkaline Treatment on Structural Modifications Of
    foods Article Influence of Alkaline Treatment on Structural Modifications of Chlorophyll Pigments in NaOH—Treated Table Olives Preserved without Fermentation Marta Berlanga-Del Pozo, Lourdes Gallardo-Guerrero and Beatriz Gandul-Rojas * Chemistry and Biochemistry of Pigments, Food Phytochemistry, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. Utrera km 1, 41013 Sevilla, Spain; [email protected] (M.B.-D.P.); [email protected] (L.G.-G.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 18 May 2020; Published: 1 June 2020 Abstract: Alkaline treatment is a key stage in the production of green table olives and its main aim is rapid debittering of the fruit. Its action is complex, with structural changes in both the skin and the pulp, and loss of bioactive components in addition to the bitter glycoside oleuropein. One of the components seriously affected are chlorophylls, which are located mainly in the skin of the fresh fruit. Chlorophyll pigments are responsible for the highly-valued green color typical of table olive specialties not preserved by fermentation. Subsequently, the effect on chlorophylls of nine processes, differentiated by NaOH concentration and/or treatment time, after one year of fruit preservation under refrigeration conditions, was investigated. A direct relationship was found between the intensity of the alkali treatment and the degree of chlorophyll degradation, with losses of more than 60% being recorded when NaOH concentration of 4% or greater were used. Oxidation with opening of the isocyclic ring was the main structural change, followed by pheophytinization and degradation to colorless products. To a lesser extent, decarbomethoxylation and dephytylation reactions were detected.
    [Show full text]
  • Chapter 3 the Title and Subtitle of This Chapter Convey a Dual Meaning
    3.1. Introduction Chapter 3 The title and subtitle of this chapter convey a dual meaning. At first reading, the subtitle Photosynthetic Reaction might seem to indicate that the topic of the structure, function and organization of Centers: photosynthetic reaction centers is So little time, so much to do exceedingly complex and that there is simply insufficient time or space in this brief article to cover the details. While this is John H. Golbeck certainly the case, the subtitle is Department of Biochemistry additionally meant to convey the idea that there is precious little time after the and absorption of a photon to accomplish the Molecular Biology task of preserving the energy in the form of The Pennsylvania State University stable charge separation. University Park, PA 16802 USA The difficulty is there exists a fundamental physical limitation in the amount of time available so that a photochemically induced excited state can be utilized before the energy is invariably wasted. Indeed, the entire design philosophy of biological reaction centers is centered on overcoming this physical, rather than chemical or biological, limitation. In this chapter, I will outline the problem of conserving the free energy of light-induced charge separation by focusing on the following topics: 3.2. Definition of the problem: the need to stabilize a charge-separated state. 3.3. The bacterial reaction center: how the cofactors and proteins cope with this problem in a model system. 3.4. Review of Marcus theory: what governs the rate of electron transfer in proteins? 3.5. Photosystem II: a variation on a theme of the bacterial reaction center.
    [Show full text]
  • Chlorophyll and Pheophytin
    Application Note: Chlorophyll and Pheophytin INTRODUCTION Chlorophyll, the photosynthetic pigment in all plants, is a fluorescent molecule, thus it can be determined by fluorometry. Fluorometric techniques are now well established for both qualitative and quantitative measurement of the chlorophylls and pheophytins. For many applications, they have replaced the traditional spectrophotometric methods and have made analysis in the field practical. ADVANTAGES Fluorometric methods have many advantages over other methods. As one author stated, "Chlorophyll a was selected because... it is the only index of phytoplankton abundance presently available that can be measured by a continuous in-situ technique..."(1). According to another researcher, "The relative simplicity of these techniques enables much information to be rapidly gathered..." (2). A comparison study conducted by the U.S. Environmental Protection Agency has shown that fluorometric methods compare favorably with spectrophotometric results (3). Fluorometry has the following advantages over spectrophotometry: Sensitivity: Fluorometry is at least 1,000 times more sensitive than the spectrophotometric techniques (4 ,5). Up to 10 liters of water may be required for a single spectrophotometric chlorophyll determination (6, p. 186), but the fluorometer can obtain the same data from samples of 500 ml or less. Sometimes the large volumes required for spectrophotometric determination are nearly impossible to filter because of clogging problems. The spectrophotometric determination of chlorophyll involves filtration, disruption of the cells, and extraction of the chlorophyll, followed by absorbance measurements. The same extraction technique can be used to produce samples for fluorometric determination, with the advantage of greater sensitivity and thus smaller sample requirements. Speed: With a spectrophotometer, one must measure absorbance at several wavelengths (4, 6, p.
    [Show full text]
  • Chlorophyll Biosynthesis
    Chlorophyll Biosynthesis: Various Chlorophyllides as Exogenous Substrates for Chlorophyll Synthetase Jürgen Benz and Wolfhart Rüdiger Botanisches Institut, Universität München, Menziger Str. 67, D-8000 München 19 Z. Naturforsch. 36 c, 51 -5 7 (1981); received October 10, 1980 Dedicated to Professor Dr. H. Merxmüller on the Occasion of His 60th Birthday Chlorophyllides a and b, Protochlorophyllide, Bacteriochlorophyllide a, 3-Acetyl-3-devinylchlo- rophyllide a, Pyrochlorophyllide a, Pheophorbide a The esterification of various chlorophyllides with geranylgeranyl diphosphate was investigated as catalyzed by the enzyme chlorophyll synthetase. The enzyme source was an etioplast membrane fraction from etiolated oat seedlings ( Avena sativa L.). The following chlorophyllides were prepared from the corresponding chlorophylls by the chlorophyllase reaction: chlorophyllide a (2) and b (4), bacteriochlorophyllide a (5), 3-acetyl-3-devinylchlorophyllide a (6), and pyro­ chlorophyllide a (7). The substrates were solubilized with cholate which reproducibly reduced the activity of chlorophyll synthetase by 40-50%. It was found that the following compounds were good substrates for chlorophyll synthetase: chlorophyllide a and b, 3-acetyl-3-devinylchloro- phyllide a, and pyrochlorophyllide a. Only a poor or no reaction was found with protochloro­ phyllide, pheophorbide a, and bacteriochlorophyllide. This difference of reactivity was not due to distribution differences of the substrates between solution and pelletable membrane fraction. Furthermore, no interference between good and poor substrate was detected. Structural features necessary for chlorophyll synthetase substrates were discussed. Introduction Therefore no exogenous 2 was applied. The only substrate was 2 formed by photoconversion of endo­ The last steps of chlorophyll a (Chi a) biosynthe­ genous Protochlide (1) in the etioplast membrane.
    [Show full text]
  • Carotene Contents of Isolated Photosystem II Reaction Center Complexes
    Photosynthesis Research 52: 69±73, 1997. 69 c 1997 Kluwer Academic Publishers. Printed in the Netherlands. Technical communication A routine method to determine the chlorophyll a, pheophytin a and -carotene contents of isolated Photosystem II reaction center complexes Camiel Eijckelhoff & Jan P. Dekker Department of Physics and Astronomy, Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands; Author for correspondence Received 13 February 1997; accepted in revised form 28 March 1997 Key words: chlorophyll, pheophytin, Photosystem II, reaction center Abstract The most simple way in which the stoichiometry of chlorophyll a, pheophytin a and -carotene in isolated Photosystem II reaction center complexes can be determined is by analysis of the spectrum of the extracted pigments in 80% acetone. We present two different calculation methods using the extinction coef®cients of the puri®ed pigments in 80% acetone at different wavelengths. One of these methods also accounts for the possible presence of chlorophyll b. The results are compared with results obtained with HPLC pigment analysis, and indicate that these methods are suitable for routine determination of the pigment stoichiometry of isolated Photosystem II reaction center complexes. Abbreviations: Car ± carotene; Chl ± chlorophyll; HPLC ± high-performance liquid chromatography; Pheo ± pheophytin; PS ± Photosystem; RC ± reaction center Introduction content of the PS II RC complex, since the number and energies of bound chlorophylls seriously affect the The smallest unit of Photosystem II (PS II) capable of interpretations of functional studies of the PS II reac- primary charge separation is the D1±D2-cytochrome tion center, such as those on the primary energy and b-559 reaction center complex (Nanba and Satoh electron transfer reactions (van Gorkom 1995).
    [Show full text]
  • Surprising Roles for Bilins in a Green Alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland
    COMMENTARY COMMENTARY Surprising roles for bilins in a green alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland It is well established that the origin of plastids which serves as chromophore of phyto- can be traced to an endosymbiotic event in chromes (Fig. 1). An intriguing feature of which a free-living photosynthetic prokaryote all sequenced chlorophyte genomes is that, invaded a eukaryotic cell more than 1 billion although they lack phytochromes, their years ago. Most genes from the intruder genomes encode two HMOXs, HMOX1 were gradually transferred to the host nu- andHMOX2,andPCYA.InPNAS,Duanmu cleus whereas a small number of these genes et al. (6) investigate the role of these genes in were maintained in the plastid and gave the green alga Chlamydomonas reinhardtii rise to the plastid genome with its associated and made unexpected findings. protein synthesizing system. The products of Duanmu et al. first show that HMOX1, many of the genes transferred to the nucleus HMOX2, and PCYA are catalytically active were then retargeted to the plastid to keep it and produce bilins in vitro (6). They also functional. Altogether, approximately 3,000 demonstrate in a very elegant way that these nuclear genes in plants and algae encode proteins are functional in vivo by expressing plastid proteins, whereas chloroplast ge- a cyanobacteriochrome in the chloroplast Fig. 1. Tetrapyrrole biosynthetic pathways. The heme nomes contain between 100 and 120 genes of C. reinhardtii, where, remarkably, the and chlorophyll biosynthetic pathways diverge at pro- (1). A major challenge for eukaryotic pho- photoreceptor is assembled with bound toporphyrin IX (ProtoIX).
    [Show full text]
  • Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin A, and Chlorophyll a by the SAC/SAC-CI Method
    1320 J. Phys. Chem. B 1998, 102, 1320-1326 Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin a, and Chlorophyll a by the SAC/SAC-CI Method J. Hasegawa, Y. Ozeki, K. Ohkawa, M. Hada, and H. Nakatsuji*,† Department of Synthetic and Biological Chemistry, Faculty of Engineering, Kyoto UniVersity, Sakyo-ku, Kyoto 606-01, Japan ReceiVed: September 4, 1997; In Final Form: NoVember 19, 1997 Excited states of free base chlorin (FBC), free base Bacteriochlorin (FBBC), pheophytin a (Pheo a), and chlorophyll a (Chlo a), which are derivatives of free base porphine (FBP), were calculated by the SAC (symmetry adapted cluster)/SAC-CI (configuration interaction) method. The results reproduced well the experimentally determined excitation energies. The reduction of the outer double bonds in the porphine ring in the order of FBP, FBC, and FBBC causes a breakdown of the symmetry and a narrowing of the HOMO- LUMO gap, which result in a red shift of the Qx band and an increase of its intensity. In the change from Pheo a to Chlo a, the Mg coordination reduces the quasidegeneracy in the Qx state and then increases the spectral intensity. The disappearance of the Qy humps from the absorption spectrum of Pheo a, compared with that of Chlo a, is due to the red shift of the Qy state. Introduction Many biological systems contain porphyrins, chlorins, and bacteriochlorins.1,2 These compounds often take an important part in biochemical reactions, such as light absorption, electron transfer,1 and oxygen transport and storage.2 Because of their scientific importance, they have been the subject of a wide variety of studies.
    [Show full text]
  • EPR Studies of Photosystem II
    % !" #$%&!$! "!%" &!" '()(*()) ) +,!$$-$ ..V 2 ISBN C D E E F C F ! "# $ " % # "$ &'()" "*+,'-(. "/ GHJ K LK MM FM O P Till Sven och Freja List of Papers This thesis is based on the following published papers and manuscripts, which are referred to in the text by their Roman numerals. I Havelius, K. G. V., Su, J.-H., Feyziyev, Y., Mamedov, F. and Styring, S. (2006) The spectral resolution of the split EPR- signals induced by illumination at 5 K from the S1, S3 and S0 states of photosystem II, Biochemistry, 45:9279–9290. II Su, J.-H., Havelius, K. G. V., Feyziyev, Y., Mamedov, F., Ho, F. M. and Styring S. (2006) Split EPR signals from photosys- tem II are modified by methanol, reflecting S state dependent binding and alterations in the magnetic coupling in the CaMn4 cluster, Biochemistry, 45:7617–7627. III Havelius, K. G. V. and Styring, S. (2007) pH dependent compe- tition between YZ and YD in photosystem II probed by illumina- tion at 5 K, Biochemistry, 46:7865–7874. IV Su, J.-H., Havelius, K. G. V., Ho, F. M., Han, G., Mamedov, F. and Styring, S. (2007) Formation spectra of the EPR split signal from S0, S1 and S3 States in photosystem II induced by mono- chromatic light at 5 K, Biochemistry, 46:10703-10712. V Han, G., Ho, F. M., Havelius, K. G. V., Morvaridi, S. F., Ma- medov, F. and Styring, S. (2008) Direct quantification of the four individual S states in photosystem II using EPR spectros- copy, Biochim. Biophys. Acta, 1777:496-503. VI Havelius, K.
    [Show full text]
  • Identification, Isolation and Antioxidant Activity of Pheophytin from Green Tea (Camellia Sinensis (L.) Kuntze)
    Available online at www.sciencedirect.com ScienceDirect Procedia Chemistry 14 ( 2015 ) 232 – 238 2nd Humboldt Kolleg in conjunction with the International Conference on Natural Sciences, HK-ICONS 2014 Identification, Isolation and Antioxidant Activity of Pheophytin from Green Tea (Camellia sinensis (L.) Kuntze) Lia Kusmitaa, Ika Puspitaningruma, Leenawaty Limantarab* aSTIFAR “Yayasan Pharmasi”, Letjend Sarwo Edie Wibowo KM 1, Semarang 50193 bMa Chung Research Center for Photosyntehtic Pigments, Ma Chung University, Villa Puncak Tidar N 1,Malang 65151 Abstract Tea is a plant that can grow in different countries in the world. Green tea is one of the types of tea which is most beneficial for health such as anticarcinogenic, antibacterial, antitumor, antivirus, and antioxidant. In this research, identification of green tea pigments (Camellia sinensis (L.) Kuntze) were conducted by using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) equipped with photodiode array detector. By TLC analysis, five spots were detected and they were β-carotene, pheophytin a, chlorophyll b, xanthophyll, and pheophorbide a. An analysis using HPLC showed the existence of 14 peaks consisting of 10 chlorophyll peaks and their derivatives as well as four carotenoid peaks. Pheophytin isolation was conducted using column chromatography and antioxidant activity was assayed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) –1 method. Antioxidant activity of pheophytin a IC50 = (573 ± 0.23) mg · L corresponded to that of β-carotene marker IC50 = –1 –1 (550 ± 0.26) mg · L . Antioxidant activity of the green tea crude extract had IC50 = (250 ± 0.21) mg · L which was twice higher than β-carotene marker. © 2015 Published by Elsevier B.V.
    [Show full text]
  • Spatial and Temporal Variability in the Response of Phytoplankton and Bacterioplankton to B-Vitamin Amendments in an Upwelling S
    1 Spatial and temporal variability in the response of 2 phytoplankton and bacterioplankton to B-vitamin 3 amendments in an upwelling system 4 Vanessa Joglar1*, Antero Prieto1, Esther Barber-Lluch1, Marta Hernández-Ruíz1, Emilio 5 Fernández1 and Eva Teira1 6 1 Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Departamento Ecoloxía e 7 Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain 8 *Correspondence to: Vanessa Joglar +34 986 818790 ([email protected]) 9 1 10 Abstract. We experimentally evaluated the temporal (inter-day and inter-season) and 11 spatial variability in microbial plankton responses to vitamin B12 and/or B1 supply 12 (solely or in combination with inorganic nutrients) in coastal and oceanic waters of the 13 northeast Atlantic Ocean. Phytoplankton and, to a lesser extent, prokaryotes were strongly 14 limited by inorganic nutrients. Inter-day variability in microbial plankton responses to B- 15 vitamins was limited compared to inter-season variability, suggesting that B-vitamins 16 availability might be partially controlled by factors operating at seasonal scale. 17 Chlorophyll-a (Chl-a) concentration and prokaryote biomass (PB) significantly increased 18 after B-vitamin amendments in 13 % and 21 %, respectively, of the 216 cases (36 19 experiments × 6 treatments). Most of these positive responses were produced by 20 treatments containing either B12 solely or B12 combined with B1 in oceanic waters, 21 which was consistent with the significantly lower average vitamin B12 ambient 22 concentrations compared to that in the coastal station. Negative responses, implying a 23 decrease in Chl-a or PB, represented 21 % for phytoplankton and 26 % for prokaryotes.
    [Show full text]