Forest and Vegetation Stratification the HCS Approach Toolkit V2.0 May 2017

Total Page:16

File Type:pdf, Size:1020Kb

Forest and Vegetation Stratification the HCS Approach Toolkit V2.0 May 2017 Photo: Remote Sensing Solutions GmbH © THE HCS APPROACH TOOLKIT MODULE 4 VERSION 2.0 MAY 2017 THE HCS APPROACH PUTTING NO DEFORESTATION INTO PRACTICE Forest and vegetation stratification THE HCS AppROACH TOOLKIT V2.0 MAY 2017 Published by the HCS Approach Steering Group Copyright © 2017 High Carbon Stock Approach Steering Group This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 MEMBERS OF THE HCS APPROACH International License. To view a copy of this license, visit STEERING GROUP AS OF AUGUST 2017 http://creativecommons.org/licenses/by-nc-nd/4.0/. • Asian Agri All or portions of this report may be used, reprinted • Asia Pulp & Paper (Executive Committee) or distributed, provided the source is acknowledged. • BASF No use of this publication may be made for resale or • Conservation International other commercial purposes. • Daemeter Bibliographic reference: • EcoNusantara Rosoman, G., Sheun, S.S., Opal, C., Anderson, P., and • Forest Carbon Trapshah, R., editors. (2017) The HCS Approach Toolkit. • Forest Peoples Programme (Executive Committee) Singapore: HCS Approach Steering Group. • Golden Agri-Resources (Executive Committee) • Golden Veroleum (Liberia) Inc. Authors: • Greenbury & Associates Zakaria Adriani, Patrick Anderson, Sahat Aritonang, • Greenpeace (Executive Committee) Uwe Ballhorn, Bill Barclay, Sophie Chao, • IOI Group Marcus Colchester, Jules Crawshaw, Gabriel Eickhoff, • Mighty Robert Ewers, Jaboury Ghazoul, David Hoyle, George Kuru, • Musim Mas Paul Lemaistre, Pi Li Lim, Jennifer Lucey, Rob McWilliam, • National Wildlife Federation Peter Navratil, Jana Nejedlá, Ginny Ng, Annette Olsson, • New Britain Palm Oil Ltd. Charlotte Opal, Meri Persch-Orth, Sebastian Persch, • Proforest Michael Pescott, Sapta Ananda Proklamasi, Ihwan Rafina, • P&G Grant Rosoman, Mike Senior, Matthew Struebig, • Rainforest Action Network (Executive Committee) Tri A. Sugiyanto, Achmad Saleh Suhada, Alex Thorp, • Rainforest Alliance Sander van den Ende, Paulina Villalpando, and Michal Zrust. • TFT (Executive Committee) • Unilever (Executive Committee) Copy Editor: • Union of Concerned Scientists Sean Merrigan (Merrigan Communications) • Wilmar International Ltd. (Executive Committee) • WWF (Executive Committee) Production and Design Management: Helikonia The production of this toolkit has been funded by the members Design: of the HCS Approach Steering Group and the UK government Peter Duifhuizen (Sneldruk & Ontwerp) through the Partnerships for Forests programme. Diagram Design: • Open Air Design • Proforest MODULE 4 Forest and vegetation stratification Photo: Remote Sensing Solutions GmbH © MODULE CONTENTS P4: Section A: Outline of the process for making the indicative HCS forest map P10: Section B: Land cover and carbon stock classification using airborne LiDAR and/or satellite imagery P24: Appendix: An overview of optical multispectral satellite image options P26: Section C: Using field plots to estimate carbon stock and finalise delineation of land cover classes: LiDAR AGB calibration plots and forest inventory plots P41: Appendix 1: Inventory field form and inventory team equipment list P42: Appendix 2: Additional biodiveristy analysis tools 3 Photo: Ulet Ifansasti © SECTION A Outline of the process for making the indicative HCS forest map By Uwe Ballhorn and Peter Navratil (Remote Sensing Solutions GmbH). INTRODUCTION might be necessary to address issues relating to image quality and types of land cover and land use in different regions. The goal of Phase 1 in a HCS assessment is to create an indicative map of potential This module is intended for technical experts with HCS forest areas in a development area and experience in remote sensing analysis and forest its surrounding landscape. This is achieved inventory that can use this document to guide their using a combination of airborne Light work and create an indicative map of potential HCS Detection and Ranging (LiDAR) data (if forest areas, without need for further guidance. We thus assume that the reader has an advanced level available), satellite images and field data. of knowledge in these analysis techniques, but have The sections in Module 4 focus on Phase 1: provided references to more detailed guidance where Making the first indicative HCS forest map. it may be helpful. They take the reader through the required steps, including pre-requirements, metho- dology and expected output. METHODOLOGICAL AppROACH The methodology presented in this module has been tested and refined through pilot tests in development The methodological approach for the identification areas in Indonesia, Liberia and Papua New Guinea. of potential HCS forests is based on three options, The methodology is intended to be applicable for any where each option represents a level of accuracy moist tropical forest on mineral soils, but we have and detail, but also of methodological complexity and included details of variations to the methodology which cost (Figure 1). Progressing from Option 1 to Option 3 MODULE 4 Forest and Vegetation Stratification 4 SECTION A: Outline of the process for Making the indicative HCS forest map Version 2.0: May 2017 represents a decrease of accuracy/detail and an increase in uncertainty, but on the other hand, a decrease of methodological complexity and costs. The decision on which option to apply should be based on the desired accuracy and detail of the output that is required. Cost should not be the only or the primary consideration. There are also broader benefits that may be gained through choosing Option 1, such as accurate Digital Terrain Models (DTMs) that can be used for plantation planning if LiDAR is used. Further, if it is foreseen that accurate calculations of carbon will be required in the future, Option 1 might be the best since it provides the most accurate calculations of carbon. Alternatively, if the objective of the HCS assessment is simply to identify forest areas for land use planning decisions, then Option 3 may be Photo: Remote Sensing Solutions GmbH © satisfactory. As Option 3 has the highest level of uncertainty, this option is the Methodological approach least recommended, but is still HCS Stratification and allowed in the HCS Approach. Carbon Assessment Decision based on: desired detail, budget, and data availability Option 1: Option 2: Option 3: + Full-coverage LiDAR + LiDAR transects + Satellite-based land cover + LiDAR calibration plots + LiDAR calibration plots classification + Satellite-based land cover + Satellite-based land cover + Forest inventory plots classification classification Relevant HCS Toolkit Relevant HCS Toolkit Relevant HCS Toolkit Modules/Sections: Modules/Sections: Modules/Sections: Module 4b: Module 4b: Module 4b: • Airborne LiDAR data (p. 11) • Airborne LiDAR data (p. 11) • Optical satellite data (p. 15) • Optical satellite data (p. 15) • Optical satellite data (p. 15) • Satellite-based land cover • Satellite-based land cover • Satellite-based land cover classification (p. 15) classification (p. 15) classification (p. 15) • Assigning the land cover • Assigning the land cover • Assigning the land cover classes to the carbon stock classes to the carbon stock classes to the carbon stock classes (p. 20) classes (p. 20) classes (p. 20) Module 4c: Module 4c: Module 4c: • LiDAR calibration plots (p. 27) • LiDAR calibration plots (p. 27) • Forest inventory plots (p. 27) • LiDAR calibration plots (p. 29) • LiDAR calibration plots (p. 29) • Forest inventory plots (p. 31) • LiDAR calibration and LiDAR • LiDAR calibration and LiDAR • Forest inventory estimation (p. 38) AGB model development (p. 37) AGB model development (p. 37) Figure 1: Overview of the methodological approach for HCS Stratification and Carbon Assessment. Progressing from Option 1 to Option 3 represents a decrease of accuracy/detail and an increase in uncertainty, but on the other hand, a decrease of methodological complexity and costs. Also shown are the relevant toolkit sections describing the necessary tasks for these approaches. MODULE 4 Forest and Vegetation Stratification SECTION A: Outline of the process for Making the indicative HCS forest map Version 2.0: May 2017 5 Option 1 The first and most accurate/detailed option is the use of a full-coverage airborne LiDAR data set of the development area, which is calibrated through LiDAR AGB (above-ground biomass) calibration plots collected in the field in order to create an AGB model for the development area. This model is then reclassified into the different HCS classes. In this Photo: Ardiles Rante © option, the satellite-based land cover classification is primarily used for the sampling design of the Whereas the use of full-coverage LiDAR, LiDAR LiDAR AGB calibration plots. Figure 2 describes the transects, or no LiDAR, will depend on project-specific workflow of Option 1. The reasons for choosing this considerations (e.g. desired accuracy/detail, budget, option should be explained in the HCS summary data availability) a satellite-based high resolution report. land cover classification (including ground truthing and subsequent accuracy assessment) is mandatory for all three options. The Area of Interest (AOI) to be mapped by satellites must include the development area and also the broader landscape adjacent to the development area, and is further described in the next section. Imagery Sampling LiDAR calibration Full-coverage Design plots LiDAR Pre-processing Calibrate Object-based Preliminary land classification cover classification Accuracy Field ground assessment truth Final land
Recommended publications
  • ICP Forests Manual 2016
    United Nations Economic Commission for Europe (UNECE) Convention on Long-range Transboundary Air Pollution (CLRTAP) International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) MANUAL on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests Part V Tree Growth Version 05/2016 Prepared by: ICP Forests Expert Panel on Forest Growth (Matthias Dobbertin, Markus Neumann) Dobbertin M, Neumann M, 2016: Part V: Tree Growth. In: UNECE ICP Forests, Programme Co- ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 17 p. + Annex [http://www.icp-forests.org/manual.htm] ISBN: 978-3-86576-162-0 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holder. Application for such permission should be addressed to: Programme Co-ordinating Centre of ICP Forests Thünen Institute of Forest Ecosystems Alfred-Möller-Str. 1, Haus 41/42 16225 Eberswalde Germany Email : [email protected] Eberswalde, 2016 Tree Growth
    [Show full text]
  • Field Manual for the Georgian National Forest Inventory
    v Field Manual for the Georgian National Forest Inventory as of Decemeber 1, 2018 1 Table of Contents 1. Field Work and Measurements ........................................................................................................................... 6 Equipment and Materials ............................................................................................................................ 6 Locating the Sample Plot Centre in the Field ............................................................................................ 8 Navigation and Point Measurement with GPS .......................................................................................... 8 Slopover Plots at the Forest Boundary ....................................................................................................... 8 Marking the Sample Plot Center ................................................................................................................ 9 2. Assessment of Variables ..................................................................................................................................... 10 Introduction .............................................................................................................................................. 10 Applicable Projection ............................................................................................................................... 11 GPS Coordinates Errors / Accuracy ........................................................................................................
    [Show full text]
  • (LTI) Tips for Using the Latest Technology for Timber Cruising
    Laser Technology, Inc. (LTI) (http://www.lasertech.com) Tips for Using the Latest Technology for Timber Cruising Timber Measurements Society - 2010 Bill Carr June 9, 1958 I began my timber cruising career as a GS-3 employee ($3,495 per annum) with the U.S. Forest Service, NE Forest Experiment Station ($891.14 gross pay for 3 months) Early Traditional Cruising Tools Biltmore stick and Abney level 1992 Tree Height Significance Tree height is used for volume, value and growth & yield determination. Volume (cf) of immature Douglas fir in British Columbia: log V = 2.85805 + 1.739925 log D + 1.133187 log H So calling a 20" DBH tree that's 120 ft. tall (5% error in height) results in a 5.5% error in volume. Measure from a point perpendicular to the lean – tangent solution Timber cruisers have been trained to measure heights from a location that is perpendicular to the lean. This would solve most of the problem except that topography and perception often prevents an accurate measurement. The tree may appear to lean to the right or left but really quarters to you or away from you. Height error when lean is towards the cruiser Tree Height = 100 feet Degree of lean Distance from base of tree 50 feet 100 feet 1 degree 3.6% 1.8% 2 degrees 7.5% 3.6% 5 degrees 33.3% 9.5% 10 degrees 53.2% 21.0% 15 degrees 107.3% 34.9% Leaning Tree Height Improper technique Tangent Height Distance Leaning Tree Height Proper technique Tangent Height Distance Impulse 200 (1996) Main Features: Range: +0.1 foot To a tree 450 to 3,600 feet Tilt accuracy +0.1 degree Tree Heights 3- shot tangent solution Impulse 200 Evaluation by the U.S.
    [Show full text]
  • Estimation of Individual Tree Metrics Using Structure-From-Motion Photogrammetry
    Estimation of Individual Tree Metrics using Structure-from-Motion Photogrammetry A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geography Jordan M. Miller Department of Geography University of Canterbury 2015 Abstract The deficiencies of traditional dendrometry mean improvements in methods of tree mensuration are necessary in order to obtain accurate tree metrics for applications such as resource appraisal, and biophysical and ecological modelling. This thesis tests the potential of SfM-MVS (Structure-from- Motion with Multi-View Stereo-photogrammetry) using the software package PhotoScan Professional, for accurately determining linear (2D) and volumetric (3D) tree metrics. SfM is a remote sensing technique, in which the 3D position of objects is calculated from a series of photographs, resulting in a 3D point cloud model. Unlike other photogrammetric techniques, SfM requires no control points or camera calibration. The MVS component of model reconstruction generates a mesh surface based on the structure of the SfM point cloud. The study was divided into two research components, for which two different groups of study trees were used: 1) 30 small, potted ‘nursery’ trees (mean height 2.98 m), for which exact measurements could be made and field settings could be modified, and; 2) 35 mature ‘landscape’ trees (mean height 8.6 m) located in parks and reserves in urban areas around the South Island, New Zealand, for which field settings could not be modified. The first component of research tested the ability of SfM-MVS to reconstruct spatially-accurate 3D models from which 2D (height, crown spread, crown depth, stem diameter) and 3D (volume) tree metrics could be estimated.
    [Show full text]
  • Alternative Forest Management Practices for Montana
    Peter F Kolb, MSU Extension Forestry Specialist, Assistant Professor of Forest Ecology University of Montana, Missoula, MT 59812-0606 [email protected] Alternative Forest Management Practices for Montana The first step of any type of land management is to formulate a set of objectives and goals for the acreage in question. While these goals will reflect the personal needs of the landowner, which may include anything from minimizing human impacts to converting a forest into a pasture, they should also take into consideration the ecological capacity of the site. Throughout history, the biggest land management failures have occurred when managers tried to impose objectives that the land was incapable of supporting. With that in mind, all forested land management goals and objectives ultimately involve which trees should be left and which trees should be removed from a particular site. The most daunting challenge to the art and science of forestry is still represented by this basic decision making process, and can result in leaving all the trees or cutting every tree. To a forest landowner, setting objectives and goals for their land may be relatively simple compared to standing in the forest and trying to decide what actions to take. Ecology Montana forests are composed of a complex mosaic of ecologically distinct zones that were created by the interaction of topography, climate, soils and historic disturbance regimes on biological organisms. Depending on the location, this mosaic can occur across the landscape as an intricate puzzle of small 5-50 acre patches to larger 1000 – 10,000 acre patches.
    [Show full text]
  • Structural Attributes of Two Old-Growth Cross Timbers Stands in Western Arkansas
    Am. Midl. Nat. (2012) 167:40–55 Structural Attributes of Two Old-Growth Cross Timbers Stands in Western Arkansas DON C. BRAGG1 USDA Forest Service, Southern Research Station, Monticello, Arkansas 71656 AND DAVID W. STAHLE AND K. CHRIS CERNY Department of Geosciences, University of Arkansas, Fayetteville 72701 ABSTRACT.—Comprised of largely non-commercial, xeric, oak-dominated forests, the Cross Timbers in Arkansas have been heavily altered over the last two centuries, and thus only scattered parcels of old-growth timber remain. We inventoried and mapped two such stands on Fort Chaffee Military Training Center in Sebastian County, Arkansas. The west-facing Christmas Knob site is located on an isolated hill, while the southerly-facing Big Creek Narrows site is on a long, narrow rocky outcrop called Devil’s Backbone Ridge. These sites occupied rocky, south- to southwest-facing sandstone-dominated slopes, with primarily post oak (Quercus stellata) and blackjack oak (Q. marilandica) overstories. Post oak dominated the largest size classes at both sites. Increment cores indicated that some post oaks exceeded 200 y of age, and tree-ring dating also confirmed an uneven-aged structure to these stands. Both locations had irregular reverse-J shaped diameter distributions, with gaps, deficiencies, and excesses in larger size classes that often typify old-growth stands. On average, the post oaks at the Big Creek Narrows site were taller, larger in girth, and younger than those on the Christmas Knob site, suggestive of a better quality site at Big Creek. The application of neighborhood density functions on stem maps of both sites found random patterns in tree locations.
    [Show full text]
  • The Magazine of the Native Tree Society Volume 2, Number 05, May 2012
    eNTS The Magazine of the Native Tree Society Volume 2, Number 05, May 2012 eNTS: The Magazine of the Native Tree Society - Volume 2, Number 05, May 2012 eNTS: The Magazine of the Native Tree Society The Native Tree Society and the Eastern Native Tree Society http://www.nativetreesociety.org http://www.ents-bbs.org Volume 2, Number 05, May 2012 ISSN 2166-4579 Mission Statement: The Native Tree Society (NTS) is a cyberspace interest groups devoted to the documentation and celebration of trees and forests of the eastern North America and around the world, through art, poetry, music, mythology, science, medicine, wood crafts, and collecting research data for a variety of purposes. This is a discussion forum for people who view trees and forests not just as a crop to be harvested, but also as something of value in their own right. Membership in the Native Tree Society and its regional chapters is free and open to anyone with an interest in trees living anywhere in the world. Current Officers: President—Will Blozan Vice President—Lee Frelich Executive Director—Robert T. Leverett Webmaster—Edward Frank Editorial Board, eNTS: The Magazine of the Native Tree Society: Edward Frank, Editor-in-Chief Robert T. Leverett, Associate Editor Will Blozan, Associate Editor Don C. Bragg, Associate Editor Membership and Website Submissions: Official membership in the NTS is FREE. Simply sign up for membership in our bulletins board at http://www.ents- bbs.org Submissions to the website or magazine in terms of information, art, etc. should be made directly to Ed Frank at: [email protected] The eNTS: the Magazine of the Native Tree Society is provided as a free download in Adobe© PDF format through the NTS website and the NTS BBS.
    [Show full text]
  • Computational Virtual Measurement for Trees Dissertation
    Computational Virtual Measurement For Trees Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von MSc. Zhichao Wang geboren am 16.03.1987 in Beijing, China Gutachter: 1. 2. 3. Tag der Verteidigung: 我们的征途是星辰大海 My Conquest Is the Sea of Stars --2019, 长征五号遥三运载火箭发射 わが征くは星の大海 --1981,田中芳樹 Wir aber besitzen im Luftreich des Traums Die Herrschaft unbestritten --1844, Heinrich Heine That I lived a full life And one that was of my own choice --1813, James Elroy Flecker Contents Contents CONTENTS ......................................................................................................................................................... VII LIST OF FIGURES................................................................................................................................................. XI LIST OF TABLES ................................................................................................................................................. XV LIST OF SYMBOLS AND ABBREVIATIONS ............................................................................................... XVII ACKNOWLEDGMENTS ................................................................................................................................... XIX ABSTRACT ........................................................................................................................................................
    [Show full text]
  • Manual for Integrated Field Data Collection
    NFMA - Manual for integrated field data collection National Forest Monitoring and Assessment Manual for integrated field data collection . NFMA Working Paper No 37/E– Rome, 2009 FORESTRY DEPARTMENT FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Working Paper NFMA 37/E Rome 2009 National Forest Monitoring and Assessment Manual for integrated field data collection Version 2.3 (2nd Edition) By Anne Branthomme In collaboration with Dan Altrell, Kewin Kamelarczyk and Mohamed Saket National Forest Monitoring and Assessment Forests are crucial for the well being of humanity. They provide foundations for life on earth through ecological functions, by regulating the climate and water resources and by serving as habitats for plants and animals. Forests also furnish a wide range of essential goods such as wood, food, fodder and medicines, in addition to opportunities for recreation, spiritual renewal and other services. Today, forests are under pressure from increasing demands of land-based products and services, which frequently leads to the conversion or degradation of forests into unsustainable forms of land use. When forests are lost or severely degraded, their capacity to function as regulators of the environment is also lost, increasing flood and erosion hazards, reducing soil fertility and contributing to the loss of plant and animal life. As a result, the sustainable provision of goods and services from forests is jeopardized. In response to the growing demand for reliable information on forest and tree resources at both country and global levels, FAO initiated an activity to provide support to national forest monitoring and assessment (NFMA). The support to NFMA includes developing a harmonized approach to national forest monitoring and assessments (NFMA), information management, reporting and support to policy impact analysis for national level decision-making.
    [Show full text]
  • ESTIMATION of DBH USING TREE VARIABLES DERIVED from AERIAL Lidar for FORD FOREST, BARAGA, MICHIGAN
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2018 ESTIMATION OF DBH USING TREE VARIABLES DERIVED FROM AERIAL LiDAR FOR FORD FOREST, BARAGA, MICHIGAN Tugay Demiraslan Michigan Technological University, [email protected] Copyright 2018 Tugay Demiraslan Recommended Citation Demiraslan, Tugay, "ESTIMATION OF DBH USING TREE VARIABLES DERIVED FROM AERIAL LiDAR FOR FORD FOREST, BARAGA, MICHIGAN", Open Access Master's Thesis, Michigan Technological University, 2018. https://doi.org/10.37099/mtu.dc.etdr/721 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Forest Management Commons, and the Other Forestry and Forest Sciences Commons ESTIMATION OF DBH USING TREE VARIABLES DERIVED FROM AERIAL LiDAR FOR FORD FOREST, BARAGA, MICHIGAN By Tugay Demiraslan A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Forest Ecology and Management MICHIGAN TECHNOLOGICAL UNIVERSITY 2018 © 2018 Tugay Demiraslan This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Forest Ecology and Management. School of Forest Resources and Environmental Science Thesis Advisor: Dr. Robert Froese Committee Member: Dr. Curtis Edson Committee Member: Michael Hyslop School Dean: Dr. Andrew Storer Dedication “We have sent you as a spark, you must have returned as a flame.” Mustafa Kemal Atatürk (1923) To Mustafa Kemal Atatürk and the citizens of the country, that he and his
    [Show full text]
  • Cloquet Forestry Center Continuous Forest Inventory for 2000: Analysis and Integration with the Historical Database
    Cloquet Forestry Center Continuous Forest Inventory for 2000: Analysis and Integration with the Historical Database by Peter J. Dieser and Alan R. Ek Staff Paper Series No. 214 August 2011 Department of Forest Resources College of Food, Agricultural and Natural Resource Sciences University of Minnesota St. Paul, MN For more information about the Department of Forest Resources and its teaching, research, and outreach programs, contact the department at: Department of Forest Resources University of Minnesota 115 Green Hall 1530 Cleveland Avenue North St. Paul, MN 55108-6112 Ph: 612.624.3400 Fax: 612.625.5212 Email: [email protected] http://www.forestry.umn.edu/publications/staffpapers/index.html and see also http://iic.gis.umn.edu The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation Table of Contents List of Tables .........................................................................................................................ii List of Figures ........................................................................................................................ii Abstract ..................................................................................................................................iii Design and Use of the Cloquet Continuous Forest Inventory ...............................................1
    [Show full text]
  • Accurately Measuring the Height of (Real) Forest Trees
    J. For. 112(1):51-54 EXPLORING THE ROOTS http://dx.doi.org/10.5849/jof.13-065 Accurately Measuring the Height of (Real) Forest Trees Don C. Bragg uick and accurate tree height1 measurement has always been a Q goal of foresters. The techniques and technology to measure height were developed long ago—even the earliest textbooks on mensuration showcased hypsometers (e.g., Schlich 1895, Mlod- ziansky 1898, Schenck 1905, Graves 1906), and approaches to refine these sometimes remarkable tools appeared in the first issues of For- estry Quarterly, Proceedings of the Society of American Foresters, and the Journal of Forestry. For example, one such hypsometer based on the geometric principle of similar triangles (top of Figure 1) employed rotary mirrors to allow the user to simultaneously see the top and bottom of the tree in “proper parallax” (Tieman 1904). Other early hypsometers applied different approaches that used angles and dis- tance (e.g., Graves 1906, Detwiler 1915, Noyes 1916, Krauch 1918). Of these trigonometric hypsometers, those that calculated total tree height (HT) as a function of the tangent of the angles to the top (B2) and bottom (B1) of the tree and a baseline horizontal dis- tance (b) to the stem were most common (Figure 1). Because they are easy to apply and required only simple tech- nology, these approaches (hereafter, the similar triangles and tangent methods) have dominated tree height measurement. That is not to say the challenge of accurate tree height measurement was solved— many early foresters reported problems with getting consistent data Figure 1. Graphical representation of tree height measurement on in uneven terrain or dense understories or with the use of different sloping ground (the same mathematics apply for a level surface) types of hypsometers.
    [Show full text]