Accurately Measuring the Height of (Real) Forest Trees

Total Page:16

File Type:pdf, Size:1020Kb

Accurately Measuring the Height of (Real) Forest Trees J. For. 112(1):51-54 EXPLORING THE ROOTS http://dx.doi.org/10.5849/jof.13-065 Accurately Measuring the Height of (Real) Forest Trees Don C. Bragg uick and accurate tree height1 measurement has always been a Q goal of foresters. The techniques and technology to measure height were developed long ago—even the earliest textbooks on mensuration showcased hypsometers (e.g., Schlich 1895, Mlod- ziansky 1898, Schenck 1905, Graves 1906), and approaches to refine these sometimes remarkable tools appeared in the first issues of For- estry Quarterly, Proceedings of the Society of American Foresters, and the Journal of Forestry. For example, one such hypsometer based on the geometric principle of similar triangles (top of Figure 1) employed rotary mirrors to allow the user to simultaneously see the top and bottom of the tree in “proper parallax” (Tieman 1904). Other early hypsometers applied different approaches that used angles and dis- tance (e.g., Graves 1906, Detwiler 1915, Noyes 1916, Krauch 1918). Of these trigonometric hypsometers, those that calculated total tree height (HT) as a function of the tangent of the angles to the top (B2) and bottom (B1) of the tree and a baseline horizontal dis- tance (b) to the stem were most common (Figure 1). Because they are easy to apply and required only simple tech- nology, these approaches (hereafter, the similar triangles and tangent methods) have dominated tree height measurement. That is not to say the challenge of accurate tree height measurement was solved— many early foresters reported problems with getting consistent data Figure 1. Graphical representation of tree height measurement on in uneven terrain or dense understories or with the use of different sloping ground (the same mathematics apply for a level surface) types of hypsometers. Good measurement practices usually miti- using the similar triangles and tangent methods. Note that all gated these issues and became standard components of forester train- historic equations and figures referenced in this work follow the notation of these figures. ing programs. Others addressed these challenges by designing new techniques based on different trigonometric relationships. As an ex- ample, Haig (1925) proposed a slide rule solution that calculated tree Yet such corrections, although they improved the reliability of height using the sine law and slope distance from the observer to the indirect height measurement, failed to address other potential tree base (s1) sources of error. For these adjustments to work, the trees had to be ͑ ϩ ͒ truly vertical, i.e., the point at their base measured for the horizontal s1 sin B2 B1 HT ϭ distance was directly below the highest point at the top of the tree. As sin A 1 an example, if the subject tree happened to be leaning, the de- (see the trigonometric example in Figure 1 for the angles involved). termination of A1 in Haig’s correction is less straightforward and In very steep terrain, the ability to use a slope distance rather than required additional measurements. Hypsometers based on similar horizontal distance (b) made height determination much simpler. triangles could be used on leaning stems, but the geometry of this McArdle and Chapman (1927) applied a different trigonometric approach requires the user to exactly match the angle of lean, a solution for sloping ground when determining tree heights. Using a daunting and imprecise task in most forested settings. For tree height ϭ fixed slope distance (s1 100 ft) from the eye of the observer to the measuring devices that used the tangent method, adjusting for lean ϭ ϩ base of the tree, they proposed the following: HT 100 sin B1 also presented a serious challenge. Falconer (1931, p. 744) succinctly 100 cos B1 tan B2. addressed this quandary: Received August 19, 2013; accepted November 18, 2013. Affiliations: Don C. Bragg ([email protected]) is a research forester with the USDA Forest Service, Monticello, AR, and editor-in-chief of the Journal of Forestry. Acknowledgments: I recognize the contributions of the Native Tree Society for their efforts to develop and promote the sine method. Mike Shelton, Nancy Koerth, and Jim Guldin (all of the USDA Forest Service), Bob Leverett, and several anonymous reviewers all contributed to the development of this article. Journal of Forestry • January 2014 51 The incorrect location or choice of the dle the plumb lines and the third to identify His seminal Forest Science monograph pro- point to which the measurement for dis- tance is taken is the only common and con- the point on which these two vertical planes vided such an insight: in his Figure 3, tinued source of error in measuring the intersect). Unfortunately, such an approach Grosenbaugh (1963, p. 8) provided the fol- ϭ Љ height of leaning trees. The error is due, not required further training of field crews, sig- lowing equation for “exact” height, H0 R to the actual chainage of the distance, but in nificantly increased the amount of time sin ␪Љ, where the height to the diameter mea- the location of the point to which the dis- tance is measured. The distance can be ac- needed to measure tree heights, especially in surement location (H0) was a function of a curately measured only when the point is heavy timber or rough terrain, and may have sloping baseline distance (RЉ) and angle be- located on the ground vertically below the necessitated adding staff for proper execu- tween the observer and the measurement lo- tip of the tree. tion. cation (␪Љ). He used sine rather than tangent In other words, because the tangent Such additional burdens did not endear at this point because the slope distance method projects height as a function of the themselves to forestry operations wanting to (whose measurement was possible using a horizontal distance from the observer to the streamline inventory procedures. Not sur- rangefinder-dendrometer) was required to apex of the crown, if a tree leans away from prisingly, then, less rigorous corrections for get the exact height above the ground for or toward the observer, the proper baseline tree lean and wide crowns became ingrained that point along the trunk. distance must be adjusted for accordingly. in mensuration textbooks and professional Grosenbaugh (1980, p. 204) later in- Think of how tree height measurement is curricula. The study of field-based tree troduced further measures to avoid den- often portrayed: the images are almost al- height measurement focused on optimizing drometry bias for leaning trees because ways straight, vertical, pointed crown coni- the efficiency of existing techniques (e.g., “…range, height, and (for optical forks) di- fers growing on level ground—an all-too- Barrett 1929, Morey 1931, Hunt 1959, ameter biases attributed to neglected lean to- often inadequate representation of “real” Bruce 1975, Rennie 1979, Long and Mohai ward or away from observer can be much trees in a more complicated forest environ- 1986, Williams et al. 1994) and the reintro- more serious and are not overcome by merely ment. duction and/or modification of largely un- tilting dendrometer and hypsometer to Hypsometers based on the mathemati- used tools (e.g., Curtis and Bruce 1968, match tree tilt in crosslevel.” This assertion cal principles of similar triangles and tan- Anunchin 1971, Buckner et al. 1977, Larsen questioned the use of certain ad hoc correc- gents incorporate assumptions that are only et al. 1987). Overall, most foresters were sat- tions for leaning trees. His use of spherical sometimes (rarely?) met in the field. Thick isfied with the degree of accuracy possible trigonometry yielded a more complete ver- undergrowth could be cleared and sloping from existing approaches (when the proper sion of the total tree height (Grosenbaugh Ϫ ground adjusted for, but tree lean and crown degree of fealty to adjusting for atypical trees 1980, p. 207), s2 sin B2 s1 sin B1, repre- irregularities proved much harder to ad- was observed) and that continuity in tech- senting the vertical difference between the dress. A fix for these was critical: Chapman nique over time trumped any possible im- crown high point (A) and the intersection of (1921, p. 246) noted that “(t)he error from pacts of systemic bias. To borrow a judicial the bole with the ground (C),where B1 and the measurement of broad-crown trees [un- phrase, it seems that height measurement B2 are the angles to the bottom and top of less corrected] is cumulative and tends to was considered “settled law.” the tree, respectively, and s1 and s2 are the over-estimate their heights.” To this end, However, in the latter half of the 20th corresponding “slant range” (the sloping Graves (1906) recognized the challenges of century, a new approach to tree height mea- baseline distance from his 1963 article) esti- measuring leaning and wide-crowned trees surement that could address the complexity mates from the observer to those points (Fig- and proposed corrections based on measur- of tree architecture appeared. Starting in ure 1). ing heights perpendicular to the lean and the 1950s, forest mensurationist Lewis R. For a truly vertical tree on level ground, moving further away to ensure that subordi- Grosenbaugh developed and refined den- this “sine method” yielded the exact same nate branches are not mistaken for the high- drometers capable of measuring tree heights, height as the tangent method (i.e., HT ϭ ͉b Ϫ ͉ ϭ ͉ Ϫ ͉ est point of the crown. Likewise, Krauch stem diameters, and bole volume under tan B2 b tan B1 s2 sin B2 s1 sin B1 ). (1918, 1922) suggested a number of adjust- many different conditions (e.g., Grosen- Figure 2 highlights the fact that for a leaning ments for the USDA Forest Service standard baugh 1954, 1963, 1980, 1981, 1991).
Recommended publications
  • ICP Forests Manual 2016
    United Nations Economic Commission for Europe (UNECE) Convention on Long-range Transboundary Air Pollution (CLRTAP) International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) MANUAL on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests Part V Tree Growth Version 05/2016 Prepared by: ICP Forests Expert Panel on Forest Growth (Matthias Dobbertin, Markus Neumann) Dobbertin M, Neumann M, 2016: Part V: Tree Growth. In: UNECE ICP Forests, Programme Co- ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 17 p. + Annex [http://www.icp-forests.org/manual.htm] ISBN: 978-3-86576-162-0 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holder. Application for such permission should be addressed to: Programme Co-ordinating Centre of ICP Forests Thünen Institute of Forest Ecosystems Alfred-Möller-Str. 1, Haus 41/42 16225 Eberswalde Germany Email : [email protected] Eberswalde, 2016 Tree Growth
    [Show full text]
  • Field Manual for the Georgian National Forest Inventory
    v Field Manual for the Georgian National Forest Inventory as of Decemeber 1, 2018 1 Table of Contents 1. Field Work and Measurements ........................................................................................................................... 6 Equipment and Materials ............................................................................................................................ 6 Locating the Sample Plot Centre in the Field ............................................................................................ 8 Navigation and Point Measurement with GPS .......................................................................................... 8 Slopover Plots at the Forest Boundary ....................................................................................................... 8 Marking the Sample Plot Center ................................................................................................................ 9 2. Assessment of Variables ..................................................................................................................................... 10 Introduction .............................................................................................................................................. 10 Applicable Projection ............................................................................................................................... 11 GPS Coordinates Errors / Accuracy ........................................................................................................
    [Show full text]
  • (LTI) Tips for Using the Latest Technology for Timber Cruising
    Laser Technology, Inc. (LTI) (http://www.lasertech.com) Tips for Using the Latest Technology for Timber Cruising Timber Measurements Society - 2010 Bill Carr June 9, 1958 I began my timber cruising career as a GS-3 employee ($3,495 per annum) with the U.S. Forest Service, NE Forest Experiment Station ($891.14 gross pay for 3 months) Early Traditional Cruising Tools Biltmore stick and Abney level 1992 Tree Height Significance Tree height is used for volume, value and growth & yield determination. Volume (cf) of immature Douglas fir in British Columbia: log V = 2.85805 + 1.739925 log D + 1.133187 log H So calling a 20" DBH tree that's 120 ft. tall (5% error in height) results in a 5.5% error in volume. Measure from a point perpendicular to the lean – tangent solution Timber cruisers have been trained to measure heights from a location that is perpendicular to the lean. This would solve most of the problem except that topography and perception often prevents an accurate measurement. The tree may appear to lean to the right or left but really quarters to you or away from you. Height error when lean is towards the cruiser Tree Height = 100 feet Degree of lean Distance from base of tree 50 feet 100 feet 1 degree 3.6% 1.8% 2 degrees 7.5% 3.6% 5 degrees 33.3% 9.5% 10 degrees 53.2% 21.0% 15 degrees 107.3% 34.9% Leaning Tree Height Improper technique Tangent Height Distance Leaning Tree Height Proper technique Tangent Height Distance Impulse 200 (1996) Main Features: Range: +0.1 foot To a tree 450 to 3,600 feet Tilt accuracy +0.1 degree Tree Heights 3- shot tangent solution Impulse 200 Evaluation by the U.S.
    [Show full text]
  • Estimation of Individual Tree Metrics Using Structure-From-Motion Photogrammetry
    Estimation of Individual Tree Metrics using Structure-from-Motion Photogrammetry A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geography Jordan M. Miller Department of Geography University of Canterbury 2015 Abstract The deficiencies of traditional dendrometry mean improvements in methods of tree mensuration are necessary in order to obtain accurate tree metrics for applications such as resource appraisal, and biophysical and ecological modelling. This thesis tests the potential of SfM-MVS (Structure-from- Motion with Multi-View Stereo-photogrammetry) using the software package PhotoScan Professional, for accurately determining linear (2D) and volumetric (3D) tree metrics. SfM is a remote sensing technique, in which the 3D position of objects is calculated from a series of photographs, resulting in a 3D point cloud model. Unlike other photogrammetric techniques, SfM requires no control points or camera calibration. The MVS component of model reconstruction generates a mesh surface based on the structure of the SfM point cloud. The study was divided into two research components, for which two different groups of study trees were used: 1) 30 small, potted ‘nursery’ trees (mean height 2.98 m), for which exact measurements could be made and field settings could be modified, and; 2) 35 mature ‘landscape’ trees (mean height 8.6 m) located in parks and reserves in urban areas around the South Island, New Zealand, for which field settings could not be modified. The first component of research tested the ability of SfM-MVS to reconstruct spatially-accurate 3D models from which 2D (height, crown spread, crown depth, stem diameter) and 3D (volume) tree metrics could be estimated.
    [Show full text]
  • Alternative Forest Management Practices for Montana
    Peter F Kolb, MSU Extension Forestry Specialist, Assistant Professor of Forest Ecology University of Montana, Missoula, MT 59812-0606 [email protected] Alternative Forest Management Practices for Montana The first step of any type of land management is to formulate a set of objectives and goals for the acreage in question. While these goals will reflect the personal needs of the landowner, which may include anything from minimizing human impacts to converting a forest into a pasture, they should also take into consideration the ecological capacity of the site. Throughout history, the biggest land management failures have occurred when managers tried to impose objectives that the land was incapable of supporting. With that in mind, all forested land management goals and objectives ultimately involve which trees should be left and which trees should be removed from a particular site. The most daunting challenge to the art and science of forestry is still represented by this basic decision making process, and can result in leaving all the trees or cutting every tree. To a forest landowner, setting objectives and goals for their land may be relatively simple compared to standing in the forest and trying to decide what actions to take. Ecology Montana forests are composed of a complex mosaic of ecologically distinct zones that were created by the interaction of topography, climate, soils and historic disturbance regimes on biological organisms. Depending on the location, this mosaic can occur across the landscape as an intricate puzzle of small 5-50 acre patches to larger 1000 – 10,000 acre patches.
    [Show full text]
  • Structural Attributes of Two Old-Growth Cross Timbers Stands in Western Arkansas
    Am. Midl. Nat. (2012) 167:40–55 Structural Attributes of Two Old-Growth Cross Timbers Stands in Western Arkansas DON C. BRAGG1 USDA Forest Service, Southern Research Station, Monticello, Arkansas 71656 AND DAVID W. STAHLE AND K. CHRIS CERNY Department of Geosciences, University of Arkansas, Fayetteville 72701 ABSTRACT.—Comprised of largely non-commercial, xeric, oak-dominated forests, the Cross Timbers in Arkansas have been heavily altered over the last two centuries, and thus only scattered parcels of old-growth timber remain. We inventoried and mapped two such stands on Fort Chaffee Military Training Center in Sebastian County, Arkansas. The west-facing Christmas Knob site is located on an isolated hill, while the southerly-facing Big Creek Narrows site is on a long, narrow rocky outcrop called Devil’s Backbone Ridge. These sites occupied rocky, south- to southwest-facing sandstone-dominated slopes, with primarily post oak (Quercus stellata) and blackjack oak (Q. marilandica) overstories. Post oak dominated the largest size classes at both sites. Increment cores indicated that some post oaks exceeded 200 y of age, and tree-ring dating also confirmed an uneven-aged structure to these stands. Both locations had irregular reverse-J shaped diameter distributions, with gaps, deficiencies, and excesses in larger size classes that often typify old-growth stands. On average, the post oaks at the Big Creek Narrows site were taller, larger in girth, and younger than those on the Christmas Knob site, suggestive of a better quality site at Big Creek. The application of neighborhood density functions on stem maps of both sites found random patterns in tree locations.
    [Show full text]
  • The Magazine of the Native Tree Society Volume 2, Number 05, May 2012
    eNTS The Magazine of the Native Tree Society Volume 2, Number 05, May 2012 eNTS: The Magazine of the Native Tree Society - Volume 2, Number 05, May 2012 eNTS: The Magazine of the Native Tree Society The Native Tree Society and the Eastern Native Tree Society http://www.nativetreesociety.org http://www.ents-bbs.org Volume 2, Number 05, May 2012 ISSN 2166-4579 Mission Statement: The Native Tree Society (NTS) is a cyberspace interest groups devoted to the documentation and celebration of trees and forests of the eastern North America and around the world, through art, poetry, music, mythology, science, medicine, wood crafts, and collecting research data for a variety of purposes. This is a discussion forum for people who view trees and forests not just as a crop to be harvested, but also as something of value in their own right. Membership in the Native Tree Society and its regional chapters is free and open to anyone with an interest in trees living anywhere in the world. Current Officers: President—Will Blozan Vice President—Lee Frelich Executive Director—Robert T. Leverett Webmaster—Edward Frank Editorial Board, eNTS: The Magazine of the Native Tree Society: Edward Frank, Editor-in-Chief Robert T. Leverett, Associate Editor Will Blozan, Associate Editor Don C. Bragg, Associate Editor Membership and Website Submissions: Official membership in the NTS is FREE. Simply sign up for membership in our bulletins board at http://www.ents- bbs.org Submissions to the website or magazine in terms of information, art, etc. should be made directly to Ed Frank at: [email protected] The eNTS: the Magazine of the Native Tree Society is provided as a free download in Adobe© PDF format through the NTS website and the NTS BBS.
    [Show full text]
  • Computational Virtual Measurement for Trees Dissertation
    Computational Virtual Measurement For Trees Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von MSc. Zhichao Wang geboren am 16.03.1987 in Beijing, China Gutachter: 1. 2. 3. Tag der Verteidigung: 我们的征途是星辰大海 My Conquest Is the Sea of Stars --2019, 长征五号遥三运载火箭发射 わが征くは星の大海 --1981,田中芳樹 Wir aber besitzen im Luftreich des Traums Die Herrschaft unbestritten --1844, Heinrich Heine That I lived a full life And one that was of my own choice --1813, James Elroy Flecker Contents Contents CONTENTS ......................................................................................................................................................... VII LIST OF FIGURES................................................................................................................................................. XI LIST OF TABLES ................................................................................................................................................. XV LIST OF SYMBOLS AND ABBREVIATIONS ............................................................................................... XVII ACKNOWLEDGMENTS ................................................................................................................................... XIX ABSTRACT ........................................................................................................................................................
    [Show full text]
  • Manual for Integrated Field Data Collection
    NFMA - Manual for integrated field data collection National Forest Monitoring and Assessment Manual for integrated field data collection . NFMA Working Paper No 37/E– Rome, 2009 FORESTRY DEPARTMENT FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Working Paper NFMA 37/E Rome 2009 National Forest Monitoring and Assessment Manual for integrated field data collection Version 2.3 (2nd Edition) By Anne Branthomme In collaboration with Dan Altrell, Kewin Kamelarczyk and Mohamed Saket National Forest Monitoring and Assessment Forests are crucial for the well being of humanity. They provide foundations for life on earth through ecological functions, by regulating the climate and water resources and by serving as habitats for plants and animals. Forests also furnish a wide range of essential goods such as wood, food, fodder and medicines, in addition to opportunities for recreation, spiritual renewal and other services. Today, forests are under pressure from increasing demands of land-based products and services, which frequently leads to the conversion or degradation of forests into unsustainable forms of land use. When forests are lost or severely degraded, their capacity to function as regulators of the environment is also lost, increasing flood and erosion hazards, reducing soil fertility and contributing to the loss of plant and animal life. As a result, the sustainable provision of goods and services from forests is jeopardized. In response to the growing demand for reliable information on forest and tree resources at both country and global levels, FAO initiated an activity to provide support to national forest monitoring and assessment (NFMA). The support to NFMA includes developing a harmonized approach to national forest monitoring and assessments (NFMA), information management, reporting and support to policy impact analysis for national level decision-making.
    [Show full text]
  • ESTIMATION of DBH USING TREE VARIABLES DERIVED from AERIAL Lidar for FORD FOREST, BARAGA, MICHIGAN
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2018 ESTIMATION OF DBH USING TREE VARIABLES DERIVED FROM AERIAL LiDAR FOR FORD FOREST, BARAGA, MICHIGAN Tugay Demiraslan Michigan Technological University, [email protected] Copyright 2018 Tugay Demiraslan Recommended Citation Demiraslan, Tugay, "ESTIMATION OF DBH USING TREE VARIABLES DERIVED FROM AERIAL LiDAR FOR FORD FOREST, BARAGA, MICHIGAN", Open Access Master's Thesis, Michigan Technological University, 2018. https://doi.org/10.37099/mtu.dc.etdr/721 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Forest Management Commons, and the Other Forestry and Forest Sciences Commons ESTIMATION OF DBH USING TREE VARIABLES DERIVED FROM AERIAL LiDAR FOR FORD FOREST, BARAGA, MICHIGAN By Tugay Demiraslan A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Forest Ecology and Management MICHIGAN TECHNOLOGICAL UNIVERSITY 2018 © 2018 Tugay Demiraslan This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Forest Ecology and Management. School of Forest Resources and Environmental Science Thesis Advisor: Dr. Robert Froese Committee Member: Dr. Curtis Edson Committee Member: Michael Hyslop School Dean: Dr. Andrew Storer Dedication “We have sent you as a spark, you must have returned as a flame.” Mustafa Kemal Atatürk (1923) To Mustafa Kemal Atatürk and the citizens of the country, that he and his
    [Show full text]
  • Cloquet Forestry Center Continuous Forest Inventory for 2000: Analysis and Integration with the Historical Database
    Cloquet Forestry Center Continuous Forest Inventory for 2000: Analysis and Integration with the Historical Database by Peter J. Dieser and Alan R. Ek Staff Paper Series No. 214 August 2011 Department of Forest Resources College of Food, Agricultural and Natural Resource Sciences University of Minnesota St. Paul, MN For more information about the Department of Forest Resources and its teaching, research, and outreach programs, contact the department at: Department of Forest Resources University of Minnesota 115 Green Hall 1530 Cleveland Avenue North St. Paul, MN 55108-6112 Ph: 612.624.3400 Fax: 612.625.5212 Email: [email protected] http://www.forestry.umn.edu/publications/staffpapers/index.html and see also http://iic.gis.umn.edu The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation Table of Contents List of Tables .........................................................................................................................ii List of Figures ........................................................................................................................ii Abstract ..................................................................................................................................iii Design and Use of the Cloquet Continuous Forest Inventory ...............................................1
    [Show full text]
  • Direct Measurement of Tree Height Provides Different Results on the Assessment of Lidar Accuracy
    Article Direct Measurement of Tree Height Provides Different Results on the Assessment of LiDAR Accuracy Emanuele Sibona 1, Alessandro Vitali 2, Fabio Meloni 1, Lucia Caffo 3, Alberto Dotta 3, Emanuele Lingua 4, Renzo Motta 1 and Matteo Garbarino 1,2,* 1 DISAFA: Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy; [email protected] (E.S.); [email protected] (F.M.); [email protected] (R.M.) 2 D3A: Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona (AN), Italy; [email protected] 3 CFAVS: Consorzio Forestale Alta Val di Susa, Via Pellousiere 6, 10056 Oulx (TO), Italy; [email protected] (L.C.); [email protected] (A.D.) 4 TESAF: Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-071-2204599 Academic Editors: Christian Ginzler and Lars T. Waser Received: 25 October 2016; Accepted: 20 December 2016; Published: 23 December 2016 Abstract: In this study, airborne laser scanning-based and traditional field-based survey methods for tree heights estimation are assessed by using one hundred felled trees as a reference dataset. Comparisons between remote sensing and field-based methods were applied to four circular permanent plots located in the western Italian Alps and established within the Alpine Space project NewFor. Remote sensing (Airborne Laser Scanning, ALS), traditional field-based (indirect measurement, IND), and direct measurement of felled trees (DIR) methods were compared by using summary statistics, linear regression models, and variation partitioning.
    [Show full text]