Arcelormittal-Ar2015.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Arcelormittal-Ar2015.Pdf ArcelorMittal Fact book 2015 Financial highlights Highlights for 2011, 2012, 2013, 2014 and 2015 2011 2012 2013 2014 2015 Health and safety Lost time injury frequency 1.40 1.00 0.85 0.85 0.81 rate (LTIF)1 ArcelorMittal steel operations (millions of metric tonnes) Production of steel products 91.9 88.2 91.2 93.1 92.5 Change year/year 1.4% (4.0%) 3.3% 2.1% (0.7%) Shipments of steel products 83.5 82.2 82.6 85.1 84.6 Change year/year 1.0% (1.5%) 0.5% 3.0% (0.6%) ArcelorMittal mining operations (millions of metric tonnes) Mining production Iron ore: Own production 54.1 55.9 58.4 63.9 62.8 Long-term contract 11.1 12.3 11.7 13.1 10.9 Total iron ore production 65.2 68.1 70.1 77.0 73.7 Coal: Own production 8.3 8.2 8.1 7.0 6.1 Long-term contract 0.6 0.7 0.8 0.7 0.1 Total coal production 8.9 8.9 8.8 7.7 6.2 Mining shipments Iron ore: External sales - Third party 9.0 10.4 11.6 14.4 13.7 Internal sales - Market- 19.0 18.4 23.5 25.4 26.7 priced Internal sales - Cost-plus 23.6 25.6 24.4 23.9 22.1 basis Strategic contracts 11.1 12.3 11.7 13.1 11.4 Total iron ore shipments 62.7 66.6 71.3 76.8 73.9 Coal: External sales - Third party 3.5 3.3 3.3 1.8 1.5 Internal sales - Market- 1.4 1.8 1.6 2.1 1.3 priced Internal sales - Cost-plus 3.3 3.1 2.9 3.3 3.2 basis Strategic contracts 0.6 0.7 0.8 0.7 0.1 Total coal shipments 8.9 9.0 8.5 7.9 6.1 ArcelorMittal financials (US$ millions) Sales 93,973 84,213 79,440 79,282 63,578 Ebitda2 10,450 7,679 6,888 7,237 5,231 Operating income/(loss) 5,204 (2,645) 1,197 3,034 (4,161) annualreview2015.arcelormittal.com © ArcelorMittal 2016 1 ArcelorMittal Fact book 2015 2011 2012 2013 2014 2015 Net income/(loss) attributable to equity 2,420 (3,352) (2,545) (1,086) (7,946) holders of the parent Net cash provided by 1,859 5,340 4,296 3,870 2,151 operating activities Net cash used in investing (3,744) (3,730) (2,877) (3,077) (2,170) activities Net cash (used in) provided (555) (1,019) 241 (2,750) 395 by financing activities Cash and cash equivalents 3,908 4,540 6,232 4,016 4,102 and restricted cash Property, plant and 54,382 53,989 51,364 46,593 35,780 equipment Total assets 121,679 113,998 112,308 99,179 76,846 Short-term debt and current portion of long-term 2,769 4,348 4,092 2,522 2,308 debt Long-term debt, net of 23,634 21,965 18,219 17,275 17,478 current portion Equity attributable to the 52,742 47,016 49,793 42,086 25,272 equity holders of the parent Net debt3 22,495 21,773 16,079 15,781 15,684 ArcelorMittal financials per share (US$) ArcelorMittal average share 28.24 16.84 14.39 14.65 8.47 price Book value per share 34.05 30.35 27.97 23.50 14.08 Basic earnings/(loss) per 1.56 (2.17) (1.46) (0.61) (4.43) share ArcelorMittal ratios Ebitda margin 11.1% 9.1% 8.7% 9.1% 8.2% Operating margin 5.5% (3.1%) 1.5% 3.8% (6.5%) Ebitda per tonne 125.2 93.4 83.4 85.0 61.8 Sources: ArcelorMittal and NYSE 1 LTIF refers to lost time injury frequency rate defined as lost time injuries per 1.000.000 worked hours; based on own personnel and contractors. 2 Ebitda defined as operating income plus depreciation, impairment expenses, restructuring and exceptional charges. 3 Net debt: long-term debt, plus short term debt, less cash and cash equivalents, restricted cash and short-term investments (excluding those held as part of assets/liabilities held for sale). annualreview2015.arcelormittal.com © ArcelorMittal 2016 2 ArcelorMittal Fact book 2015 Key operational overview Segment annually (2011 - 2015) and quarterly (2014 - 2015) 2011 2012 2013 2014 2015 1Q 14 2Q 14 3Q 14 4Q 14 1Q 15 2Q 15 3Q 15 4Q 15 Crude steel production (000's MT) NAFTA 23,681 24,315 24,914 25,036 22,795 6,256 6,153 6,485 6,142 5,908 5,775 5,976 5,136 Brazil 10,926 9,872 9,987 10,524 11,612 2,413 2,382 2,971 2,758 2,875 2,934 2,953 2,850 Europe 42,677 39,776 41,923 43,419 43,853 10,899 10,941 10,837 10,742 11,341 11,644 10,880 9,988 ACIS 14,608 14,268 14,362 14,148 14,219 3,413 3,600 3,616 3,519 3,603 3,696 3,257 3,663 Total 91,891 88,231 91,186 93,127 92,479 22,981 23,076 23,909 23,161 23,727 24,049 23,066 21,637 Steel shipments* (000's MT) NAFTA 21,429 22,394 22,500 23,074 21,306 5,613 5,790 5,866 5,805 5,463 5,642 5,620 4,581 Brazil 10,658 9,654 9,797 10,376 11,540 2,325 2,312 2,844 2,895 2,707 2,835 3,125 2,873 Europe 39,432 37,531 38,269 39,639 40,676 10,009 10,191 9,829 9,610 10,662 10,895 9,646 9,473 ACIS 12,604 12,921 12,422 12,833 12,485 3,187 3,306 3,229 3,111 3,006 3,205 3,196 3,078 Total 83,456 82,182 82,610 85,125 84,586 20,968 21,457 21,523 21,177 21,605 22,179 21,065 19,737 Average steel selling price (US$/tonne) NAFTA 908 879 829 843 732 840 856 853 824 796 726 698 706 Brazil 1,007 951 940 867 647 895 934 866 792 713 695 622 565 Europe 946 840 804 773 609 808 799 760 721 633 617 614 568 ACIS 740 672 613 576 432 567 592 594 550 507 450 416 356 Total 915 838 799 775 623 791 798 776 735 668 635 614 569 Revenue (US$ millions) NAFTA 20,617 20,760 19,645 21,162 17,293 4,928 5,423 5,645 5,166 4,777 4,545 4,371 3,600 Brazil 11,908 10,156 10,148 10,037 8,503 2,356 2,431 2,707 2,543 2,119 2,167 2,125 2,092 Europe 49,783 42,499 40,507 39,552 31,893 10,322 10,518 9,689 9,023 8,600 8,547 7,671 7,075 ACIS 10,922 10,197 8,419 8,268 6,128 2,007 2,300 1,994 1,967 1,721 1,649 1,508 1,250 Mining 6,365 5,493 5,766 4,970 3,387 1,256 1,383 1,272 1,059 758 964 908 757 Holding and service (5,622) (4,892) (5,045) (4,707) (3,626) (1,081) (1,351) (1,240) (1,035) (857) (982) (994) (793) companies and eliminations Total 93,973 84,213 79,440 79,282 63,578 19,788 20,704 20,067 18,723 17,118 16,890 15,589 13,981 Ebitda (US$ millions) NAFTA 2,039 2,014 1,397 1,206 891 259 177 429 341 53 225 340 273 Brazil 1,685 1,290 1,895 1,845 1,231 425 414 460 546 377 360 313 181 Europe 2,304 1,838 1,621 2,304 2,393 535 689 523 557 616 680 553 544 ACIS 1,269 611 314 620 317 109 156 208 147 133 88 35 61 Mining 3,078 1,755 1,980 1,331 462 433 388 278 232 114 115 143 90 Holding and service 75 171 (319) (69) (63) (7) (61) 7 (8) 85 (69) (33) (46) companies and eliminations Total 10,450 7,679 6,888 7,237 5231 1,754 1,763 1,905 1,815 1378 1399 1351 1103 annualreview2015.arcelormittal.com © ArcelorMittal 2016 3 ArcelorMittal Fact book 2015 2011 2012 2013 2014 2015 1Q 14 2Q 14 3Q 14 4Q 14 1Q 15 2Q 15 3Q 15 4Q 15 Operating income/(loss) (US$ millions) NAFTA 1,264 1,243 630 386 (705) 70 7 260 49 (103) 51 88 (741) Brazil 953 561 1,204 1,388 628 287 305 349 447 291 275 196 (134) Europe (369) (5,725) (985) 737 171 80 334 166 157 317 387 (27) (506) ACIS 741 (54) (457) 95 (624) (20) 25 78 12 25 (18) (176) (455) Mining 2,578 1,209 1,176 565 (3,522) 274 233 108 (50) (36) (42) (2) (3,442) Holding and service 37 121 (371) (137) (109) (17) (72) (2) (46) 77 (74) (59) (53) companies and eliminations Total 5,204 (2,645) 1,197 3,034 (4,161) 674 832 959 569 571 579 20 (5,331) Steel Ebitda/tonne (US$/tonne) NAFTA 95 90 62 52 42 46 31 73 59 10 40 60 60 Brazil 158 134 193 178 107 183 179 162 189 139 127 100 63 Europe 58 49 42 58 59 53 68 53 58 58 62 57 57 ACIS 101 47 25 48 25 34 47 64 47 44 27 11 20 Total** 88 72 59 69 56 63 64 76 75 59 58 57 51 Ebitda/tonne (US$/tonne) NAFTA 95 90 62 52 42 46 31 73 59 10 40 60 60 Brazil 158 134 193 178 107 183 179 162 189 139 127 100 63 Europe 58 49 42 58 59 53 68 53 58 58 62 57 57 ACIS 101 47 25 48 25 34 47 64 47 44 27 11 20 Total*** 125 93 83 85 62 84 82 89 86 64 63 64 56 * ArcelorMittal Distribution Solutions shipments are eliminated in consolidation as they primarily represent shipments originating from other ArcelorMittal operating subsidiaries.
Recommended publications
  • National Register of Historic Places Multiple Property
    NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple
    [Show full text]
  • Global Technology Roadmap for CCS in Industry Steel Sectoral Report
    Global Technology Roadmap for CCS in Industry Steel Sectoral Report JP. Birat, ArcelorMittal Global R and D, Maizières-lès-Metz, France Steel sectoral report Contribution to the UNIDO roadmap on CCS1 - fifth draft JP. Birat, ArcelorMittal Global R and D, Maizières-lès-Metz, France Abstract What is the status of CCS today in the Steel sector as a tool for mitigation CO2 emis- sions? How mature is CCS as a solution against other approaches? What is the level of emissions to be handled, today and in the temporality of climate Change, i.e. 2050 at least? Are there gaps in the technology and barriers to its implementation in the sector? Does the level of development of a country have any incidence on the issue? These are the main questions tackled in this sectoral report for Steel. Today, CCS has not quite reached the level of being a technology in the Steel sector, as it is still a concept that needs to be fleshed out and validated at a credible scale. Open questions are related to the kind of capture that can be applied in the sector as the players speak of CCS in roadmaps but are still working out how this general con- cept can be turned into a practical technology. The main trend is to develop a sector- specific concept called "in-process" capture that can be applied to the mainstream process routes (blast furnace or direct reduction, for example) with the expected benefit of improving energy needs and productivity of equipment compared to the benchmark best practice of today.
    [Show full text]
  • Download Here
    Decarbonisation of steel production by electrification Bruxelles, 2019 December 4th Decarbonisation of steel production by electrification • Steel production • 1 808 Mt of crude steel. • 71% primary steel. • 2 167 Mt of iron ore. • Fe = 18 x Al, in tonnage. • Fe = 84 x Cu, in tonnage. • Iron ore: second raw material transported by shipping. WorldSteel statistics, USGS Page 2 © ArcelorMittal 2019 - All rights reserved for all countries 2019_12_04 Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal SET Plan Action 6, Bruxelles CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information Decarbonisation of steel production by electrification • Steel use 10 t/capita Nobuhiko TakamaTsu, Kimitoshi Yonezawa, Hironori ueno, Wakana Tamaki and Seiichi HaYasHi D. Müller et al. Patterns of Iron Use in Societal Evolution (2011) Tetsu-to-Hagané Vol. 100 (2014) No. 6 Page 3 © ArcelorMittal 2019 - All rights reserved for all countries 2019_12_04 Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal SET Plan Action 6, Bruxelles CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information Decarbonisation of steel production by electrification • CO2 emissions Use of reducing agents in the blast furnace in Germany ~600 kgCarbon 20 GJ or 5.5 MWh per tSteel 2 tCO2 WorldSteel A Steel Roadmap for a Low Carbon Europe Eurofer (2013) The steel industry generates between 7 and 9% of direct emissions from the global use of fossil fuel. Page 4 © ArcelorMittal 2019 - All rights reserved for all countries 2019_12_04 Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal SET Plan Action 6, Bruxelles CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information Decarbonisation of steel production by electrification • Climate neutral Europe by 2050 ‒ The goal is to reach net-zero emissions by 2050.
    [Show full text]
  • History of Steel in Cleveland
    Steelmaking in Cleveland has its roots in the first iron companies that began here in the 1830s. In the next few decades, the industry flourished as Cleveland’s strategic location gave it an advantage for deliveries of iron ore by water and coal by rail. In the 1870s, Otis Iron and Steel Co.’s Lakeside Works in Cleveland became the first mill in America to produce commercial-grade steel with a new process, the basic open-hearth furnace. But it was during the 20th century that Cleveland’s steel industry really took off. In 1912, Otis Steel constructed its Riverside Works on the west side of the Cuyahoga River. From 1913 to 1916, the Corrigan-McKinney Steel Co. built two new blast furnaces on the west side of the river, adding to its two existing blast furnaces. In 1935, Corrigan-McKinney was acquired by Republic Steel Corp., and, in 1942, Jones & Laughlin Steel Corp. (J&L) bought out Otis. The new owners invested heavily in expansion, and J&L added another blast furnace named “Susan.” Today, Susan and the other west side furnaces are no longer standing. The two blast furnaces that remain in Cleveland, named C5 and C6, are on the east side of the river. The C5 furnace was built in 1942 by the Defense Plant Corp., though it was primarily operated by Republic Steel. Republic eventually bought C5, and in 1952 the company also built the C6 furnace. Employment in Cleveland’s iron and steel industry went from 374 in 1860 to more than 30,000 in the prosperity after World War II.
    [Show full text]
  • Factbook-2016.Pdf
    ArcelorMittal Fact book 2016 Fact book Details of our steel and mining operations, financials, production facilities and shareholder information. Financial highlights 2016 Sales revenue EBITDA Net debt 56,791 6,255 11,059 (US$ millions) (US$ millions) (US$ millions) EBITDA Capex EBITDA by segment (US$ millions)* Capital expenditure by segment (US$ millions) Mining: Mining: 13% NAFTA: 16% 18% NAFTA: 26% ACIS: 10% Total Total Brazil: ACIS: 10% 6,255 16% 2,444 Brazil: 13% Europe: 38% Europe: 39% * % figures presented exclude holding and service companies and eliminations. annualreview2016.arcelormittal.com © ArcelorMittal 2017 1 ArcelorMittal Fact book 2016 Crude steel production Steel shipments Crude steel production by segment (Mt) Steel shipments by product (Mt) Pipes & ACIS: Tubes: 16% 2% NAFTA: 25% Long: 31% Total Total 90.8 83.9 Brazil: 12% Flat: 67% Europe: 47% Mining operations Own iron ore production by region (Mt) Iron ore shipments market priced, captive and strategic contracts (Mt) Asia, CIS & Other: Strategic 22% contracts: 11% Africa: Total 4% 55.2 Europe: Total 3% 62.9 Market South North Captive Priced: America: America: (Cost 53% 6% 65% plus basis): 35% annualreview2016.arcelormittal.com © ArcelorMittal 2017 2 ArcelorMittal Fact book 2016 Sustainability Financials performance In 2016 we exceeded our financial targets and Our role in creating high materially improved our quality, sustainable balance sheet strength. lifestyles. Industrial assets Operating footprint (113Mt as per 20F) Blast furnace facilities and electric arc furnaces ACIS: 12 17% NAFTA: 25% 6 2 Brazil: 6 11% Total 100% 27 15 13 11 Europe: 47% Blast furnaces Electric arc furnaces Automotives Production We further improved our facilities already best-in-class suite With steelmaking plants in of automotive solutions.
    [Show full text]
  • CORNWALL IRON FURNACE Administered by the Pennsylvania Historical & Museum Commission National Historic Mechanical Engineering Landmark
    CORNWALL IRON FURNACE Administered by the Pennsylvania Historical & Museum Commission National Historic Mechanical Engineering Landmark The American Society of Mechanical Engineers Susquehanna Section Cornwall Iron Furnace Cornwall, Pennsylvania June 8, 1985 CORNWALL IRON FURNACE rich iron ore deposits and limitless forests that It was Pennsylvania, however, that eventually IRON provided the fuel for smelting it into pig iron became the prime center of iron production in and forging the pig into bar iron, both products the colonies, a simple consequence of the hap- “As they gather silver, and brass, and IRON, shipped back to the mother country from the py combination within its borders of seemingly and lead, and tin, into the midst of the fur- earliest period of settlement. infinite deposits of the richest iron ores, endless nace, to blow the fire upon it, to melt it...” timberlands, great deposits of limestone needed Ezek. 22:20. As early as 1619 a group of English investors as a flux in the blast furnace, and plentiful established a blast furnace at Falling Creek near The factors that gave rise to the Industrial water power to drive both the bellows that pro- present-day Richmond, Virginia. But what vided the blast air to the furnaces and the ham- Revolution have been the subject of endless would have been the first iron making speculation by historians who have concluded mers and rolls that worked the pig iron into establishment in America failed when the wrought-iron plate and bar. Finally—and nearly variously that these were simple and complex; workmen were massacred and the furnace was the result of naturally unfolding events and as vital as the resources put in place by na- destroyed by Indians.
    [Show full text]
  • Disadvantages of Crucible Furnaces
    Subject: Manufacturing Processes Class: 3rd Mechanical Engineering Department Tikrit University Prepared by: Assistant Prof.Dr.Farouk Mansour Mahdi Lecture No.1 Week No.1 No. of hours: 2 theoretical and 1 tutorial Metal Casting Metal Casting 1- Casting Furnaces ( Melting Furnaces ) Melting furnaces used in the foundry industry are of many diverse configurations. The selection of the melting unit is one of the most important decisions foundries must make. Several important factors must be considered for proper selection, these includes: 1. The temperature required to melt the metal or alloy. 2. The melting rate and quantity of molten metal required. 3. The required quality of the melt and subsequent final product. 4. The economy of installation, operation and maintenance. 5. Environmental and waste disposal requirements. Furnaces can be classified according to the type of lining: 1- Acidic lined furnaces ( e.g. SiO2 ) 2- Basic lined furnaces ( e.g. MgO, MgCO3 , CaO) Lining materials are characterized by: 1-Refractoriness. 2-High wear resistance. 3-Low coefficient of thermal expansion. 4-High resistance to thermal shock. 5-Heat insulation. 6-passive towards molten metal, furnace gases and slag ( chemically inert). 1-1- Cupola Furnaces coke type cupola furnace Description: A cupola or cupola furnace is a melting device used in foundries to melt cast iron, some bronzes and even aluminum when attention is paid to keep the temperature low. The construction of a conventional cupola consists of a vertical steel shell which is lined with a refractory brick. The size of a cupola is expressed in diameters and can range from 0.5 to 4.0 m while the stack height is between 6 to 11 m.
    [Show full text]
  • AP-42, CH 12.13: Steel Foundries
    12.13 Steel Foundries 12.13.1 General Steel foundries produce steel castings weighing from a few ounces to over 180 megagrams (Mg) (200 tons). These castings are used in machinery, transportation, and other industries requiring parts that are strong and reliable. In 1989, 1030 million Mg (1135 million tons) of steel (carbon and alloy) were cast by U. S. steel foundries, while demand was calculated at 1332 Mg (1470 million tons). Imported steel accounts for the difference between the amount cast and the demand amount. Steel casting is done by small- and medium-size manufacturing companies. Commercial steel castings are divided into 3 classes: (1) carbon steel, (2) low-alloy steel, and (3) high-alloy steel. Different compositions and heat treatments of steel castings result in a tensile strength range of 400 to 1700 MPa (60,000 to 250,000 psi). 12.13.2 Process Description1 Steel foundries produce steel castings by melting scrap, alloying, molding, and finishing. The process flow diagram of a typical steel foundry with fugitive emission points is presented in Figure 12.13-1. The major processing operations of a typical steel foundry are raw materials handling, metal melting, mold and core production, and casting and finishing. 12.13.2.1 Raw Materials Handling - Raw material handling operations include receiving, unloading, storing, and conveying all raw materials for the foundry. Some of the raw materials used by steel foundries are iron and steel scrap, foundry returns, metal turnings, alloys, carbon additives, fluxes (limestone, soda ash, fluorspar, calcium carbide), sand, sand additives, and binders. These raw materials are received in ships, railcars, trucks, and containers, and are transferred by trucks, loaders, and conveyors to both open- pile and enclosed storage areas.
    [Show full text]
  • United States Department of the Interior National Park Service
    NPS Form 10-900 OMBNo. 1024-0018 (Rev. 8-86) United States Department of the Interior National Park Service This form is for use in nominating or requesting determinations of eligibility for individual properties or districts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, styles, materials, and areas of significance, enter only the categories and subcategories listed in the instructions. For additional space use continuation sheets (Form 10-900a). Type all entries. 1. Name of Property________________________________________________ historic name Cambria Iron Company________________________________________________________ other names/site number Cambria Iron Works; Lower Works, Gantier Plant., Franklin Plant- Plant, Rod and Wire Plant, all of Cambria Steel Company; See rnnt-.i'rmat-inn 2. Location street & number N/A I [not for publication city, town Johns town. I I vicinity state Pennsvlvanicpode PA county Cambria code PA n?.1 zip code i EJQO7 3. Classification Ownership of Property Category of Property Number of Resources within Property f~x private I I building(s) Contributing Noncontributing I public-local I?o3 district ____ ____ buildings I public-State EH site See continuation sh.Qe%tes I I public-Federal I I structure ____ ____ structures I I object ____ ____ objects ____
    [Show full text]
  • AP42 Chapter 12 Reference
    4P42 Section: 12.2 Reference: 6 Title: Final Technological Reporf On A Systems Analysis Study Of The Integrated Iron And Steel Industry, J. Varga and H. W. Lownie, Jr., Contract No. PH-22-68-65, U. S. Environmental Protection Agency, May, 1969. 5'h edition FINAL TECHNOLOGICAL REPORT I on i ‘I A SYSTEM ANALYSIS STUDY OF THE INTEGRATED IRON AND STEEL INDUSTRY (Contract No. PH 22-68-65) to ‘I DIVISION OF PROCESS CONTROL ENGINEERING ‘I NATIONAL AIR POLLUTION CONTROL ADMINISTRATION ‘m DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE I May 15, 1969 J. Varga, Jr., Principal Investigator H. W. Lownie, Jr., Project Director BATTELLE MEMORIAL INSTITUTE Columbus Laboratories 505 King Avenue Columbus, Ohio 43201 505 KING AVENUE COLUMBUS, OHIO 43201 . AREA CODE 614,TELEPHONE 299-3151 . CABLE ADDRESS: BATMIN May 29, 1969 F1 I Mr. Norman Plaks Dr. Paul Kenline Division of Process Control Engineering Division of Economic Effects Research National Air Pollution Control National Air Pollution Control I Administration Administration 5710 Wooster Pike 1055 Laidlaw Avenue I Cincinnati, Ohio 45527 Cincinnati, Ohio 45237 Mr. N. G. Edmisten Division of Economic Effects Research I National Air Pollution Control Administration 1 411 W. Chapel Hill Street Durham, North Carolina 27701 I Gentlemen: Final Technological Report on I A Systems Analysis Study of The Integrated Iron and Steel Industry I (Contract No. PH 22-68-65) Two copies of the subject report are being sent to both Mr. Edmisten and I Dr. Kenline, and 96 copies to Mr. Plaks. For the companion Final Economic Report on Cost Analyses, two copies are being I sent to both Mr.
    [Show full text]
  • Circular of the Bureau of Standards No. 409: Production, Heat Treatment
    U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS PRODUCTION, HEAT TREATMENT, AND PROPERTIES OF IRON ALLOYS CIRCULAR C409 . 'r- - U. S. DEPARTMENT OF COMMERCE DANIEL C. ROPER, Secretary NATIONAL BUREAU OF STANDARDS LYMAN J. BRIGGS, Director CIRCULAR OF THE NATIONAL BUREAU OF STANDARDS C409 PRODUCTION, HEAT TREATMENT, AND PROPERTIES OF IRON ALLOYS By LOUIS JORDAN [Issued March 17, 1936] UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1936 For sale by the Superintendent of Documents, Washington, D. C. Price 10 cents PRODUCTION, HEAT TREATMENT, AND PROPERTIES OF IRON ALLOYS ABSTRACT This circular has been prepared in response to continuing requests made to the National Bureau of Standards for a reasonably brief and simplified statement of the principles of the heat treatment of steels, and for similarly simplified state¬ ments covering the production and properties of iron alloys in general. This circular gives particular consideration to recently developed theories of the hard¬ ening of steel and of the role of special alloying elements in steel. Page I. Introduction_ 2 II. Early types of iron alloys_ 2 1. Wrought iron_ 2 2. Cementation steel_ 3 III. Reduction of iron ores_-_ 3 1. Blast furnace—pig iron___ 3 2. Other methods of producing iron_ 3 IV. Cast iron_ 5 1. Gray cast iron_ 5 2. White cast iron_ 6 3. Malleable cast iron_ 6 V. Production and mechanical working of steel_ 7 1. Steel-refining processes_ 7 (a) Bessemer steel_ 7 (b) Open-hearth steel_ 7 (c) Electric-furnace steel_ 9 2. Mechanical working of steel_ 9 (a) Rolling_ 9 (b) Forging_ 9 (c) Drawing_ 10 VI.
    [Show full text]
  • 12.5 Iron and Steel Production 12.5.1 Process Description the Production
    12.5 Iron And Steel Production 12.5.1 Process Description1-3 The production of steel at an integrated iron and steel plant is accomplished using several interrelated processes. The major operations are: (1) coke production, (2) sinter production, (3) iron production, (4) iron preparation, (5) steel production, (6) semifinished product preparation, (7) finished product preparation, (8) heat and electricity supply, and (9) handling and transport of raw, intermediate, and waste materials. The interrelation of these operations is depicted in a general flow diagram of the iron and steel industry in Figure 12.5-1. Coke production is discussed in detail in Section 12.2 of this publication, and more information on the handling and transport of materials is found in Chapter 13. 12.5.1.1 Sinter Production - The sintering process converts fine-sized raw materials, including iron ore, coke breeze, limestone, mill scale, and flue dust, into an agglomerated product, sinter, of suitable size for charging into the blast furnace. The raw materials are sometimes mixed with water to provide a cohesive matrix, and then placed on a continuous, travelling grate called the sinter strand. A burner hood, at the beginning of the sinter strand ignites the coke in the mixture, after which the combustion is self supporting and it provides sufficient heat, 1300 to 1480°C (2400 to 2700°F), to cause surface melting and agglomeration of the mix. On the underside of the sinter strand is a series of windboxes that draw combusted air down through the material bed into a common duct, leading to a gas cleaning device.
    [Show full text]