Vasoactive Intestinal Peptide Controls the Suprachiasmatic Circadian Clock Network Via ERK1/2 and DUSP4 Signalling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuromedin U Directly Stimulates Growth of Cultured Rat Calvarial Osteoblast-Like Cells Acting Via the NMU Receptor 2 Isoform
363-368 1/8/08 15:53 Page 363 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 22: 363-368, 2008 363 Neuromedin U directly stimulates growth of cultured rat calvarial osteoblast-like cells acting via the NMU receptor 2 isoform MARCIN RUCINSKI, AGNIESZKA ZIOLKOWSKA, MARIANNA TYCZEWSKA, MARTA SZYSZKA and LUDWIK K. MALENDOWICZ Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecicki St., 60-781 Poznan, Poland Received April 4, 2008; Accepted June 2, 2008 DOI: 10.3892/ijmm_00000031 Abstract. The neuromedin U (NMU) system is composed of nervous system. Among others, peptides involved in regulation NMU, neuromedin S (NMS) and their receptors NMUR1 and of energy homeostasis belong to this group of compounds NMUR2. This system is involved in the regulation of energy (1-3), and the best recognised is leptin, an adipocyte-derived homeostasis, neuroendocrine functions, immune response, anorexigenic hormone, which plays a role in regulating bone circadian rhythm and spermatogenesis. The present study formation. Acting directly this pleiotropic cytokine exerts a aimed to investigate the possible role of the NMU system in stimulatory effect on bone formation. While acting through regulating functions of cultured rat calvarial osteoblast-like the central nervous system (CNS) leptin suppresses bone (ROB) cells. By using QPCR, high expression of NMU formation (4-10). Moreover, OB-Rb mRNA is expressed in mRNA was found in freshly isolated ROB cells while after 7, osteoblasts, and in vitro leptin enhances their proliferation 14, and 21 days of culture, expression of the studied gene and has no effect on osteocalcin and osteopontin production by was very low. -
CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical
CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical Institute Department of Neuroscience University of Texas Southwestern Medical Center 5323 Harry Hines Blvd., NA4.118 Dallas, Texas 75390-9111 (214) 648-1876, FAX (214) 648-1801 Email: [email protected] DATE OF BIRTH: December 16, 1951 NATIONALITY: U.S. Citizen by birth EDUCATION: 1981-1983 Pharmacology Research Associate Training Program, National Institute of General Medical Sciences, Laboratory of Clinical Sciences and Laboratory of Cell Biology, National Institutes of Health, Bethesda, MD 1979-1981 Ph.D., Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, Dr. Michael Menaker, Advisor. Summer 1977 Hopkins Marine Station, Stanford University, Pacific Grove, California 1975-1979 Department of Zoology, University of Texas, Austin, Texas 1970-1974 B.A. in Biology, Swarthmore College, Swarthmore, Pennsylvania PROFESSIONAL EXPERIENCE: 2013-present Principal Investigator, Satellite, International Institute for Integrative Sleep Medicine, World Premier International Research Center Initiative, University of Tsukuba, Japan 2009-present Professor and Chair, Department of Neuroscience, UT Southwestern Medical Center 2009-present Loyd B. Sands Distinguished Chair in Neuroscience, UT Southwestern 2009-present Investigator, Howard Hughes Medical Institute, UT Southwestern 2009-present Professor Emeritus of Neurobiology and Physiology, and Walter and Mary Elizabeth Glass Professor Emeritus in the Life Sciences, Northwestern University -
The Hypothalamus in Schizophrenia Research: No Longer a Wallflower Existence
The Open Neuroendocrinology Journal, 2010, 3, 59-67 59 Open Access The Hypothalamus in Schizophrenia Research: No Longer a Wallflower Existence Hans-Gert Bernstein*,1, Gerburg Keilhoff 2, Johann Steiner1, Henrik Dobrowolny1 and Bernhard Bogerts1 1Department of Psychiatry and 2Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany Abstract: The hypothalamus is commonly believed to play only a subordinated role in schizophrenia. The present review attempts at condensing findings of the last two decades showing that hypothalamus is involved in many pathways found disturbed in schizophrenia (hypothalamus-pituitary- axis, hypothalamus-pituitary-thyroid axis, hypothalamus-pituitary- gonadal axis, metabolic syndrome, sleep-wakefulness cycle, and neuroimmune dysfunction). On the basis of this knowl- edge it is suggested to reconsider the place of the hypothalamus in the puzzle of schizophrenia. Keywords: Hypothalamus, schizophrenia, hippocampus, depression, stress, neuroendocrinology, neuroimmunology. 1. INTRODUCTION to be less, or even only marginally, affected in schizophre- nia. Until recently, the hypothalamus is thought to belong to Schizophrenia is a severe, chronic brain disorder afflict- the latter group. With this review we try to show that this ing about 1% percent of the population. The disease mainly important brain region is in many ways involved in the impairs multiple cognitive domains including memory, at- pathophysiology of schizophrenia, and that we therefore tention and executive function, and typically produces a life- should reconsider the place of the hypothalamus in the puz- time of disability and severe emotional distress for affected zle of schizophrenia. individuals [1]. The clinical features of the disorder appear in the second to third decade of life. -
Different Distribution of Neuromedin S and Its Mrna in the Rat Brain: NMS Peptide Is Present Not Only in the Hypothalamus As the Mrna, but Also in the Brainstem
ORIGINAL RESEARCH ARTICLE published: 03 December 2012 doi: 10.3389/fendo.2012.00152 Different distribution of neuromedin S and its mRNA in the rat brain: NMS peptide is present not only in the hypothalamus as the mRNA, but also in the brainstem Miwa Mori 1†, Kenji Mori 1†,Takanori Ida2,Takahiro Sato3, Masayasu Kojima3, Mikiya Miyazato1* and Kenji Kangawa1 1 Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan 2 Interdisciplinary Research Organization, University of Miyazaki, Miyazaki, Japan 3 Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, Japan Edited by: Neuromedin S (NMS) is a neuropeptide identified as another endogenous ligand for two Hubert Vaudry, University of Rouen, orphan G protein-coupled receptors, FM-3/GPR66 and FM-4/TGR-1, which have also been France identified as types 1 and 2 receptors for neuromedin U structurally related to NMS. Although Reviewed by: expression of NMS mRNA is found mainly in the brain, spleen, and testis, the distribution of Etienne Challet, Centre National de la Recherche Scientifique, France its peptide has not yet been investigated. Using a newly prepared antiserum, we developed Manuel Tena-Sempere, University of a highly sensitive radioimmunoassay for rat NMS. NMS peptide was clearly detected in the Cordoba, Spain rat brain at a concentration of 68.3 ± 3.4 fmol/g wet weight, but it was hardly detected in the *Correspondence: spleen and testis. A high content of NMS peptide was found in the hypothalamus, midbrain, Mikiya Miyazato, Department of and pons–medulla oblongata, whereas abundant expression of NMS mRNA was detected Biochemistry, National Cerebral and Cardiovascular Center Research only in the hypothalamus. -
Endogenous Peptide Discovery of the Rat Circadian Clock a FOCUSED STUDY of the SUPRACHIASMATIC NUCLEUS by ULTRAHIGH PERFORMANCE TANDEM MASS □ SPECTROMETRY* S
Research Endogenous Peptide Discovery of the Rat Circadian Clock A FOCUSED STUDY OF THE SUPRACHIASMATIC NUCLEUS BY ULTRAHIGH PERFORMANCE TANDEM MASS □ SPECTROMETRY* S Ji Eun Lee‡§, Norman Atkins, Jr.¶, Nathan G. Hatcherʈ, Leonid Zamdborg‡§, Martha U. Gillette§¶**, Jonathan V. Sweedler‡§¶ʈ, and Neil L. Kelleher‡§‡‡ Understanding how a small brain region, the suprachias- pyroglutamylation, or acetylation. These aspects of peptide matic nucleus (SCN), can synchronize the body’s circa- synthesis impact the properties of neuropeptides, further ex- dian rhythms is an ongoing research area. This important panding their diverse physiological implications. Therefore, time-keeping system requires a complex suite of peptide unveiling new peptides and unreported peptide properties is hormones and transmitters that remain incompletely critical to advancing our understanding of nervous system characterized. Here, capillary liquid chromatography and function. FTMS have been coupled with tailored software for the Historically, the analysis of neuropeptides was performed analysis of endogenous peptides present in the SCN of the rat brain. After ex vivo processing of brain slices, by Edman degradation in which the N-terminal amino acid is peptide extraction, identification, and characterization sequentially removed. However, analysis by this method is from tandem FTMS data with <5-ppm mass accuracy slow and does not allow for sequencing of the peptides con- produced a hyperconfident list of 102 endogenous pep- taining N-terminal PTMs (5). Immunological techniques, such tides, including 33 previously unidentified peptides, and as radioimmunoassay and immunohistochemistry, are used 12 peptides that were post-translationally modified with for measuring relative peptide levels and spatial localization, amidation, phosphorylation, pyroglutamylation, or acety- but these methods only detect peptide sequences with known lation. -
Changes of Tlqp-21 in Response to Glucose Load
bioRxiv preprint doi: https://doi.org/10.1101/626283; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. CHANGES OF TLQP-21 IN RESPONSE TO GLUCOSE LOAD Giulia Corda1, Barbara Noli1, Barbara Manconi2, Carla Brancia1, Manuela Pellegrini3, Fabio Naro3, Gian-Luca Ferri1 and Cristina Cocco1 1NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato (CA), Italy2 Department of Life and Enviromental Sciences, University of Cagliari, Monserrato (CA), Italy 3Department of Anatomical, Istological and Legal medicine Sciences of the locomotor apparatus, University of “La Sapienza’, Roma, Italy Abstract 5 The TLQP-21 peptide peripherally potentiates glucose-stimulated insulin secretion. The aim of this study was to investigate a possible endocrine mechanism through which TLQP- 21 increases the insulin secretion. Using an antibody specific for the common N-terminal portion of the TLQP peptides, we studied pancreas and plasma of mice subjected to intraperitoneal glucose load, by immunohistochemistry and immunosorbent assay (ELISA), 10 alone or coupled to High Performance Liquid Chromatography (HLPC). Mice underwent a period of starvation hence have received a glucose load, or saline, and were sacrificed 30 or 120 minutes later. In normal endocrine pancreas, the TLQP-antiserum stained either peripheral or central cells. Interestingly, 30 min after a glucose load, TLQP immunostaining was disappeared in pancreas and, when analysed by ELISA, the TLQP-levels started to 15 increase in plasma reaching peak concentration at 120 min. -
Neuropeptides Controlling Energy Balance: Orexins and Neuromedins
Neuropeptides Controlling Energy Balance: Orexins and Neuromedins Joshua P. Nixon, Catherine M. Kotz, Colleen M. Novak, Charles J. Billington, and Jennifer A. Teske Contents 1 Brain Orexins and Energy Balance ....................................................... 79 1.1 Orexin............................................................................... 79 2 Orexin and Feeding ....................................................................... 80 3 Orexin and Arousal ....................................................................... 83 J.P. Nixon • J.A. Teske Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA C.M. Kotz (*) Veterans Affairs Medical Center, GRECC (11 G), Minneapolis, MN, USA Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA e-mail: [email protected] C.M. Novak Department of Biological Sciences, Kent State University, Kent, OH, USA C.J. Billington Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Veterans Affairs Medical Center, Endocrine Unit (111 G), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA H.-G. Joost (ed.), Appetite Control, Handbook of Experimental Pharmacology 209, 77 DOI 10.1007/978-3-642-24716-3_4, # Springer-Verlag Berlin Heidelberg 2012 78 J.P. Nixon et al. 4 Orexin Actions on Endocrine and Autonomic Systems ................................. 84 5 Orexin, Physical Activity, and Energy Expenditure .................................... -
Neuromedins U and S Involvement in the Regulation of the Hypothalamo–Pituitary–Adrenal Axis
REVIEW ARTICLE published: 05 December 2012 doi: 10.3389/fendo.2012.00156 Neuromedins U and S involvement in the regulation of the hypothalamo–pituitary–adrenal axis Ludwik K. Malendowicz*, Agnieszka Ziolkowska and Marcin Rucinski Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland Edited by: We reviewed neuromedin U (NMU) and neuromedin S (NMS) involvement in the regulation Hubert Vaudry, University of Rouen, of the hypothalamo–pituitary–adrenal (HPA) axis function. NMU and NMS are structurally France related and highly conserved neuropeptides. They exert biological effects via two GPCR Reviewed by: receptors designated as NMUR1 and NMUR2 which show differential expression. NMUR1 James A. Carr, Texas Tech University, USA is expressed predominantly at the periphery, while NMUR2 in the central nervous system. Gábor B. Makara, Hungarian Elements of the NMU/NMS and their receptors network are also expressed in the HPA Academy of Sciences, Hungary axis and progress in molecular biology techniques provided new information on their *Correspondence: actions within this system. Several lines of evidence suggest that within the HPA axis Ludwik K. Malendowicz, NMU and NMS act at both hypothalamic and adrenal levels. Moreover, new data suggest Department of Histology and Embryology, Poznan University of that NMU and NMS are involved in central and peripheral control of the stress response. Medical Sciences, 6 Swie¸cickiSt., 60-781 Poznan, Poland. Keywords: neuromedin U, neuromedin S, hypothalamus, pituitary, adrenal e-mail: [email protected] INTRODUCTION Identification of specific NMU receptors (NMUR1 and In search for new biologically active peptides, the group of NMUR2) and its anorexigenic action have enhanced interest in Minamino, Kangawa, and Matsuo in the 1980s isolated numerous physiological role of NMU and NMS (Howard et al., 2000; Ida small neuropeptides from porcine spinal cord. -
Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock
fnins-15-650154 April 11, 2021 Time: 10:52 # 1 MINI REVIEW published: 15 April 2021 doi: 10.3389/fnins.2021.650154 Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock Daisuke Ono1,2*, Ken-ichi Honma3 and Sato Honma3* 1 Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan, 2 Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan, 3 Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Individual SCN cells exhibit intrinsic oscillations, and their circadian period and robustness are different cell by cell in the absence of cellular coupling, indicating that cellular coupling is important for coherent circadian rhythms in the SCN. Several neuropeptides such as arginine vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) are expressed in the SCN, where these neuropeptides function as synchronizers and are important for entrainment to environmental light and for determining the circadian period. These neuropeptides are also related to Edited by: developmental changes of the circadian system of the SCN. Transcription factors are Masayuki Ikeda, required for the formation of neuropeptide-related neuronal networks. Although VIP University of Toyama, Japan is critical for synchrony of circadian rhythms in the neonatal SCN, it is not required Reviewed by: Elizabeth S. Maywood, for synchrony in the embryonic SCN. During postnatal development, the clock genes MRC Laboratory of Molecular Biology cryptochrome (Cry)1 and Cry2 are involved in the maturation of cellular networks, and (LMB), United Kingdom William David Todd, AVP is involved in SCN networks. -
RNA Sequencing Analysis Reveals the Gnrh Induced Citrullinome
Authors Michelle A. Londe, Kenneth G. Gerow, Amy M. Navratil, Shaihla A. Khan, Brian S. Edwards, Paul R. Thompson, John Diller, Kenneth L. Jones, and Brian D. Cherrington This dissertation/thesis is available at Wyoming Scholars Repository: http://repository.uwyo.edu/honors_theses_15-16/48 Londe 1 RNA sequencing analysis reveals the GnRH induced citrullinome Michelle A. Londe1, Shaihla A. Khan2, Brian S. Edwards2, Paul R. Thompson3, John Diller4, Kenneth L. Jones4, Kenneth G. Gerow1, Brian D. Cherrington2, Amy M. Navratil2 1Department of Statistics, University of Wyoming, Laramie, Wyoming, 82071 2Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, 82071 3University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA, United States of America 4 Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz campus, Aurora, 80045. Key words: histone modification, peptidylarginine deiminase, gene regulation, RNA-sequencing Londe 2 Secretion of gonadotropin releasing hormone (GnRH) from the hypothalamus is critical for the secretion of the gonadotropins luteinizing hormone (LH) and follicle stimulating hormone (FSH). GnRH binds to its receptors on the plasma membrane of anterior pituitary gonadotropes and stimulates the release of these hormones. LH is crucial for regulating the function of the testes in men and the ovaries in women. In women, LH is important in carrying out functions in women’s menstrual cycles and stimulates the release of progesterone if pregnancy occurs.1 FSH is also important for reproduction, with its main roles also responsible for the maintenance of the menstrual cycle, release of estrogen and progesterone, as well as the growth of ovarian follicles.2 Given the essential role of gonadotropin production to fertility, major effort has gone into defining the mechanisms initiated by GnRH to regulate gonadotropin gene expression at the promoter/transcription factor level. -
Selective Expression of TLQP-21 and Other VGF Peptides in Gastric Neuroendocrine Cells and Modulation by Feeding
329 Selective expression of TLQP-21 and other VGF peptides in gastric neuroendocrine cells and modulation by feeding Carla Brancia1, Cristina Cocco1, Filomena D’Amato1, Barbara Noli1, Fabrizio Sanna2, Roberta Possenti3, Antonio Argiolas2 and Gian-Luca Ferri1 1NEF-Laboratory, Department of Cytomorphology and 2Department of Neuroscience, University of Cagliari, 09042 Monserrato (Cagliari), Italy 3Institute of Neurobiology and Molecular Medicine, CNR, and Department of Neuroscience, Tor Vergata University, 00133 Rome, Italy (Correspondence should be addressed to G-L Ferri; Email: [email protected]) Abstract Although vgf gene knockout mice are hypermetabolic, confined to neurons. VGF mRNA was present in the above administration of the VGF peptide TLQP-21 itself increased gastric endocrine cell types, and was prominent in chief cells, energy consumption. Agonist–antagonist roles are thus in parallel with low-intensity staining for further cleaved suggested for different VGF peptides, and the definition of products from the C-terminal region of VGF (HVLL their tissue heterogeneity is mandatory. We studied the rat peptides: VGF605–614). In swine stomach, a comparable stomach using antisera to C- or N-terminal sequences of profile of VGF peptides was revealed by immunohistochem- known or predicted VGF peptides in immunohistochemistry istry. When fed and fasted rats were studied, a clear-cut, and ELISA. TLQP (rat VGF556–565) peptide/s were most selective decrease on fasting was observed for TLQP peptides abundant (162G11 pmol/g, meanGS.E.M.) and were brightly only (162G11 vs 74G5.3 pmol/g, fed versus fasted rats, immunostained in enterochromaffin-like (ECL) cells and meanGS.E.M., P!0.00001). In conclusion, specific VGF somatostatin cells. -
Mellon CV 7-15-20
Pamela L. Mellon, Ph.D. Vice-Chair for Research, Department of Obstetrics, Gynecology, and Reproductive Sciences Distinguished Professor, Department of Obstetrics, Gynecology, and Reproductive Sciences and Department of Neurosciences Director, Center for Reproductive Science and Medicine University of California, San Diego, School of Medicine 3A14 Leichtag Biomedical Research Building 9500 Gilman Drive, La Jolla, CA 92093-0674 (858) 534-1312, Fax (858) 534-1438, e-mail: [email protected] Departmental Web page: http://repromed.ucsd.edu/faculty/Faculty_Mellon.shtml Laboratory Web Page: http://repro.ucsd.edu/Mellon/SitePages/Home.aspx ORCID 0000-0002-8856-0410 EDUCATION B.A., 1975, University of California at Santa Cruz Degrees in both Biology and Chemistry with Highest Honors Ph.D., 1979, University of California at Berkeley Department of Molecular Biology Dissertation: Two Transforming Genes and Three Replicative Genes of Avian RNA Tumor Viruses: Identification, Gene Order, and Gene Expression APPOINTMENTS Research Associate, 1975, University of California at Berkeley Department of Molecular Biology with Dr. Harrison Echols Postdoctoral Fellow with Dr. Tom Maniatis 1979-1980, California Institute of Technology, Division of Biology 1980-1984, Harvard University, Department of Biochemistry and Molecular Biology Assistant Professor 1984-1990, The Salk Institute for Biological Studies, Regulatory Biology Laboratory Assistant Adjunct Professor 1988-1991, University of California, San Diego Associate Professor 1990-1991, The Salk Institute