Sea Lions & Seals

Total Page:16

File Type:pdf, Size:1020Kb

Sea Lions & Seals Sea Lions & Seals Jamie Barry, Maggie Haas, & Olivia Sanchez Pinnipedia Pinnipedia (“Seals”) All true seals and sea lions belong to the clade Pinnipedia. This clade is comprised of three families - Odobenidae (Walruses), Otariidae (Eared Seals), and Phocidae (True Seals). The term “seal” commonly refers to the order Pinnipedia, Phocidae (True Seals) Otariidae (Eared Seals) Odobenidae however both sea lions and Ringed seals, harbor Fur seals, sea lions Walruses seals, spotted seals, walruses are also classified as elephant seals, other Pinnipeds. true seals From the Latin pinna, feather or wing, and ped-, foot Who are the Pinnipeds? Photo by: http://www.pressherald.com/wp- There are currently 33 species of extant content/uploads/2016/03/811802_US_NEWS_ENV-SEALIONS_1_LA.jpg pinnipeds, each one exhibiting a few notable characteristics that distinguish them from other marine mammals. ● They are carnivorous aquatic placental mammals that heavily rely on the use of flipper-like front feet for swimming. ● The hands and feet of the pinniped are elongated and their digits are connected by webs of skin to act as flippers. ● Unlike most other marine species, the Pinnipeds are adapted to feed on fish, pinniped tail is very basic in function, as its mollusks, as well as other forms of marine steering is controlled by backward-facing hind mammal life. feet. Walruses ● These marine mammals are extremely sociable and Odobenus rosmarus can usually be found loudly bellowing and snorting at one another ● Only Native Americans are currently allowed to hunt walruses, as the species' survival was threatened by past overhunting ● Can live up to 40 years in the wild ● Can weigh up to 1.5 tons 6 ● Adult walruses are easily recognized by their prominent tusks, whiskers, and bulkiness ● This species is subdivided into three subspecies ○ The Atlantic walrus, the Pacific walrus, and the O. r. laptevi ● Has a discontinuous distribution about the North Pole in the Arctic Ocean and subarctic seas of the Northern Hemisphere 7 Photo by: https://en.wikipedia.org/wiki/Walrus Sea Otters ● Member of the Weasel Family Enhydra lutris ● Sea otters have the densest fur in the animal Sea otters are not classified as pinnipeds kingdom, ranging from 250,000 to a million hairs per due to their padded feet, their lack of square inch true flippers, and their thick, dark fur. ○ This is because they don’t have blubber to help keep them warm ● Sea otters are a keystone species ● Sea otters eat urchins, abalone, mussels, clams, crabs, snails and about 40 other marine species ● Native to the coasts of the northern and eastern North Pacific Ocean ● Hunted extensively for their fur between 1741 and 1911, and the world population fell to 1,000–2,000 individuals living in a fraction of their historic range¹ Photo by: https://www.thinglink.com/scene/694511142789185536 Sea Lions Photo by: http://a-z-animals.com/animals/sea-lion/ Quick Facts ● Life span: 20 to 30 years ● Gestation: 8 to 18 months, depending on species ● Number of young at birth: Usually one, rarely two ● Size: Females are 4 to 9 feet long; males are 6.5 to 11 feet ● Weight: Females are 110 to 600 pounds; males are 440 to 2,200 Photo by: http://justcuteanimals.com/post/7614 pounds 14 Steller Sea Lion Sea Lions in Eumatopias Jubatus -The most common species found in Alaska Alaska -Also known as “Winnaq” by the 9 ● Alutiiq people What are the different species? Photo by: https://caseagrant.ucsd.edu/project/explore-sandy-beach- ecosystems-of-southern-california/sandy-beach-plants-and- animals/marine California Sea Lion Zalophus Californianus -54 reported in Alaska from Photo by: http://www.marinemammalcenter.org/education/marine-mammal-information/pinnipeds/steller-sea-lion/ 1974-2004 8 ● They can primarily be found on the California Sea western coasts of Canada, the United States and Mexico 8 Lion ● Scientists have discovered 5 distinct variations of California Sea Lions: Southern Central California stock, Northern Gulf stock, Pacific Tropical stock, Pacific Temperate Stock and the Western Baja California stock ● Although there are some slight variations in habitat and location, California Sea Lions share the majority of their attributes, such as eating and mating behavior, with Steller Sea Lions Photo by: http://www.pittsburghzoo.org/animal.aspx?id=122 8 What do Sea ● Diets depend on region and time of year, Lions eat? but some species remain constant in a Sea Lion diet such as: Arrowtooth Flounder, Walleye Pollock, Atka Mackerel & Cephalopods ○ Referred to as opportunistic hunters ● Popular prey during certain times of year: Pacific cod, salmon and herring ● Occasionally eat true seals for “variety” ● They have the ability to eat prey in its entirety while under water ○ Special teeth ● Scientists study Sea Lion scat for answers 9 Photos by: https://mu-peter.blogspot.com/2014/01/cerebral-cephalopods-heady-head-feet.html http://www.elasmodiver.com/Pacific_Cod_Pictures.htm https://teacheratsea.wordpress.com/tag/mary-murrian-2/ Migration and ● Sea Lions do not migrate, but instead shift their central locations to have easier Breeding access to different types of prey throughout the year ● Rookeries are the optimal spot for summer breeding → then move to more secure haulouts (pieces of land) during the winter months ● Don’t tend to travel extraordinary distances → Pups can only swim approximately 75 miles, non-stop ○ Longest route ever recorded = 1,600 miles from Forrester Island to Cape 9 Photo by: https://en.wikipedia.org/wiki/Hauling-out Newenham ● Although initially born with dark fur, Life of a Sea Sea Lions lighten over time, most often resulting in a pale yellow Lion color (and some end up a reddish color) 9 ● Male Sea Lions are easier to spot because of their large bodies (heavy weight), muscular necks and broad foreheads ● Females grow at a rapid pace within the first 4 years, and then plateau, meanwhile the males can continue even after their 10th year9 9 Photo by: Maggie Haas The life of a Sea ● Sea Lions divide their time between land (rookeries) where they rest and Lion cont. nurse the pups, and water ● Pups learn to fast while the mothers hunt (1-2 day trips) ● Swimming and diving techniques come with age ● Mature Sea lions can dive more than 1,500 feet and stay underwater for at least 16 minutes ● They use their back flippers to change direction and the front flippers Photo by: http://ocean.si.edu/ocean-photos/seal-or-sea-lion to gain speed 9 ● Sea Lions settle in more than 300 haulouts, with preference Sea Lion Habitats towards secluded islands that can protect them from predators ○ Females tend to chose the same haulouts to give birth ● Habitats can range from the North Pacific Rim of Japan to the East of the Aleutian Islands towards the Bering Sea, and Photo by: http://animals.nationalgeographic.com/animals/mammals/steller-sea-lion/ South to the Channel Islands off of California 9 Seals Photo by: https://en.wikipedia.org/wiki/Harbor_seal Quick Facts Fully grown male elephant seal ● Life span: 25-30 years ● Gestation: 10 months ● Number of young at birth: One pup per year ● Size: Smallest species is 3-4 feet long (baikal seal), largest is 13-16 feet long (elephant seal) ● Weight: smallest is ringed seal (110- 115 lbs) and the largest is elephant Photo by :http://www.seals-world.com/wp-content/uploads/2014/01/Northern-elephant-seal_624.jpg seal (2,000 lbs for females, up to 8,500 lbs for males) 8,9 Seals Found in Harbor Seal Range Alaska ● The Pacific Harbor seal (Phoca vitulina) and the Northern Fur seal (Callorhinus ursinus) are Photo by: http://www.seattleaquarium.org/view.image?Id=2150 the two species of seal that Northern Fur Seal Range can be found off the coast of Southern Alaska. ● Ice Seals, which include Ringed seals, Harp seals, and Spotted seals, can be found in Arctic regions of Northern Alaska Photo by: https://www.defenders.org/sites/default/files/northern-fur-seal- range-map.jpg Ice Seals A Ribbon Seal ● Ringed Seals (Phoca hispida) are among the smallest of the pinnipeds and are known for living in ice lairs in large snowdrifts to hide from predators ○ They are the most common and widespread seal in the Arctic ● Ribbon Seals (Phoca fasciata) are closely related to Harbor Seals and are the rarest seal found in the Arctic. They are known for the 3 large bands of white coloration found on their bodies ● Spotted Seals (Phoca largha) are often confused with Harbor Seals due to their similar coloration and geographic range, however, they give birth to their pups on sea ice, while the Harbor Seals give birth on land ● Bearded Seals (Erignathus barbatus) are the largest species of seal found in Alaska and are vital to coastal Alaskan villages due to the fact that they provide needed meat, oil, and skins to the native 17 communities Photo by :https://alaskafisheries.noaa. gov/sites/default/files/styles/large/public/ribbonseal_closeup_sm.jpg?itok=gr5p30S0 Each day, the Harbor seal consumes Diet about 5-6% of its body weight. ● Harbor seals and Fur seals will Additionally, these seals rely on food as congregate in intertidal zones and their primary water source, as they are harbors to find squid, crustaceans, unable to consume salt water 10 mollusks, and a variety of fish, including rockfish, herring, flounder, salmon, hake, and sand lance. 8 ● Rather than chewing their food, these seals will eat their food whole or tear it into larger chunks before swallowing it. ○ Strengthened back molars are responsible for crushing shells 10, 11 and crustaceans. Photo by: http://i.cbc.ca/1.2951993.1423595819!/fileImage/httpImage/image. jpg_gen/derivatives/4x3_620/seal-vs-octopus-1-slide-5.jpg Mating Photo by: http://www.zooborns.com/.a/6a010535647bf3970b015431e82c36970c-500wi Fur Seals ● Each year, male Fur seals stake out breeding grounds early in the mating season (Late Spring).
Recommended publications
  • Alaska Sea Lions and Seals
    Alaska Sea Lions and Seals Blaire, Kate, Donovan, & Alex Biodiversity of Alaska 18 June 2017 https://www.stlzoo.org/files/3913/6260/5731/Sea-lion_RogerBrandt.jpg Similarities & Differences of Sea Lions and Seals Phocidae Family Otariidae Family cannot rotate back can rotate back flippers flippers; move like a marine under themselves to walk caterpillar on land mammals and run on land no external earflaps pinniped, “fin external earflaps footed” in use back flippers for Latin use front flippers for power when swimming power when swimming preyed upon by polar use front flippers for use back flippers for bears, orcas, steering when swimming steering when swimming and sharks food: krill, fish, lobster, food: squid, octopus, birds birds, and fish claws and fur on front no claws or hair on front flippers flippers Seals ("What’s the Difference “ 2017) Sea Lions Evolution • Both seals and sea lions are Pinnipeds • Descended from one ancestral line • Belong to order carnivora • Closest living relatives are bears and musteloids (diverged 50 million years ago) http://what-when-how.com/marine-mammals/pinniped-evolution- (Churchill 2015) marine-mammals/ http://www.chinadaily.com.cn/cndy/2009-04/24/content_7710231.htm Phylogenetics https://en.wikipedia.org/wiki/Pinniped Steller: Eumetopias jubatus http://www.arkive.org/stellers-sea-lion/eumetopias-jubatus/image-G62602.html Steller: Eumetopias jubatus • Classification (”Steller Sea Lion” 2017) Kingdom: Animalia Phylum: Chordata Class: Mamalia Order: Carnivora Family: Otarridae Genus: Eumetopias Species:
    [Show full text]
  • Lake Baikal Russian Federation
    LAKE BAIKAL RUSSIAN FEDERATION Lake Baikal is in south central Siberia close to the Mongolian border. It is the largest, oldest by 20 million years, and deepest, at 1,638m, of the world's lakes. It is 3.15 million hectares in size and contains a fifth of the world's unfrozen surface freshwater. Its age and isolation and unusually fertile depths have given it the world's richest and most unusual lacustrine fauna which, like the Galapagos islands’, is of outstanding value to evolutionary science. The exceptional variety of endemic animals and plants make the lake one of the most biologically diverse on earth. Threats to the site: Present threats are the untreated wastes from the river Selenga, potential oil and gas exploration in the Selenga delta, widespread lake-edge pollution and over-hunting of the Baikal seals. However, the threat of an oil pipeline along the lake’s north shore was averted in 2006 by Presidential decree and the pulp and cellulose mill on the southern shore which polluted 200 sq. km of the lake, caused some of the worst air pollution in Russia and genetic mutations in some of the lake’s endemic species, was closed in 2009 as no longer profitable to run. COUNTRY Russian Federation NAME Lake Baikal NATURAL WORLD HERITAGE SERIAL SITE 1996: Inscribed on the World Heritage List under Natural Criteria vii, viii, ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following statement at the time of inscription. Justification for Inscription The Committee inscribed Lake Baikal the most outstanding example of a freshwater ecosystem on the basis of: Criteria (vii), (viii), (ix) and (x).
    [Show full text]
  • Spotted Seals, Phoca Largha, in Alaska
    Spotted Seals, Phoca largha, in Alaska Item Type article Authors Rugh, David J.; Shelden, Kim E. W.; Withrow, David E. Download date 09/10/2021 03:34:27 Link to Item http://hdl.handle.net/1834/26448 Spotted Seals, Phoca largha, in Alaska DAVID J. RUGH, KIM E. W. SHELDEN, and DAVID E. WITHROW Introduction mine the abundance, distribution, and lar), a 2-month difference in mating sea­ stock identification of marine mammals sons (effecting reproductive isolation), Under the reauthorization of the Ma­ that might have been impacted by com­ the whitish lanugo on newborn P largha rine Mammal Protection Act (MMPA) mercial fisheries in U.S. waters (Bra­ that is shed in utero in P vitulina, dif­ in 1988, and after a 5-year interim ex­ ham and DeMaster1). For spotted seals, ferences in the adult pelage of P largha emption period ending September 1995, Phoca largha, there were insufficient and P vitulina, and some differences in the incidental take of marine mammals data to determine incidental take lev­ cranial characteristics (Burns et aI., in commercial fisheries was authorized els. Accordingly, as a part of the MMAP, 1984). However, hybridization may if the affected populations were not ad­ the NMFS National Marine Mammal occur, based on evidence from morpho­ versely impacted. The Marine Mammal Laboratory (NMML) conducted a study logical intermediates and overlaps in Assessment Program (MMAP) of the of spotted seals in Alaska. The objec­ range (Bums et aI., 1984). As such, dif­ National Marine Fisheries Service tives of this study were to: I) provide a ferentiation of these two species in the (NMFS), NOAA, provided funding to review of literature pertaining to man­ field is very difficult.
    [Show full text]
  • Monk Seals in Post-Classical History
    Monk Seals in Post-Classical History The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century William M. Johnson Mededelingen No. 39 2004 NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Mededelingen No. 39 i NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Netherlands Commission for International Nature Protection Secretariaat: Dr. H.P. Nooteboom National Herbarium of the Netherlands Rijksuniversiteit Leiden Einsteinweg 2 Postbus 9514, 2300 RA Leiden Mededelingen No. 39, 2004 Editor: Dr. H.P. Nooteboom PDF edition 2008: Matthias Schnellmann Copyright © 2004 by William M. Johnson ii MONK SEALS IN POST-CLASSICAL HISTORY The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century by William M. Johnson Editor, The Monachus Guardian www.monachus-guardian.org email: [email protected] iii iv TABLE OF CONTENTS MONK SEALS IN POST-CLASSICAL HISTORY ......................................................III ABSTRACT ......................................................................................................................... VII ACKNOWLEDGEMENTS ........................................................................................................ VII MONK SEALS IN POST-CLASSICAL HISTORY ..............................................................................1 AN INTRODUCTION TO THE SPECIES ......................................................................1
    [Show full text]
  • CCS Study EMS 90-0058 Migration of Northern Fur Seal (Callorhinus
    CCS Study EMS 90-0058 Migration of northern fur seal (Callorhinus ursinus) pups in the Bering Sea. Final Report. Timothy J. Ragen and Paul K. Dayton Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093 September 1990 Minerals Management SeNice Department of the Interior Alaska CCS Region 949 East 366th Avenue Anchorage, Alaska 99508-4302 Purchase Order No. <~ --.-J ● Migration of northern fur seal (Callorhinus ursinus) pups in the Bering Sea. Final Report. Timothy J. Ragen and Paul K. Dayton Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093 September 1990 This study was funded in part by the Alaska Outer Continental Shelf Region of the Minerals Management Service, U.S. Department of the Interior, Washington, D.C., under Purchase Order No. 12523. This report has been reviewed by the Minerals Management Service and has been approved for publication. Approval does not signify that the contents necessarily reflect the view and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. AUTHORS AND RESPONSIBILITIES This report was written by Timothy J. Ragen, under the supervision of Paul K. Dayton. Dr. Ragen and George A. Antonelisr Jr., National Marine Mammal Laboratory, conducted the field portion of this study. ● Migration of northern fur seal (Callorhinus ursims) pups in the Bering Sea. Final Report. Table of Contents Introduction . 1 Methods . 8 Results . , . , . , . 11 Discussion . 17 Summary . 31 References . 33 MIG~TION OF NORTHERM FUR SEAL ( CALLORHINUS URSINUS) PUPS IN TEE BERING SEA INTRODUCTION The northern fur seal (Callorhinus ursinus) is arguably the most extensively studied marine mammal in the world.
    [Show full text]
  • 56. Otariidae and Phocidae
    FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig.
    [Show full text]
  • Brucella Antibody Seroprevalence in Antarctic Seals (Arctocephalus Gazella, Leptonychotes Weddellii and Mirounga Leonina)
    Vol. 105: 175–181, 2013 DISEASES OF AQUATIC ORGANISMS Published September 3 doi: 10.3354/dao02633 Dis Aquat Org Brucella antibody seroprevalence in Antarctic seals (Arctocephalus gazella, Leptonychotes weddellii and Mirounga leonina) Silje-Kristin Jensen1,2,*, Ingebjørg Helena Nymo1, Jaume Forcada3, Ailsa Hall2, Jacques Godfroid1 1Section for Arctic Veterinary Medicine, Norwegian School of Veterinary Science, Stakkevollveien 23, 9010 Tromsø, Norway; member of the Fram Centre - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway 2Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK 3British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Brucellosis is a worldwide infectious zoonotic disease caused by Gram-negative bac- teria of the genus Brucella, and Brucella infections in marine mammals were first reported in 1994. A serosurvey investigating the presence of anti-Brucella antibodies in 3 Antarctic pinniped spe- cies was undertaken with a protein A/G indirect enzyme-linked immunosorbent assay (iELISA) and the Rose Bengal test (RBT). Serum samples from 33 Weddell seals Leptonychotes weddelli were analysed, and antibodies were detected in 8 individuals (24.2%) with the iELISA and in 21 (65.6%) with the RBT. We tested 48 southern elephant seal Mirounga leonina sera and detected antibodies in 2 animals (4.7%) with both the iELISA and the RBT. None of the 21 Antarctic fur seals Arctocephalus gazella was found positive. This is the first report of anti-Brucella antibodies in southern elephant seals. The potential impact of Brucella infection in pinnipeds in Antarctica is not known, but Brucella spp.
    [Show full text]
  • Phoca Vitulina)
    MOVEMENTS AND HOME RANGES OF HARBOR SEALS (PHOCA VITULINA) IN THE INLAND WATERS OF THE PACIFIC NORTHWEST By Sarah E. Hardee Accepted in Partial Completion of the Requirements for the Degree Master of Science ____________________________________ Moheb A. Ghali, Dean of the Graduate School ADVISORY COMMITTEE ____________________________ Chair, Dr. Alejandro Acevedo-Gutiérrez ____________________________ Dr. Benjamin Miner ___________________________ Dr. Merrill Peterson MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non- exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books. Library users are granted permission for individual, research and non-commercial reproduction of this work for educational purposes only. Any further digital posting of this document requires specific permission from the author. Any copying or publication of this thesis for commercial purposes, or for financial gain, is not allowed without my written permission. Signature ______________________________ Date __________________________________ ii MOVEMENTS AND HOME RANGES OF HARBOR SEALS (PHOCA VITULINA) IN THE INLAND WATERS OF THE PACIFIC NORTHWEST A Thesis Presented to The Faculty of Western Washington University In Partial Fulfillment Of the Requirements for the Degree Master of Science by Sarah E.
    [Show full text]
  • Historical Perspectives Nobuyuki Miyazaki (Born 4 August 1946)
    Aquatic Mammals 2012, 38(2), 189-203, DOI 10.1578/AM.38.2.2012.189 Historical Perspectives Nobuyuki Miyazaki (born 4 August 1946) Nobuyuki Miyazaki began his career as a research associate at the University of Ryukyus, Japan, obtaining his Ph.D. in 1975 under Professor Nishiwaki. He established a Japanese research team focused on marine pollution and hazardous chemicals using marine mammals as an indica- tor species. Dr. Miyazaki organized the research project “Coastal Marine Environment” that was conducted by United Nations University, Ocean Research Institute of The University of Tokyo, and Iwate Prefecture. He worked as general coor- dinator of the Japanese Society for Promotion of Science’s Multilateral Core Univer sity Program “Coastal Marine Science” with other distinguished scientists from five Asian countries. In collabora- tion with Dr. Y. Naito, he developed an advanced Nobuyuki Miyazaki (Photo courtesy of John Anderson) data logger and camera logger, and he also estab- lished the “Bio-Logging Science” program at the University of Tokyo. Since 1990, he has conducted international ecological research of Lake Baikal in cooperation with colleagues from Russia, the United Kingdom, Belgium, Switzerland, and the United States. Dr. Miyazaki has published more than 270 English and 13 Japanese peer-reviewed papers, nine English and 51 Japanese books, and seven Eng lish and 109 Japanese reports. He also has given 316 presentations at national and inter- national conferences. 190 Miyazaki Seal Survey in Eurasian Waters in Collaboration with Russian Scientists Nobuyuki Miyazaki, Ph.D. Professor Emeritus, The University of Tokyo, Japan E-mail: [email protected] I.
    [Show full text]
  • Petition to List the Iliamna Lake Seal, a Distinct Population Segment of Eastern North Pacific Harbor Seal (Phoca Vitulina Richardii), Under the U.S
    Before the Secretary of Commerce Petition to List the Iliamna Lake Seal, a Distinct Population Segment of Eastern North Pacific Harbor Seal (Phoca vitulina richardii), under the U.S. Endangered Species Act Photo Credit: NOAA Fisheries/Dave Withrow Center for Biological Diversity 6 February 2020 i Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist, on behalf of the Center for Biological Diversity 1212 Broadway #800 Oakland, CA 94612 Phone: 510.844.7100 x327 Email: [email protected] On November 19, 2012, the Center for Biological Diversity (Center, Petitioner) submitted to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the Iliamna Lake population of eastern North Pacific harbor seal (Phoca vitulina richardii) as threatened or endangered under the U.S. Endangered Species Act (ESA). (See generally Center 2012.) On May 17, 2013, NMFS issued a positive 90- day finding “that the petition present[ed] substantial scientific or commercial information indicating that the petition action may be warranted” and initiated a status review. (78 Fed. Reg. 29,098 (May 17, 2013).). On November 17, 2016, NMFS issued a determination that listing was not warranted because “the seals in Iliamna Lake do not constitute a species, subspecies, or distinct population segment (DPS) under the ESA.” (81 Fed.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 16: 149–163, 2012 ENDANGERED SPECIES RESEARCH Published online February 29 doi: 10.3354/esr00392 Endang Species Res Age estimation, growth and age-related mortality of Mediterranean monk seals Monachus monachus Sinéad Murphy1,*, Trevor R. Spradlin1,2, Beth Mackey1, Jill McVee3, Evgenia Androukaki4, Eleni Tounta4, Alexandros A. Karamanlidis4, Panagiotis Dendrinos4, Emily Joseph4, Christina Lockyer5, Jason Matthiopoulos1 1Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, UK 2NOAA Fisheries Service/Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East-West Highway, Silver Spring, Maryland 20910, USA 3Histology Department, Bute Medical School, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK 4MOm/Hellenic Society for the Study and Protection of the Monk Seal, 18 Solomou Street, 106 82 Athens, Greece 5Age Dynamics, Huldbergs Allé 42, Kongens Lyngby, 2800, Denmark ABSTRACT: Mediterranean monk seals Monachus monachus are classified as Critically Endan- gered on the IUCN Red List, with <600 individuals split into 3 isolated sub-populations, the largest in the eastern Mediterranean Sea. Canine teeth collected during the last 2 decades from 45 dead monk seals inhabiting Greek waters were processed for age estimation. Ages were best estimated by counting growth layer groups (GLGs) in the cementum adjacent to the root tip using un - processed longitudinal or transverse sections (360 µm thickness) observed under polarized light. Decalcified and stained thin sections (8 to 23 µm) of both cementum and dentine were inferior to unprocessed sections. From analysing patterns of deposition in the cementum of known age- maturity class individuals, one GLG was found to be deposited annually in M.
    [Show full text]
  • Ecology of Ringed Seals (Phoca Hispida) in Western Hudson Bay, Canada
    Ecology of ringed seals (Phoca hispida) in western Hudson Bay, Canada by Magaly Vincent-Chambellant A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Biological Sciences University of Manitoba Winnipeg Copyright © 2010 by Magaly Vincent-Chambellant Abstract Recently, Hudson Bay experienced unidirectional trends in temperature, sea-ice extent, time of break-up, and length of the open-water season. Predicted impacts on population dynamics of ice-associated species include habitat loss and shift in prey availability. The ringed seal (Phoca hispida) depends on a stable ice platform with sufficient snow depth and a productive open-water season for reproduction and survival. Evidence of ringed seal sensitivity to environmental variations has been reported, but mechanisms involved were poorly understood. In western Hudson Bay, density, life-history traits, and diet of ringed seals were monitored over two decades, providing an opportunity to understand the effects of climatic variations on the population dynamics of this long-lived carnivore. Ringed seal density was estimated through strip-transect analyses after aerial surveys were flown in western Hudson Bay in late spring during the annual moult in the 1990s and 2000s. During these periods, ringed seals were also sampled from Inuit subsistence fall harvests In Arviat, NU, and ages, reproductive status, percentage of pups in the harvest, body condition, and diet were assessed. Strong inter-annual variations in these parameters were observed, and a decadal cycle was suggested and related to variations in the sea-ice regime.
    [Show full text]