Geology.Gsapubs.Org on November 6, 2014

Total Page:16

File Type:pdf, Size:1020Kb

Geology.Gsapubs.Org on November 6, 2014 Downloaded from geology.gsapubs.org on November 6, 2014 Geology Unfolding: An inverse approach to fold kinematics Jaume Vergés, Douglas W. Burbank and Andrew Meigs Geology 1996;24;175-178 doi: 10.1130/0091-7613(1996)024<0175:UAIATF>2.3.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Geological Society of America Downloaded from geology.gsapubs.org on November 6, 2014 Unfolding: An inverse approach to fold kinematics Jaume Verge´s Departament de Geologia Dina`mica, Geofı´sica i Paleontologia, Universidad de Barcelona, 08071 Barcelona, Spain Douglas W. Burbank Department of Geological Sciences, University of Southern California, Los Angeles, California 90089 Andrew Meigs ABSTRACT in the fold’s forelimb. The oldest growth Preserved fold shapes usually reveal little about their kinematic evolution. Syntectonic strata prominently onlap paleotopography strata preserved in growth synclines in contact with a fold, however, can permit ‘‘unfold- that existed prior to fold growth. Clear onlap ing’’: a sequential reconstruction of fold growth backward through time from a geometry of the forelimb persisted as folding initiated. observed at present to an initial undeformed state. Such reconstructions can define the From the synclinal axial surface to the crest kinematics of fold growth. Growth strata associated with anticlinal forelimbs in the Ebro of the anticline, growth strata show a gen- basin exhibit depositional tapering of beds on fold flanks and progressive limb rotation. eral thinning defined by marked changes in Unfolding a well-dated detachment fold defines its kinematic evolution and coevally varying dip of both individual beds and stratal units rates of shortening, forelimb uplift, and forelimb rotation. Interplay of these rates with (Fig. 4A). These strata comprise 170 m of sedimentation rates controls onlap and offlap relations. fluvial deposits characterized by siltstone and sandstone interbedded with conglomer- INTRODUCTION Spanish examples display four salient char- ate beds up to 25 m thick. Paleocurrent in- Folds are a fundamental structure of con- acteristics when seen in profile (Fig. 1): (1) dicators define flow parallel to the fold crest tractional orogens, and yet deciphering their the full succession of growth strata displays and synclinal axis. kinematic history continues to be controver- a wedge-shaped geometry; (2) single beds or Few successions of growth strata have sial. Given a present-day cross section of a groups of beds within the wedge-shaped do- been dated with precision sufficient to define fold, we are usually unable to determine un- main thicken across the forelimb from the short-term variability in rates of sedimenta- ambiguously the history of fold growth. Fold anticlinal crest to a maximum thickness near tion, uplift, shortening, or forelimb rotation. geometries from some thrust belts are con- the synclinal axis; (3) angular unconformi- Paleomagnetic dates on the growth strata of sistent with geometrically based kinematic ties may occur between groups of beds in the the Can Juncas anticline (Burbank and models, often with self-similar growth pat- wedge-shaped domain; and (4) growth Verge´s,1994), however, provide ages for terns (Medwedeff, 1992; Shaw and Suppe, strata above the forelimb show an increase three horizons from which rates of sediment 1994). Other studies suggest that preserved in dip from stratigraphically higher to lower accumulation and fold growth can be fold shapes represent only the end product strata. Whereas the relations described be- calculated. of a geometrically variable growth history low apply equally well to backlimbs and (e.g., Ramsay, 1974). The crux of the prob- forelimbs, our discussion is restricted to UNFOLDING: REVERSE STEP-BY-STEP lem rests in the motion of rocks with respect forelimbs, where angular stratal geometries FOLD RESTORATION to fold hinges and the angles of fold limbs tend to be more pronounced. The methodology relies on a step-by-step with time. Two different data sets can po- A well-exposed example of the interrela- unfolding of stratal units backward through tentially resolve fold evolution: distribution tions between syntectonic deposition and time. For each time step, younger growth of strain throughout the fold (Fischer et al., evolving structures occurs at Oliana along strata are removed, the uppermost deposi- 1992) and growth strata (Suppe et al., 1992). the eastern oblique margin of the South tional surface or bounding unconformity is Growth strata deposited above the limb of a Central Unit (Fig. 1, A and B). Here, be- restored to its original prefolding orienta- deforming fold can place clear geometric tween ;37.2 and 34.0 Ma, an imbricate sys- tion, and underlying growth and pregrowth constraints on fold growth through time. tem of southeast-directed thrusts developed strata are concurrently back rotated. In Herein we describe a methodology for a on the backlimb of the Oliana anticline co- these fluvial strata, where paleoflow is par- step-by-step restoration of growth strata evally with deposition of growth strata allel to the anticlinal trend, a horizontal dep- backward through time (termed ‘‘unfold- (Verge´sand Mun˜oz, 1990; Burbank et al., ositional surface in cross section can be as- ing’’) to determine fold kinematics. Al- 1992). The fold and thrust system is de- sumed. Transverse rivers or alluvial fans though our examples formed above detach- tached above a decollement in Upper Trias- may have slopes of a few degrees. If known, ment folds, the methodology is independent sic evaporites (Verge´s,1993). Folds in both such slopes can be integrated into the of fold history and should be applicable to pregrowth and growth strata show kink- restoration. other folding styles. shaped geometries with rounded hinges and A deformed-state cross section, parallel interlimb angles ranging from 408 to 708.We to the tectonic transport, at Can Juncas (Oli- DETACHMENT FOLDS AND RELATED focus on strata preserved in a growth syn- ana) has been built using dip data, map dis- GROWTH STRATA cline attached to the Can Juncas anticline, tribution, measured stratigraphic sections, Along the margins of the Ebro foreland which has an overturned forelimb and a and lengths of tapered and untapered syn- basin (Fig. 1), well-preserved growth strata wavelength of ;0.5 km (Figs. 1B and 3). tectonic strata across the anticline-growth are associated with numerous folds (Riba, Given the typical structural styles of the syncline pair (Fig. 4A). Restorations for two 1976), some of which can be defined as de- folds and faults above evaporites in the stages (35.37 and 34.96 Ma) have been made tachment folds (Fig. 2). In our usage, a de- southern Pyrenees and the absence of sur- by pinning the unthinned growth strata in tachment fold is one that forms by buckling face faults at Can Juncas, we interpret this the distal part of the growth syncline well above a detachment which is subparallel to fold as a detachment anticline. beyond the folded domain, preserving original layering and in which the majority A pronounced unconformity marks the stratal areas, and minimizing changes in of shortening is accommodated by folding, contact between the base of the growth taper in order to minimize bed-length rather than faulting (Jamison, 1987). The strata and the overturned pregrowth strata changes during folding (Fig. 4, B and C). Geology; February 1996; v. 24; no. 2; p. 175–178; 4 figures. 175 Downloaded from geology.gsapubs.org on November 6, 2014 Figure 1. A: Geologic map of Ebro basin with locations of field examples. B: Growth fold at Can Juncas showing prominent thinning toward anticlinal crest in pregrowth strata (top right). C: Internal geometry of evaporite-cored La Garriga fold is dominated by clear onlap of overturned fold forelimb (arrows). D: Growth syncline near Horta de Sant Joan (Barranco dels Estrets) in Catalan Coastal Ranges showing overturned basal conglomerates (at right) deposited on deformed carbonate and siltstone. Note prominent internal unconformity that younger growth strata progressively onlaps (arrows). Figure 2. Detachment fold geometry and thickness variations in growth syncline as re- lated to its forelimb and backlimb. The deformation path of the forelimb has been broken into horizontal and vertical components by tracking the motion of ma- Figure 3. Regional cross section showing imbricate system of thrusts and folds above backlimb terial points near the top of the forelimb of Oliana anticline. Growth strata are linked to Can Juncas detachment anticline. Shaded units (Fig. 4). in pregrowth stratigraphy are competent layers. Overall, during 0.7 m.y., growth strata ac- cumulated at a mean rate of ;0.16 mm/yr, as the forelimb rotated at a mean rate of fold shape and patterns of growth strata. Al- 35.37 and 34.96 Ma, accumulation acceler- ;1.38/104 yr.
Recommended publications
  • The Confusion Range, West-Central Utah: Fold-Thrust Deformation and a Western Utah Thrust Belt in the Sevier Hinterland
    The Confusion Range, west-central Utah: Fold-thrust deformation and a western Utah thrust belt in the Sevier hinterland David C. Greene* Department of Geosciences, Denison University, Granville, Ohio 43023, USA ABSTRACT INTRODUCTION tions together while delineating the lateral and oblique thrust ramps that form a signifi cant The Confusion Range in west-central Utah The Confusion Range is a collection of ridges complicating factor in the structure of the fold- has been considered a broad structural trough and small ranges that together form a low moun- thrust system. Together, these fi ve cross sections or synclinorium with little overall shorten- tain range in western Utah, between the more total almost 300 km in map length. Enlarged ing. However, new structural studies indicate imposing Snake Range on the west and House versions of the cross sections at a scale of that the Confusion Range is more accurately Range on the east (Figs. 1 and 2). The range is 1:50,000, along with a discussion of the petro- characterized as an east-vergent, fold-thrust named for its “rugged isolation and confusing leum potential of the region, may be found in system with ~10 km of horizontal shortening topography” (Van Cott, 1990). The Confusion Greene and Herring (2013). during Late Jurassic to Eocene Cordilleran Range exposes ~5000 m of Ordovician through Similar structural style and fold-thrust struc- contractional deformation. For this study, Triassic strata in what has been considered a tures are continuous southward throughout the four balanced and retrodeformable cross broad structural trough or synclinorium (e.g., length of the originally proposed synclinorium, sections across the Confusion Range and Hose, 1977; Anderson, 1983; Hintze and Davis, forming a fold-thrust belt more than 130 km in adjacent Tule Valley were constructed using 2003; Rowley et al., 2009).
    [Show full text]
  • Structural and Kinematic Analyses of the Basement Window Within the Hinterland Fold-And-Thrust Belt of the Zagros Orogen, Iran
    Geol. Mag.: page 1 of 18 c Cambridge University Press 2016 1 doi:10.1017/S0016756816000558 Structural and kinematic analyses of the basement window within the hinterland fold-and-thrust belt of the Zagros orogen, Iran ∗ KHALIL SARKARINEJAD & SOMAYE DERIKVAND Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71454, Iran (Received 1 December 2015; accepted 18 May 2016) Abstract – The Zagros hinterland fold-and-thrust belt is located in the central portion of the Zagros Thrust System and consists of the exhumed basement windows associated with NW-striking and NE-dipping flexural duplex structures that contain in-sequence thrusting and related folds. Mylonitic nappes of the basement were exhumed along deep-seated sole thrusts of the Zagros Thrust System. Lattice preferred orientation (LPO) c-axes of quartz show asymmetric type-1 crossed girdles that demonstrate a non-coaxial deformation under plane strain conditions. Based on the opening angles of quartz c-axis fabric skeletons, deformation temperatures vary from 425 ± 50 °C to 540 ± 50 °C, indicating amphibolite facies conditions. The estimated mean kinematic vorticity evaluated from quartz c-axis of the quartzo-feldspathic mylonites (Wm = 0.55 ± 0.06) indicates the degree of non- coaxiality during mylonite exhumation. The estimated angle θ between the maximum instantaneous strain axis (ISA1) and the transpressional zone boundary is 17°, and the angle of oblique convergence is 57° in the M2 nappe of the basement involved. This indicates that the mylonitic nappe was formed by a combination of 62 % pure shear and 38 % simple shear during oblique convergence. Keywords: transpressional zone, mylonitic nappe, vorticity, quartz c-axis, Zagros orogenic belt.
    [Show full text]
  • The Structure and Kinematics of the Southeastern Zagros Fold-Thrust Belt, Iran : from Thin-Skinned to Thick-Skinned Tectonics M
    The structure and kinematics of the southeastern Zagros fold-thrust belt, Iran : From thin-skinned to thick-skinned tectonics M. Molinaro, Pascale Leturmy, Jean-Claude Guezou, Dominique Frizon de Lamotte To cite this version: M. Molinaro, Pascale Leturmy, Jean-Claude Guezou, Dominique Frizon de Lamotte. The struc- ture and kinematics of the southeastern Zagros fold-thrust belt, Iran : From thin-skinned to thick- skinned tectonics. Tectonics, American Geophysical Union (AGU), 2005, 24 (3), pp.TC3007. 10.1029/2004TC001633. hal-00022420 HAL Id: hal-00022420 https://hal.archives-ouvertes.fr/hal-00022420 Submitted on 20 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 24, TC3007, doi:10.1029/2004TC001633, 2005 The structure and kinematics of the southeastern Zagros fold- thrust belt, Iran: From thin-skinned to thick-skinned tectonics M. Molinaro, P. Leturmy, J.-C. Guezou, and D. Frizon de Lamotte De´partement des Sciences de la Terre et de l’Environnement, UMR 7072, CNRS, Universite´ de Cergy-Pontoise, Cergy, France S. A. Eshraghi Geological Survey of Iran, Tehran, Iran Received 17 February 2004; revised 14 February 2005; accepted 11 March 2005; published 15 June 2005.
    [Show full text]
  • Controls on Structural Styles and Decoupling in Stratigraphic Sequences
    Manuscript submitted to Journal of Structural Geoloy 1 Controls on structural styles and decoupling in stratigraphic sequences 2 with double décollements during thin-skinned contractional tectonics: 3 insights from numerical modelling 4 Qingfeng Meng*1, David Hodgetts 5 School of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK 6 Abstract 7 Six series of particle-based numerical experiments were performed to simulate thin-skinned 8 contractional tectonics in stratigraphic sequences with double décollements during horizontal 9 shortening. The models were assigned with varying rock competence, depth and thickness of the 10 upper décollement, which resulted in significantly different styles of deformation and decoupling 11 characteristics above and below the upper décollement. The models composed of the least 12 competent material produced distributed sinusoidal detachment folds, with many shallow 13 structures profoundly decoupled from the deep-seated folds. The models composed of a more 14 competent material are dominated by faulted, diapir-cored box folds, with minor disharmonic folds 15 developed in their limbs. Differently, the results of models composed of the most competent 16 material are characterised by localised piggyback thrusts, fault-bend folds and pop-up structures 17 with tensile fractures developed in fold hinges. Depth of the upper décollements also plays an 18 important role in controlling structural decoupling, i.e. the shallower the upper décollements, the 19 higher the degree of decoupling becomes. Thicker upper décollements can provide sufficient 20 mobile materials to fill fold cores, and contribute to the formation of secondary disharmonic folds, 21 helping enhance structural decoupling. Our modelling results are comparable to the structural 1 *Corresponding author.
    [Show full text]
  • Fold-Accommodation Faults
    Fold-accommodation faults AUTHOR Shankar Mitra ϳ School of Geology and Shankar Mitra Geophysics, University of Oklahoma, Norman, Oklahoma, 73019; [email protected] Shankar Mitra holds the Monnett Chair and Professorship of Energy Resources at the ABSTRACT University of Oklahoma. He received his Ph.D. Fold-accommodation faults are secondary faults that accommodate in structural geology from Johns Hopkins strain variations related to structural and stratigraphic position dur- University in 1977. He spent 19 years at ing fold evolution. Four main types of fold-accommodation faults ARCO Research and Exploration as senior and are commonly found. Out-of-syncline and into-anticline thrusts principal research geologist, director of form primarily because of an increase in bed curvature within fold Structural Geology, manager of Geological cores, although differential layer-parallel strain at different scales Research, and senior exploration research also contributes to fault slip. Depending on the kinematic evolution advisor. His primary research interests are in the development of structural concepts and of the major fold, the thrusts may propagate along the steep or methods and their application to exploration gentle limb of an asymmetric fold or along the hinge of symmetric and production problems. He is a recipient of folds. Wedge thrusts are primarily formed in competent units be- AAPG’s Wallace Pratt and Cam Sproule cause of variations in penetrative layer-parallel strain between ad- awards. jacent units. Limb wedges occur as hanging-wall and/or footwall fault-bend and fault-tip folds, whereas hinge wedges occur as mul- tiple nested faults that tend to thicken the more competent units.
    [Show full text]
  • Fold–Thrust Structures – Where Have All the Buckles Gone?
    Downloaded from http://sp.lyellcollection.org/ by guest on September 23, 2021 Fold–thrust structures – where have all the buckles gone? ROBERT W. H. BUTLER*, CLARE E. BOND, MARK A. COOPER & HANNAH WATKINS Fold–thrust Research Group, School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK R.W.H.B., 0000-0002-7732-9686 *Correspondence: [email protected] Abstract: The margins to evolving orogenic belts experience near layer-parallel contraction that can evolve into fold–thrust belts. Developing cross-section-scale understanding of these systems necessitates structural interpretation. However, over the past several decades a false distinction has arisen between some forms of so-called fault-related folding and buckle folding. We investigate the origins of this confusion and seek to develop unified approaches for interpreting fold–thrust belts that incorporate deformation arising both from the amplification of buckling instabilities and from localized shear failures (thrust faults). Discussions are illus- trated using short case studies from the Bolivian Subandean chain (Incahuasi anticline), the Canadian Cordillera (Livingstone anticlinorium) and Subalpine chains of France and Switzerland. Only fault–bend folding is purely fault-related and other forms, such as fault-propagation and detachment folds, all involve components of buck- ling. Better integration of understanding of buckling processes, the geometries and structural evolutions that they generate may help to understand how deformation is distributed within fold–thrust belts. It may also reduce the current biases engendered by adopting a narrow range of idealized geometries when constructing cross-sec- tions and evaluating structural evolution in these systems. A key goal for many studies of continental tectonics the majority of existing approaches to folding and is to relate folds, faults and distributed strain to faulting in compressional regimes.
    [Show full text]
  • The Structural Geometry of Detachment Folds Above a Duplex in the Franklin Mountains, Northeastern Brooks Range, Alaska
    June 7, 1994 Price: $21.40 Division of Geological & Geophysical Surveys PUBLIC-DATA FILE 94-43 THE STRUCTURAL GEOMETRY OF DETACHMENT FOLDS ABOVE A DUPLEX IN THE FRANKLIN MOUNTAINS, NORTHEASTERN BROOKS RANGE, ALASKA Thomas X. Homza Brooks Range Geological Research Group Tectonics and Sedimentation Research Group Department of Geology and Geophysics Geophysical Institute University of Alaska Fairbanks June 1994 THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS. Released by STATE OF ALASKA DEPARTMENTOFNATURALRESOURCES Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645 ABSTRACT Geometric and kinematic analyses conducted in the northeastern Brooks Range constrain the evolution of a detachment folded roof sequence above a regional duplex . At least some of the detachment folds formed by fixed arc- length kinematics above a detachment unit that changed thickness during deformation and served as the roof thrust of the duplex. The horses in the duplex - -- are fault-bend folds with gently dipping limbs and 'sub-horizontal crestal panels and detachment fold-trains occur above bends in the fault-bend folds and are separated by straight panels in the roof sequence. Detachment folds above the gently dipping backlimbs of the horses are north-vergent, whereas those above the forelimbs are both north- and south-vergent. Folds above the crestal panels / are largely symmetric and those above the synform that separates the fault-bend folds are highly north-vergent and truncated by thrust faults. This distribution of detachment fold asymmetries suggests a complex structural history involving both forward and hindward displacements and it suggests a kinematic relationship between the fault-bend folded horses and the detachment folded roof sequence.
    [Show full text]
  • Glossary of Thrust Tectonics Terms
    Glossary of thrust tectonics terms K.R. McClay Department of Geology, Royal Holloway and Bedford New College, University of London, Egham, Surrey, England, TW20 OEX This glossary aims to illustrate, and to define where possible, recognise the difficulty in precisely defining many of the some of the more widely used terms in thrust tectonics. It is terms used in thrust tectonics as individual usages and pref­ presented on a thematic basis - individual thrust faults and erences vary widely. related structures, thrust systems, thrust fault related folds, 3- D thrust geometries, thrust sequences, models of thrust sys­ tems, and thrusts in inversion tectonics. Fundamental terms Thrust faults are defined first, followed by an alphabetical listing of related structures. Where appropriate key references are given. Thrust fault: A contraction fault that shortens a datum surface, usually bedding in upper crustal rocks or a regional Since some of the best studied thrust terranes such as the foliation surface in more highly metamorphosed rocks. Canadian Rocky Mountains, the Appalachians, the Pyrenees, and the Moine thrust zone are relatively high level foreland This section of the glossary defines terms applied to indi­ fold and thrust belts it is inevitable that much of thrust vidual thrust faults (after McClay 1981; Butler 1982; Boyer tectonics terminology is concerned with structures found in & Elliott 1982; Diegel 1986). the external zones of these belts. These thrustbelts character­ istically consist of platform sediments deformed by thrust Backthrust: A thrust fault which has an opposite vergence faults which have a ramp-flat trajectories (Bally et al. 1966; to that of the main thrust system or thrust belt (Fig.
    [Show full text]
  • Evolution of the NW Zagros Fold-And-Thrust Belt in Kurdistan Region of Iraq from Balanced and Restored Crustal-Scale Sections and Forward Modeling T
    Journal of Structural Geology 124 (2019) 51–69 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Evolution of the NW Zagros Fold-and-Thrust Belt in Kurdistan Region of Iraq from balanced and restored crustal-scale sections and forward modeling T ∗ E. Le Garzica, , J. Vergésb, F. Sapinc, E. Saurab,d, F. Meressec, J.C. Ringenbachc a Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, E2S-UPPA, Université de Pau et des Pays de l’Adour, UMR5150, Pau, France b Group of Dynamics of the Lithosphere (GDL), Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, Barcelona, Spain c Total SA, CSTJF, Avenue Larribau, 64000 Pau, France d Lithica SCCL, Santa Coloma de Farners, Spain ARTICLE INFO ABSTRACT Keywords: We present the first regional balanced and restored sections across the northwestern part of the Zagros Fold-and- Zagros Fold-and-Thrust Belt Thrust Belt in Kurdistan Region of Iraq and a 2D kinematic model that illustrates the evolution of the belt since Multi-detachment folding Late Cretaceous time. The balanced cross-section, based on surface and sub-surface data, is characterized by Mechanical stratigraphy multi-detachment folds detached above a Lower Triassic basal ductile level, with intermediate detachment levels Late cretaceous obduction that induced internal complexities like accommodation thrusting and/or disharmonic folding. Our work suggests Thin-skinned versus thick-skinned that the two main structural steps in the detachment level in the High Folded Zone may be related to low-angle thrusts rooted at the brittle/ductile transition. Growth strata of Late Cretaceous and Paleocene times have been recognized for the first time in the Kurdistan Fold-and-Thrust Belt.
    [Show full text]
  • Geometry, Kinematics, and Displacement
    Geometry, kinematics, and AUTHORS Nathan P. Benesh Department of Earth and displacement characteristics of Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138; present tear-fault systems: An example address: ExxonMobil Upstream Research Compa- ny, Houston, Texas; [email protected] from the deep-water Niger Delta Nathan P. Benesh is a research geologist in the Struc- ture and Geomechanics Group at the ExxonMobil Upstream Research Company. He previously re- Nathan P. Benesh, Andreas Plesch, and John H. Shaw ceived his Ph.D. in earth and planetary sciences at Harvard University. His research interests focus on geomechanical modeling and the quantitative evaluation of structures at the trap to regional scale. ABSTRACT Andreas Plesch Department of Earth and We use three-dimensional seismic reflection data and new map- Planetary Sciences, Harvard University, 20 Oxford based structural restoration methods to define the displacement Street, Cambridge, Massachusetts; history and characteristics of a series of tear faults in the deep- [email protected] water Niger Delta. Deformation in the deep-water Niger Delta Andreas Plesch is a senior research associate in the is focused mostly within two fold-and-thrust belts that accom- Structural Geology and Earth Resources Group in modate downdip shortening produced by updip extension on the Earth and Planetary Science Department, Harvard University. He received his Ph.D. from the continental shelf. This shortening is accommodated by a Free University, Berlin, Germany. His research in- series of thrust sheets that are locally cut by strike-slip faults. terests revolve around three-dimensional model- Through seismic mapping and interpretation, we resolve these ing and the analysis of structures on the reservoir strike-slip faults to be tear faults that share a common detach- to mountain belt scale with a focus on quantitative aspects.
    [Show full text]
  • Stratigraphic Controls on Eformation Patterns in Fault-Related Folds: a Detachment Fold Example from the Sierra Madre Oriental, Northeast Mexico
    Journal of Structural Geology 21 (1999) 613±633 Stratigraphic controls on eformation patterns in fault-related folds: a detachment fold example from the Sierra Madre Oriental, northeast Mexico Mark P. Fischer*, Patricia B. Jackson Department of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115-2854, USA Received 1 April 1998; accepted 4 February 1999 Abstract Deformation patterns are described by the style, intensity and distribution of structures throughout a volume of rock. In fault-related folds, presently observed deformation patterns are controlled by structural factors like kinematic history, environmental factors like burial history and stratigraphic factors like layer thickness and competence. To demonstrate the role of stratigraphy in controlling fold-related deformation patterns, we document the stratigraphic variability of mesostructures at one structural position on a map-scale detachment fold. Unique assemblages of faults, fractures and cleavages in certain stratigraphic intervals de®ne a mechanical stratigraphy comprised of several units, each exhibiting a characteristic deformation response to the folding process. The varying response of each mechanical unit suggests that folding mechanisms such as orthogonal ¯exure, ¯exural slip or ¯exural ¯ow, were sequentially or coevally operative in each of the units. Using the simple, theoretical strain distributions associated with each folding mechanism and the fact that each mechanical unit accommodates fold-related strain by developing a characteristic set of mesostructures, we are able to predict general deformation patterns elsewhere in the fold. The signi®cance of this approach is that it recognizes that even in a single structure, fold kinematics and deformation response may be dramatically dierent in various parts of a stratigraphic section.
    [Show full text]
  • Control of 3D Tectonic Inheritance on Fold-And-Thrust Belts
    https://doi.org/10.5194/se-2019-173 Preprint. Discussion started: 2 December 2019 c Author(s) 2019. CC BY 4.0 License. Control of 3D tectonic inheritance on fold-and-thrust belts: insights from 3D numerical models and application to the Helvetic nappe system Richard Spitz1, Arthur Bauville2, Jean-Luc Epard1, Boris J.P. Kaus3, Anton A. Popov3, and Stefan M. Schmalholz1 1Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland 2Department of Mathematical Science and Advanced Technology, Japan Agency for Marin-Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku Yokohama, Japan 3Institute of Geosciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany Correspondence: Richard Spitz ([email protected]) Abstract Fold-and-thrust belts and associated tectonic nappes are common in orogenic regions. They exhibit a wide variety of geometries and often a considerable along-strike variation. However, the mechanics of fold-and-thrust belt formation and the control of the initial geological configuration on this formation are still incompletely understood. Here, we apply three-dimensional (3D) 5 thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin to investigate the control of 3D laterally variable inherited structures on the fold-and-thrust belt evolution and associated nappe formation. We consider tectonic inheritance by applying an initial model configuration with horst and graben structures having laterally variable geometry and with sedimentary layers having different mechanical strength. We use a visco-plastic rheology with temperature dependent flow laws and a Drucker-Prager yield criterion. The models show the folding, detachment and horizontal 10 displacement of sedimentary units, which resemble structures of fold and thrust nappes.
    [Show full text]