The Structural Geometry of Detachment Folds Above a Duplex in the Franklin Mountains, Northeastern Brooks Range, Alaska
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
326-97 Lab Final S.D
Geol 326-97 Name: KEY 5/6/97 Class Ave = 101 / 150 Geol 326-97 Lab Final s.d. = 24 This lab final exam is worth 150 points of your total grade. Each lettered question is worth 15 points. Read through it all first to find out what you need to do. List all of your answers on these pages and attach any constructions, tracing paper overlays, etc. Put your name on all pages. 1. One way to analyze brittle faults is to calculate and plot the infinitesimal shortening and extension directions on a lower hemisphere, stereographic projection. These principal axes lie in the “movement plane”, which contains the pole to the fault plane and the slickensides, and are at 45° to the pole. The following questions apply to a single fault described in part (a), below: (a) A fault has a strike and dip of 250, 57 N and the slickensides have a rake of 63°, measured from the given strike azimuth. Plot the orientations of the fault plane and the slickensides on an equal area projection. (b) Bedding in the vicinity of the fault is oriented 37, 42 E. Assuming that the fault formed when the bedding was horizontal, determine and plot the original geometry of the fault and the slickensides. (c) Determine the original (pre-rotation)orientation of the infinitesimal shortening and extension axes for fault. 2. All of the following questions apply to the map shown on the next page. In all of the rocks with cleavage, you may assume that both cleavage and bedding strike 024°. -
The Confusion Range, West-Central Utah: Fold-Thrust Deformation and a Western Utah Thrust Belt in the Sevier Hinterland
The Confusion Range, west-central Utah: Fold-thrust deformation and a western Utah thrust belt in the Sevier hinterland David C. Greene* Department of Geosciences, Denison University, Granville, Ohio 43023, USA ABSTRACT INTRODUCTION tions together while delineating the lateral and oblique thrust ramps that form a signifi cant The Confusion Range in west-central Utah The Confusion Range is a collection of ridges complicating factor in the structure of the fold- has been considered a broad structural trough and small ranges that together form a low moun- thrust system. Together, these fi ve cross sections or synclinorium with little overall shorten- tain range in western Utah, between the more total almost 300 km in map length. Enlarged ing. However, new structural studies indicate imposing Snake Range on the west and House versions of the cross sections at a scale of that the Confusion Range is more accurately Range on the east (Figs. 1 and 2). The range is 1:50,000, along with a discussion of the petro- characterized as an east-vergent, fold-thrust named for its “rugged isolation and confusing leum potential of the region, may be found in system with ~10 km of horizontal shortening topography” (Van Cott, 1990). The Confusion Greene and Herring (2013). during Late Jurassic to Eocene Cordilleran Range exposes ~5000 m of Ordovician through Similar structural style and fold-thrust struc- contractional deformation. For this study, Triassic strata in what has been considered a tures are continuous southward throughout the four balanced and retrodeformable cross broad structural trough or synclinorium (e.g., length of the originally proposed synclinorium, sections across the Confusion Range and Hose, 1977; Anderson, 1983; Hintze and Davis, forming a fold-thrust belt more than 130 km in adjacent Tule Valley were constructed using 2003; Rowley et al., 2009). -
Geologic Map of the Yellow Pine Quadrangle, Valley County, Idaho
IDAHO GEOLOGICAL SURVEY IDAHOGEOLOGY.ORG DIGITAL WEB MAP 190 MOSCOW AND BOISE STEWART AND OTHERS present in exposures in the southern part of the map. Quartzite is feldspar The Johnson Creek shear zone is a major regional structure (Lund, 2004). To PIONEER GROUP (CH0776) poor. Thickness unknown because of complex internal folding and the the south of the quadrangle it can be traced as a series of faults (Fisher and 19DS16 GEOLOGIC MAP OF THE YELLOW PINE QUADRANGLE, VALLEY COUNTY, IDAHO The Pioneer group is a prospected area located northeast of the mouth of presence of a foliation that may or may not be transposed bedding. Likely others, 1992; Stewart and others, 2018), none of which appear to be as equivalent to the quartzite and schist unit in the Stibnite roof pendant silicified as in the Yellow Pine area. One splay likely connects to the Dead- Riordan Creek. One Defense Minerals Administration (DMA) application Cambrian y CORRELATION OF MAP UNITS and one Defense Minerals Exploration Administration (DMEA) loan appli- t i mapped by Stewart and others (2016). wood fault, which is locally mineralized at and southwest of the Deadwood l i lower cation were made in the 1950s for claims in this area, details of which are b Mine (Kiilsgaard and others, 2006). To the north, north of the Red Mountain a b Zmsm Marble of Moores Station Formation (Neoproterozoic)—Discontinuous lenses available in Frank (2016). Prospects at slightly lower elevation were termed o qtzite David E. Stewart, Reed S. Lewis, Eric D. Stewart, and Zachery M. Lifton stockwork, the fault zone is intruded by voluminous Eocene dikes (Lund, r p of buff to light-gray marble and lesser amounts of millimeter- to the Syringa Group (DMA Docket 1036). -
Along Strike Variability of Thrust-Fault Vergence
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-06-11 Along Strike Variability of Thrust-Fault Vergence Scott Royal Greenhalgh Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Geology Commons BYU ScholarsArchive Citation Greenhalgh, Scott Royal, "Along Strike Variability of Thrust-Fault Vergence" (2014). Theses and Dissertations. 4095. https://scholarsarchive.byu.edu/etd/4095 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Along Strike Variability of Thrust-Fault Vergence Scott R. Greenhalgh A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science John H. McBride, Chair Brooks B. Britt Bart J. Kowallis John M. Bartley Department of Geological Sciences Brigham Young University April 2014 Copyright © 2014 Scott R. Greenhalgh All Rights Reserved ABSTRACT Along Strike Variability of Thrust-Fault Vergence Scott R. Greenhalgh Department of Geological Sciences, BYU Master of Science The kinematic evolution and along-strike variation in contractional deformation in over- thrust belts are poorly understood, especially in three dimensions. The Sevier-age Cordilleran overthrust belt of southwestern Wyoming, with its abundance of subsurface data, provides an ideal laboratory to study how this deformation varies along the strike of the belt. We have per- formed a detailed structural interpretation of dual vergent thrusts based on a 3D seismic survey along the Wyoming salient of the Cordilleran overthrust belt (Big Piney-LaBarge field). -
Folds & Folding
Folds and Folding Earth Structure (2nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm © WW Norton; unless noted otherwise Folds Maryland Appalachians Swiss Alps 9/18/2010 © EarthStructure (2nd ed) 2 Fold Classification fold shape in profile interlimb angle similar/parallel symmetry/vergence fold size amplitude wavelength fold facing upward/downward fold orientation axis/hinge line axial surface fold in 3D cylindrical/non-cylindrical presence of secondary features foliation lineation DePaor, 2002 9/18/2010 © EarthStructure (2nd ed) 3 Fold terminology 9/18/2010 © EarthStructure (2nd ed) 4 Fold facing (a) upward facing antiform or anticline (b) upward facing synform or syncline (c) downward-facing antiform or antiformal syncline (d) downward-facing synform or synformal anticline (e) profile view; (f) map view 9/18/2010 © EarthStructure (2nd ed) 5 Fold Shape parallel fold similar fold ptygmatic folds 9/18/2010 © EarthStructure (2nd ed) 6 Fold shape a. Parallel fold b. Similar fold t is layer-perpendicular thickness; T is axial trace-parallel thickness 9/18/2010 © EarthStructure (2nd ed) 7 Dip isogons In Class 1A (a) the construction of a single dip isogon is shown, which connects the tangents to upper and lower boundary of folded layer with equal angle (α) relative to a reference frame; dip isogons at 10° intervals are shown for each class. Class 1 folds (a– c) have convergent dip isogon patterns; dip isogons in Class 2 folds (d) are parallel; Class 3 folds (e) have divergent dip isogon patterns. In this classification, parallel (b) and similar (d) folds are labeled as Class 1B and Class 2, respectively. -
Structural and Kinematic Analyses of the Basement Window Within the Hinterland Fold-And-Thrust Belt of the Zagros Orogen, Iran
Geol. Mag.: page 1 of 18 c Cambridge University Press 2016 1 doi:10.1017/S0016756816000558 Structural and kinematic analyses of the basement window within the hinterland fold-and-thrust belt of the Zagros orogen, Iran ∗ KHALIL SARKARINEJAD & SOMAYE DERIKVAND Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71454, Iran (Received 1 December 2015; accepted 18 May 2016) Abstract – The Zagros hinterland fold-and-thrust belt is located in the central portion of the Zagros Thrust System and consists of the exhumed basement windows associated with NW-striking and NE-dipping flexural duplex structures that contain in-sequence thrusting and related folds. Mylonitic nappes of the basement were exhumed along deep-seated sole thrusts of the Zagros Thrust System. Lattice preferred orientation (LPO) c-axes of quartz show asymmetric type-1 crossed girdles that demonstrate a non-coaxial deformation under plane strain conditions. Based on the opening angles of quartz c-axis fabric skeletons, deformation temperatures vary from 425 ± 50 °C to 540 ± 50 °C, indicating amphibolite facies conditions. The estimated mean kinematic vorticity evaluated from quartz c-axis of the quartzo-feldspathic mylonites (Wm = 0.55 ± 0.06) indicates the degree of non- coaxiality during mylonite exhumation. The estimated angle θ between the maximum instantaneous strain axis (ISA1) and the transpressional zone boundary is 17°, and the angle of oblique convergence is 57° in the M2 nappe of the basement involved. This indicates that the mylonitic nappe was formed by a combination of 62 % pure shear and 38 % simple shear during oblique convergence. Keywords: transpressional zone, mylonitic nappe, vorticity, quartz c-axis, Zagros orogenic belt. -
The Structure and Kinematics of the Southeastern Zagros Fold-Thrust Belt, Iran : from Thin-Skinned to Thick-Skinned Tectonics M
The structure and kinematics of the southeastern Zagros fold-thrust belt, Iran : From thin-skinned to thick-skinned tectonics M. Molinaro, Pascale Leturmy, Jean-Claude Guezou, Dominique Frizon de Lamotte To cite this version: M. Molinaro, Pascale Leturmy, Jean-Claude Guezou, Dominique Frizon de Lamotte. The struc- ture and kinematics of the southeastern Zagros fold-thrust belt, Iran : From thin-skinned to thick- skinned tectonics. Tectonics, American Geophysical Union (AGU), 2005, 24 (3), pp.TC3007. 10.1029/2004TC001633. hal-00022420 HAL Id: hal-00022420 https://hal.archives-ouvertes.fr/hal-00022420 Submitted on 20 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 24, TC3007, doi:10.1029/2004TC001633, 2005 The structure and kinematics of the southeastern Zagros fold- thrust belt, Iran: From thin-skinned to thick-skinned tectonics M. Molinaro, P. Leturmy, J.-C. Guezou, and D. Frizon de Lamotte De´partement des Sciences de la Terre et de l’Environnement, UMR 7072, CNRS, Universite´ de Cergy-Pontoise, Cergy, France S. A. Eshraghi Geological Survey of Iran, Tehran, Iran Received 17 February 2004; revised 14 February 2005; accepted 11 March 2005; published 15 June 2005. -
Anticline and Adjacent Areas Grand County, Utah
Please do not destroy or throw away this publication. If you have no further use for it write to the Geological Survey at Washington and ask for a frank to return it UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL, SURVEY W. C. Mendenhall, Director Bulletin 863 GEOLOGY OF THE SALT VALLEY ANTICLINE AND ADJACENT AREAS GRAND COUNTY, UTAH BY C. H. DANE UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1935 For sale by the Superintendent of Documents, Washington, D. C. - - Price $1.00 (Paper cover) CONTENTS Abstract.____________________________________________________ 1 .Introduction____________________________________________ 2 Purpose and scope of the work_____________________________ 2 Field work.____________________________________________________ 4 Acknowledgments....-___--____-___-_--_-______.__________ 5 Topography, drainage, and water supply. ______ 5 Climate_._.__..-.-_--_-______- _ ____ 11 Vegetation. ____________________________ 14 Fuel.._____________________________________ 15 Population, accessibility, routes of travel___--______..________ 15 Previous publications......--.-.-.---.-...__---_-__-___._______ 17 Stratigraphy __ ____.____-__-_---_--____---______--___________.__ 18 Pre-Cambrian complex___---_-_-_-_-_-_-_--__ __--______ 20 Carboniferous system..______--__--_____-_-_-_-_-___-___.______ 24 Pennsylvanian (?) series.__________________________________ 24 Unnamed conglomerate--_______-._____________________ 24 Pennsylvanian series..--____-_-_-_-_-_-______--___.________ 25 Paradox formation.____-_-___---__-_____-__-__-__..__. -
Evolution of the Guerrero Composite Terrane Along the Mexican Margin, from Extensional Fringing Arc to Contractional Continental Arc
Evolution of the Guerrero composite terrane along the Mexican margin, from extensional fringing arc to contractional continental arc Elena Centeno-García1,†, Cathy Busby2, Michael Busby2, and George Gehrels3 1Instituto de Geología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, México D.F. 04510, México 2Department of Geological Sciences, University of California, Santa Barbara, California 93106-9630, USA 3Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA ABSTRACT semblage shows a Callovian–Tithonian (ca. accreted to the edge of the continent during 163–145 Ma) peak in magmatism; extensional contractional or oblique contractional phases The western margin of Mexico is ideally unroofing began in this time frame and con- of subduction. This process can contribute sub- suited for testing two opposing models for tinued into through the next. (3) The Early stantially to the growth of a continent (Collins, the growth of continents along convergent Cretaceous extensional arc assemblage has 2002; Busby, 2004; Centeno-García et al., 2008; margins: accretion of exotic island arcs by two magmatic peaks: one in the Barremian– Collins, 2009). In some cases, renewed upper- the consumption of entire ocean basins ver- Aptian (ca. 129–123 Ma), and the other in the plate extension or oblique extension rifts or sus accretion of fringing terranes produced Albian (ca. 109 Ma). In some localities, rapid slivers these terranes off the continental margin by protracted extensional processes in the subsidence produced thick, mainly shallow- once more, in a kind of “accordion” tectonics upper plate of a single subduction zone. We marine volcano-sedimentary sections, while along the continental margin, referred to by present geologic and detrital zircon evidence at other localities, extensional unroofing of Collins (2002) as tectonic switching. -
Thick-Skinned, South-Verging Backthrusting in the Felch and Calumet Troughs Area of the Penokean Orogen, Northern Michigan
Thick-Skinned, South-Verging Backthrusting in the Felch and Calumet Troughs Area of the Penokean Orogen, Northern Michigan U.S. GEOLOGICAL SURVEY BULLETIN 1904-L AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions or. ordering publications of the U.S. Geological Survey, along with the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the USGS ESIC-Open-File Report Sales, Box 25286, Building 810, Denver Federal Center, Denver, CO 80225 Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications counter at the following U.S. Geological Survey offices, all of of general interest (such as leaflets, pamphlets, booklets), single which are authorized agents of the Superintendent of Documents. copies of periodicals (Earthquakes & Volcanoes, Preliminary De termination of Epicenters), and some miscellaneous reports, includ ANCHORAGE, Alaska-4230 University Dr., Rm. -
Controls on Structural Styles and Decoupling in Stratigraphic Sequences
Manuscript submitted to Journal of Structural Geoloy 1 Controls on structural styles and decoupling in stratigraphic sequences 2 with double décollements during thin-skinned contractional tectonics: 3 insights from numerical modelling 4 Qingfeng Meng*1, David Hodgetts 5 School of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK 6 Abstract 7 Six series of particle-based numerical experiments were performed to simulate thin-skinned 8 contractional tectonics in stratigraphic sequences with double décollements during horizontal 9 shortening. The models were assigned with varying rock competence, depth and thickness of the 10 upper décollement, which resulted in significantly different styles of deformation and decoupling 11 characteristics above and below the upper décollement. The models composed of the least 12 competent material produced distributed sinusoidal detachment folds, with many shallow 13 structures profoundly decoupled from the deep-seated folds. The models composed of a more 14 competent material are dominated by faulted, diapir-cored box folds, with minor disharmonic folds 15 developed in their limbs. Differently, the results of models composed of the most competent 16 material are characterised by localised piggyback thrusts, fault-bend folds and pop-up structures 17 with tensile fractures developed in fold hinges. Depth of the upper décollements also plays an 18 important role in controlling structural decoupling, i.e. the shallower the upper décollements, the 19 higher the degree of decoupling becomes. Thicker upper décollements can provide sufficient 20 mobile materials to fill fold cores, and contribute to the formation of secondary disharmonic folds, 21 helping enhance structural decoupling. Our modelling results are comparable to the structural 1 *Corresponding author. -
Fold-Accommodation Faults
Fold-accommodation faults AUTHOR Shankar Mitra ϳ School of Geology and Shankar Mitra Geophysics, University of Oklahoma, Norman, Oklahoma, 73019; [email protected] Shankar Mitra holds the Monnett Chair and Professorship of Energy Resources at the ABSTRACT University of Oklahoma. He received his Ph.D. Fold-accommodation faults are secondary faults that accommodate in structural geology from Johns Hopkins strain variations related to structural and stratigraphic position dur- University in 1977. He spent 19 years at ing fold evolution. Four main types of fold-accommodation faults ARCO Research and Exploration as senior and are commonly found. Out-of-syncline and into-anticline thrusts principal research geologist, director of form primarily because of an increase in bed curvature within fold Structural Geology, manager of Geological cores, although differential layer-parallel strain at different scales Research, and senior exploration research also contributes to fault slip. Depending on the kinematic evolution advisor. His primary research interests are in the development of structural concepts and of the major fold, the thrusts may propagate along the steep or methods and their application to exploration gentle limb of an asymmetric fold or along the hinge of symmetric and production problems. He is a recipient of folds. Wedge thrusts are primarily formed in competent units be- AAPG’s Wallace Pratt and Cam Sproule cause of variations in penetrative layer-parallel strain between ad- awards. jacent units. Limb wedges occur as hanging-wall and/or footwall fault-bend and fault-tip folds, whereas hinge wedges occur as mul- tiple nested faults that tend to thicken the more competent units.