Structural Styles in the Deep-Water Fold and Thrust Belts of the Niger Delta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environmental and Social Impact Assessment
Final Environmental and Social Impact Assessment Report for the Proposed 100MW Solar Independent Power Plant and 18 KM Transmission Line Project, Ganjuwa Local Government Area, Bauchi State by Nigerian Solar Capital Partners/Globeleq/ARM- Harith June 2017 100 MW Independent Solar Power Plant, Bauchi State Environmental and Social Impact Assessment Table of Contents List of Tables iii List of Figures iv List of Acronyms and Abbreviations v List of ESIA Preparers viii Executive Summary ix Chapter One: Introduction 1.1 Background 1-1 1.2 Overview 1-2 1.3 Project Scope 1-2 1.4 Project Location 1-3 1.5 Study Objectives and Terms of Reference 1-6 1.6 Report Structure 1-6 Chapter Two: Policy, Legal and Administrative Framework 2.1 Applicable National Policies 2-8 2.2 Applicable National Regulations 2-10 2.3 Institutional Framework 2-14 2.4 Applicable International Agreements and Policies 2-19 2.5 Permit Requirements 2-21 Chapter Three: Project Description 3.1 Project Overview 3-23 3.2 Project Requirements 3-23 3.3 Project Components 3-24 3.4 Operation and Maintenance 3-34 3.5 Project Activities 3-35 3.5.1 Construction 3-35 3.6 Implementation Schedule 3-35 Chapter Four: Description of the Project Environment 4.1 General 4-38 4.2 Study Area and Location 4-38 4.2.1 Reconnaissance Field Visit 4-38 4.2.2 Baseline Data Acquisition 4-38 4.2.3 Sampling Design 4-45 4.2.4 Field Sampling Methods 4-45 4.2.5 Laboratory Methods 4-47 4.3 Bio-Physical Environmental Baseline Condition 4-47 4.3.1 Climate and Meteorology 4-47 4.3.2 Ambient Air Quality 4-52 4.3.2.1 -
Linking Megathrust Earthquakes to Brittle Deformation in a Fossil Accretionary Complex
ARTICLE Received 9 Dec 2014 | Accepted 13 May 2015 | Published 24 Jun 2015 DOI: 10.1038/ncomms8504 OPEN Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex Armin Dielforder1, Hauke Vollstaedt1,2, Torsten Vennemann3, Alfons Berger1 & Marco Herwegh1 Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. 1 Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 þ 3, Bern CH-3012, Switzerland. 2 Center for Space and Habitability, University of Bern, Sidlerstrasse 5, Bern CH-3012, Switzerland. 3 Institute of Earth Surface Dynamics, University of Lausanne, Geˆopolis 4634, Lausanne CH-1015, Switzerland. Correspondence and requests for materials should be addressed to A.D. (email: [email protected]). NATURE COMMUNICATIONS | 6:7504 | DOI: 10.1038/ncomms8504 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. -
Tectonic Imbrication and Foredeep Development in the Penokean
Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in Books of the U.S. -
Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping. -
Nigeria Last Updated: May 6, 2016
Country Analysis Brief: Nigeria Last Updated: May 6, 2016 Overview Nigeria is currently the largest oil producer in Africa and was the world's fourth-largest exporter of LNG in 2015. Nigeria’s oil production is hampered by instability and supply disruptions, while its natural gas sector is restricted by the lack of infrastructure to commercialize natural gas that is currently flared (burned off). Nigeria is the largest oil producer in Africa, holds the largest natural gas reserves on the continent, and was the world’s fourth-largest exporter of liquefied natural gas (LNG) in 2015.1 Nigeria became a member of the Organization of the Petroleum Exporting Countries (OPEC) in 1971, more than a decade after oil production began in the oil-rich Bayelsa State in the 1950s.2 Although Nigeria is the leading oil producer in Africa, production is affected by sporadic supply disruptions, which have resulted in unplanned outages of up to 500,000 barrels per day (b/d). Figure 1: Map of Nigeria Source: U.S. Department of State 1 Nigeria’s oil and natural gas industry is primarily located in the southern Niger Delta area, where it has been a source of conflict. Local groups seeking a share of the wealth often attack the oil infrastructure, forcing companies to declare force majeure on oil shipments (a legal clause that allows a party to not satisfy contractual agreements because of circumstances beyond their control). At the same time, oil theft leads to pipeline damage that is often severe, causing loss of production, pollution, and forcing companies to shut in production. -
GEO 2008 Conference Abstracts, Bahrain GEO 2008 Conference Abstracts
GEO 2008 conference abstracts, Bahrain GEO 2008 Conference Abstracts he abstracts of the GEO 2008 Conference presentations (3-5 March 2008, Bahrain) are published in Talphabetical order based on the last name of the first author. Only those abstracts that were accepted by the GEO 2008 Program Committee are published here, and were subsequently edited by GeoArabia Editors and proof-read by the corresponding author. Several names of companies and institutions to which presenters are affiliated have been abbreviated (see page 262). For convenience, all subsidiary companies are listed as the parent company. (#117804) Sandstone-body geometry, facies existing data sets and improve exploration decision architecture and depositional model of making. The results of a recent 3-D seismic reprocessing Ordovician Barik Sandstone, Oman effort over approximately 1,800 square km of data from the Mediterranean Sea has brought renewed interest in Iftikhar A. Abbasi (Sultan Qaboos University, Oman) deep, pre-Messinian structures. Historically, the reservoir and Abdulrahman Al-Harthy (Sultan Qaboos targets in the southern Mediterranean Sea have been the University, Oman <[email protected]>) Pliocene-Pleistocene and Messinian/Pre-Messinian gas sands. These are readily identifiable as anomalousbright The Lower Paleozoic siliciclastics sediments of the amplitudes on the seismic data. The key to enhancing the Haima Supergroup in the Al-Haushi-Huqf area of cen- deeper structure is multiple and noise attenuation. The tral Oman are subdivided into a number of formations Miocene and older targets are overlain by a Messinian- and members based on lithological characteristics of aged, structurally complex anhydrite layer, the Rosetta various rock sequences. -
Chapter 1 -- the Place of Faults in Petroleum Traps
Sorkhabi, R.,and Y. Tsuji, 2005, The place of faults in petroleum traps, in R. Sorkhabi and Y. Tsuji, eds., Faults, fluid flow, and petroleum traps: AAPG Memoir 85, 1 p. 1 – 31. The Place of Faults in Petroleum Traps Rasoul Sorkhabi1 Technology Research Center, Japan National Oil Corporation, Chiba, Japan Yoshihiro Tsuji2 Technology Research Center, Japan National Oil Corporation, Chiba, Japan ‘‘The incompleteness of available data in most geological studies traps some geologists.’’ Orlo E. Childs in Place of tectonic concepts in geological thinking (AAPG Memoir 2, 1963, p. 1) ‘‘Although the precise role of faults has never been systematically defined, much has been written that touches on the subject. One thing is certain: we need not try to avoid them.’’ Frederick G. Clapp in The role of geologic structure in the accu mulation of petroleum (Structure of typical American oil fields II, 1929, p. 686) ABSTRACT ver since Frederick Clapp included fault structures as significant petroleum traps in his landmark paper in 1910, the myriad function of faults in petroleum E migration and accumulation in sedimentary basins has drawn increasing atten- tion. Fault analyses in petroleum traps have grown along two distinct and successive lines of thought: (1) fault closures and (2) fault-rock seals. Through most of the last century, geometric closure of fault traps and reservoir seal juxtaposition by faults were the focus of research and industrial application. These research and applications were made as structural geology developed quantitative methods for geometric and kine- matic analyses of sedimentary basins, and plate tectonics offered a unified tool to correlate faults and basins on the basis of the nature of plate boundaries to produce stress. -
Tectonics of the Musandam Peninsula and Northern Oman Mountains: from Ophiolite Obduction to Continental Collision
GeoArabia, 2014, v. 19, no. 2, p. 135-174 Gulf PetroLink, Bahrain Tectonics of the Musandam Peninsula and northern Oman Mountains: From ophiolite obduction to continental collision Michael P. Searle, Alan G. Cherry, Mohammed Y. Ali and David J.W. Cooper ABSTRACT The tectonics of the Musandam Peninsula in northern Oman shows a transition between the Late Cretaceous ophiolite emplacement related tectonics recorded along the Oman Mountains and Dibba Zone to the SE and the Late Cenozoic continent-continent collision tectonics along the Zagros Mountains in Iran to the northwest. Three stages in the continental collision process have been recognized. Stage one involves the emplacement of the Semail Ophiolite from NE to SW onto the Mid-Permian–Mesozoic passive continental margin of Arabia. The Semail Ophiolite shows a lower ocean ridge axis suite of gabbros, tonalites, trondhjemites and lavas (Geotimes V1 unit) dated by U-Pb zircon between 96.4–95.4 Ma overlain by a post-ridge suite including island-arc related volcanics including boninites formed between 95.4–94.7 Ma (Lasail, V2 unit). The ophiolite obduction process began at 96 Ma with subduction of Triassic–Jurassic oceanic crust to depths of > 40 km to form the amphibolite/granulite facies metamorphic sole along an ENE- dipping subduction zone. U-Pb ages of partial melts in the sole amphibolites (95.6– 94.5 Ma) overlap precisely in age with the ophiolite crustal sequence, implying that subduction was occurring at the same time as the ophiolite was forming. The ophiolite, together with the underlying Haybi and Hawasina thrust sheets, were thrust southwest on top of the Permian–Mesozoic shelf carbonate sequence during the Late Cenomanian–Campanian. -
The Confusion Range, West-Central Utah: Fold-Thrust Deformation and a Western Utah Thrust Belt in the Sevier Hinterland
The Confusion Range, west-central Utah: Fold-thrust deformation and a western Utah thrust belt in the Sevier hinterland David C. Greene* Department of Geosciences, Denison University, Granville, Ohio 43023, USA ABSTRACT INTRODUCTION tions together while delineating the lateral and oblique thrust ramps that form a signifi cant The Confusion Range in west-central Utah The Confusion Range is a collection of ridges complicating factor in the structure of the fold- has been considered a broad structural trough and small ranges that together form a low moun- thrust system. Together, these fi ve cross sections or synclinorium with little overall shorten- tain range in western Utah, between the more total almost 300 km in map length. Enlarged ing. However, new structural studies indicate imposing Snake Range on the west and House versions of the cross sections at a scale of that the Confusion Range is more accurately Range on the east (Figs. 1 and 2). The range is 1:50,000, along with a discussion of the petro- characterized as an east-vergent, fold-thrust named for its “rugged isolation and confusing leum potential of the region, may be found in system with ~10 km of horizontal shortening topography” (Van Cott, 1990). The Confusion Greene and Herring (2013). during Late Jurassic to Eocene Cordilleran Range exposes ~5000 m of Ordovician through Similar structural style and fold-thrust struc- contractional deformation. For this study, Triassic strata in what has been considered a tures are continuous southward throughout the four balanced and retrodeformable cross broad structural trough or synclinorium (e.g., length of the originally proposed synclinorium, sections across the Confusion Range and Hose, 1977; Anderson, 1983; Hintze and Davis, forming a fold-thrust belt more than 130 km in adjacent Tule Valley were constructed using 2003; Rowley et al., 2009). -
The Aim of the Project Is to Carry out Integrated Studies of the Anambra
Preliminary Integrated Hydrocarbon Prospectivity Evaluation of the Bida Basin in North Central Nigeria By N. G. Obaje1, D. O. Balogu1, A. Idris-Nda2, I. A. Goro2, S. I. Ibrahim1, M. K. Musa1, S. H. Dantata2, I. Yusuf1, N. Mamud-Dadi1, I. A. Kolo1+ Abstract The Bida Basin is a NW-SE trending intracratonic structure extending from slightly south of Kontagora in Niger State in the north to the area slightly beyond Lokoja (Kogi State) in the south. All geological maps available on the Bida Basin had lumped the sediments in the basin as one undifferentiated Nupe Sandstone, making it impossible to infer the prospectivity of the basin for hydrocarbon exploration. The delineation of inferred boundaries between the formations in the basin is a significant initial criterion in evaluating the hydrocarbon prospectivity. The formations deposited in the Bida Basin comprise the Bida Sandstone at the base, followed successively upward by the Sakpe, Enagi and Batati Formations in the Northern/Central Bida Basin while the Lokoja, Patti and Agbaja Formations constitute lateral equivalents in the Southern Bida Basin. An institutional research project of the Ibrahim Badamasi Babangida University Lapai (IBBUL), supported by the Niger State Government, has carried out preliminary geological mapping and completed a prospectivity map for the Bida Basin. Geochemical analysis of samples from drilled shallow wells (at Agaie and Kudu) and outcrops was also undertaken along with interpretation of geophysical aeromagnetic data. From the preliminary geological map prepared, prospective areas, ranked as Less Prospective, Prospective and More Prospective are discernable. Geochemical data show that mainly gas and some oil would have been generated within the Prospective and More Prospective sections in the basin. -
Africa's Oil & Gas Scene After the Boom
January 2019: ISSUE 117 Africa’s oil and gas scene has This issue of the Oxford Energy Forum AFRICA'S OIL & GAS undergone dramatic changes over explores the aftermath of Africa’s SCENE AFTER THE BOOM: the past two decades. In 2000, the energy boom. It draws on contributors continent was producing nearly 8 from industry, academia, and civil WHAT LIES AHEAD million barrels per day (b/d). A society to offer multiple views of the decade later, largely on the back of opportunities and challenges that lie new production from Angola and ahead for oil and gas development on Contents Sudan, output rose to above 10 the African continent. The issue Introduction 1 million b/d. This came at the same examines continuities and changes in Luke Patey & Ricardo Soares de Oliveira time as a sharp rise in global oil the African energy landscape since oil Prospects for African oil 4 prices, generating enormous prices fell from record highs after 2014. James McCullagh and Virendra Chauhan revenues for African oil producers It focuses on the politics and The political economy of decline in Nigeria and Angola 6 and setting off exploration activities economics of seasoned producers in Ricardo Soares de Oliveira in largely unexplored regions. As sub-Saharan Africa and the birth of new Angola after Dos Santos 8 prices rose to over $100 per barrel oil and gas producers and up-and- Lucy Corkin on average from 2010 to 2014, comers, and shows that while old Nigeria’s oil reforms in limbo 10 Africa enjoyed an unprecedented oil political and security challenges persist, Eklavya Gupte boom. -
Development of the Rocky Mountain Foreland Basin: Combined Structural
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2007 DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA Emily Geraghty Ward The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Ward, Emily Geraghty, "DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA" (2007). Graduate Student Theses, Dissertations, & Professional Papers. 1234. https://scholarworks.umt.edu/etd/1234 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA By Emily M. Geraghty Ward B.A., Whitman College, Walla Walla, WA, 1999 M.S., Washington State University, Pullman, WA, 2002 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology The University of Montana Missoula, MT Spring 2007 Approved by: Dr. David A. Strobel, Dean Graduate School James W. Sears, Chair Department of Geosciences Julia A. Baldwin Department of Geosciences Marc S. Hendrix Department of Geosciences Steven D.