Uric Acid Level As a Risk Factor for Cardiovascular and All-Cause Mortality in Middle-Aged Men a Prospective Cohort Study

Total Page:16

File Type:pdf, Size:1020Kb

Uric Acid Level As a Risk Factor for Cardiovascular and All-Cause Mortality in Middle-Aged Men a Prospective Cohort Study ORIGINAL INVESTIGATION Uric Acid Level as a Risk Factor for Cardiovascular and All-Cause Mortality in Middle-aged Men A Prospective Cohort Study Leo K. Niskanen, MD, PhD; David E. Laaksonen, MD, PhD, MPH; Kristiina Nyysso¨nen, PhD; Georg Alfthan, PhD; Hanna-Maaria Lakka, MD, PhD; Timo A. Lakka, MD, PhD; Jukka T. Salonen, MD, PhD Background: Despite abundant epidemiologic evi- gout increased the relative risk to 3.73. Further adjust- dence, the role of elevated serum uric acid level as a car- ment for factors related to the metabolic syndrome strength- diovascular risk factor is controversial. We assessed the ened the risk to 4.77. Excluding the 53 men using diuret- predictive value of serum uric acid levels for cardiovas- ics did not alter the results. In age-adjusted analyses, men cular and overall mortality. with serum uric acid levels in the upper third were 1.7- fold more likely to die of any cause than men with levels Methods: A population-based prospective cohort study in the lower third. Adjustment for further risk factors was performed of 1423 middle-aged Finnish men ini- strengthened the association somewhat. tially without cardiovascular disease, cancer, or diabe- tes. The main outcome measure was death from cardio- Conclusions: Serum uric acid levels are a strong pre- vascular disease and any cause. dictor of cardiovascular disease mortality in healthy middle-aged men, independent of variables commonly Results: The mean follow-up was 11.9 years. There were associated with gout or the metabolic syndrome. Serum 157 deaths during follow-up, of which 55 were cardio- uric acid measurement is an easily available and inex- vascular. In age-adjusted analyses, serum uric acid levels pensive risk marker, but whether its relationship to car- in the upper third were associated with a greater than 2.5- diovascular events is circumstantial or causal remains to fold higher risk of death from cardiovascular disease than be answered. levels in the lower third. Taking into account cardiovas- cular risk factors and variables commonly associated with Arch Intern Med. 2004;164:1546-1551 HE ROLE OF URIC ACID AS AN and reduced insulin sensitivity,15-19 all of From the Department of independent marker of car- which are components of the metabolic or 20 Medicine, Kuopio University diovascular risk has been insulin resistance syndrome. Moreover, Hospital, Kuopio, Finland controversial for decades. there are other features of atherosclero- (Drs Niskanen and Laaksonen); At physiologic pH values, sis, such as inflammation,21 oxidative Research Institute of Public Tserum monoanionic uric acid is the ma- stress,22 and endothelial dysfunction,23 that Health, Kuopio (Drs Nyysso¨nen jor product of purine metabolism in hu- have also been associated with increased and Salonen); Biomarker mans and higher primates and is formed serum uric acid levels. Furthermore, clini- Laboratory, Department of from xanthine, a reaction catalyzed by xan- cal ischemic heart,24 cerebrovascular,25 and Health and Functional thine dehydrogenase/oxidase.1,2 Several even mild renal26 disease are all associ- Capacity, National Public Health Institute, Helsinki, epidemiologic studies have shown el- ated with increased uric acid levels. Finland (Dr Alfthan); evated uric acid levels to predict in- Recently, the massive 16.4-year fol- 3-12 Pennington Biomedical creased risk of cardiovascular events, al- low-up of the National Health and Nutri- Research Center, Louisiana though lack of an independent relationship tion Examination Survey I (NHANES I),11 State University, Baton Rouge has also been found.3,10 consisting of 5926 subjects, has convinc- (Drs H.-M. Lakka and It is conceivable that the interpreta- ingly established the role of serum uric acid T. A. Lakka); Department of tion of the “independent” role of uric acid as an independent predictor of cardiovas- Public Health and General is further complicated by the use of di- cular mortality in subjects older than 45 Practice, University of Kuopio uretics and by the very close correlation years regardless of sex, menopausal sta- (Drs H.-M. Lakka and Salonen); and Inner Savo of uric acid levels with established cardio- tus, diuretic use, presence of cardiovas- Health Center, Suonenjoki, vascular risk factors such as hyperten- cular disease (CVD), or race. However, 13,14 Finland (Dr Salonen). The sion, obesity, low levels of high- NHANES I did not adjust for the essen- authors have no relevant density lipoprotein cholesterol, tial components of the metabolic syn- financial interest in this article. hypertriglyceridemia, hyperinsulinemia, drome, like waist circumference and lev- (REPRINTED) ARCH INTERN MED/ VOL 164, JULY 26, 2004 WWW.ARCHINTERNMED.COM 1546 ©2004 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 els of glucose, insulin, high-density lipoprotein ASCERTAINMENT OF cholesterol, and triglycerides. Furthermore, the base- ALL-CAUSE AND CVD DEATHS line serum creatinine level was unknown in 60% of the participants. Deaths were ascertained by computer linkage to the national death As determination of serum uric acid is widely avail- registry by means of the Finnish social security number. There were no losses to follow-up. All deaths that occurred between able and inexpensive, a better understanding of its role study entry (from March 1, 1984, to December 31, 1989) and as a risk factor is certainly warranted. Therefore, we stud- December 31, 1998, were included. Deaths coded with the In- ied the predictive role of uric acid levels in a population- ternational Classification of Diseases, Ninth Revision, codes 390 based sample of 1423 healthy (free of CVD, diabetes, or to 459 were considered CVD deaths. Death codes as coronary cancer) middle-aged men with respect to 12-year car- heart disease (CHD) (410-414) or stroke (430-436) were all vali- diovascular and total mortality. dated according to the international criteria adopted by the World Health Organization MONICA (Monitoring of Trends and De- 38-40 METHODS terminants of Cardiovascular Disease) Project. The prov- ince of Kuopio participated in the multinational MONICA project 39 The Kuopio Ischaemic Heart Disease Risk Factor Study is a pro- between 1982 and 1992, during which CHD deaths were de- 40 spective population-based study.27 The study population com- termined by the FINMONICA coronary registry group. Data prised a random age-stratified sample of 2682 men living in east- on fatal acute coronary events between January 1, 1993, and De- ern Finland who were 42, 48, 54, or 60 years old at baseline cember 31, 1998, were obtained by computer linkage to the na- between 1984 and 1989. The University of Kuopio Research tional computerized hospital discharge registry. Diagnostic in- Ethics Committee approved the study. All subjects gave their formation was collected from hospitals and classified by one 41 written informed consent. internist (T.A.L.) using identical diagnostic criteria. For the present study, 1123 men with a history of CVD (excluding hypertension), cancer, or diabetes mellitus at base- STATISTICAL ANALYSIS line were excluded. Men with missing measurements of se- rum uric acid were also excluded (n=136), leaving 1423 men The associations of clinical, biochemical, anthropometric, and for the analyses. lifestyle variables with cardiovascular and all-cause mortality Body mass index was computed as weight in kilograms were assessed with univariate Cox proportional hazards mod- divided by the square of height in meters. Blood pressure was els. Associations of serum uric acid levels categorized into thirds measured with a random-zero mercury sphygmomanometer with cardiovascular and overall mortality were also analyzed (Hawksley & Sons Ltd, Lancing, England). Waist circumfer- with forced Cox proportional hazards models, with adjust- ence was calculated as the average of one measurement taken ment for age (model 1); adjusted for age, examination year, after inspiration and one taken after expiration at the level of smoking (cigarettes per day), low-density lipoprotein choles- middistance between the bottom of the rib cage and the top of terol level, family history of CHD, systolic blood pressure, use ␤ the iliac crest. The protocol for blood pressure measurement of diuretics, use of -blockers, use of other blood pressure medi- included, after supine rest of 5 minutes, 3 measurements while cations, body mass index, alcohol intake, serum creatinine level, supine, 1 while standing, and 2 while sitting at 5-minute in- and adult socioeconomic class (model 2); and fasting serum tervals. The mean of all 6 measurements was used as the sys- insulin, triglyceride, and high-density lipoprotein cholesterol tolic and diastolic blood pressure. Hypertension was defined concentrations, fasting blood glucose levels, conditioning ex- as blood pressure of 140/90 or greater, or use of blood pres- ercise (kilocalories per day), and cardiorespiratory fitness in sure medication.28-30 addition to the covariates in model 2 (model 3). Triglyceride Subjects were asked to fast and refrain from smoking for and insulin concentrations and alcohol intake were corrected 12 hours and to avoid alcohol intake for 3 days before blood sam- for skewing by means of log transformation but are presented pling. Blood glucose was measured at baseline by means of a glu- with untransformed values. Significance was considered to be Ͻ cose dehydrogenase method after precipitation of proteins by tri- P .05. All statistical analyses were performed with SPSS 11.0 chloroacetic acid. Diabetes was defined as a fasting blood glucose for Windows (SPSS Inc, Chicago, Ill). level of 110 mg/dL (6.1 mmol/L) or greater, or a clinical diag- 31,32 nosis of diabetes with dietary, oral, or insulin treatment. RESULTS The serum samples for insulin determination were stored at −80°C. Serum insulin level was determined with a radioim- The mean follow-up was 11.9 years (range of follow-up munoassay kit (Novo Nordisk; Novo Biolabs, Bagsvaerd, for survivors from baseline to the end of follow-up, 9.1- Denmark).
Recommended publications
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Pro-Aging Effects of Xanthine Oxidoreductase Products
    antioxidants Review Pro-Aging Effects of Xanthine Oxidoreductase Products , , Maria Giulia Battelli y , Massimo Bortolotti y , Andrea Bolognesi * z and Letizia Polito * z Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy; [email protected] (M.G.B.); [email protected] (M.B.) * Correspondence: [email protected] (A.B.); [email protected] (L.P.); Tel.: +39-051-20-9-4707 (A.B.); +39-051-20-9-4729 (L.P.) These authors contributed equally. y Co-last authors. z Received: 22 July 2020; Accepted: 4 September 2020; Published: 8 September 2020 Abstract: The senescence process is the result of a series of factors that start from the genetic constitution interacting with epigenetic modifications induced by endogenous and environmental causes and that lead to a progressive deterioration at the cellular and functional levels. One of the main causes of aging is oxidative stress deriving from the imbalance between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their scavenging through antioxidants. Xanthine oxidoreductase (XOR) activities produce uric acid, as well as reactive oxygen and nitrogen species, which all may be relevant to such equilibrium. This review analyzes XOR activity through in vitro experiments, animal studies and clinical reports, which highlight the pro-aging effects of XOR products. However, XOR activity contributes to a regular level of ROS and RNS, which appears essential for the proper functioning of many physiological pathways. This discourages the use of therapies with XOR inhibitors, unless symptomatic hyperuricemia is present.
    [Show full text]
  • Thermostable and Long-Circulating Albumin-Conjugated Arthrobacter Globiformis Urate Oxidase
    pharmaceutics Article Thermostable and Long-Circulating Albumin-Conjugated Arthrobacter globiformis Urate Oxidase Byungseop Yang and Inchan Kwon * School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-62-715-2312 Abstract: Urate oxidase derived from Aspergillus flavus has been investigated as a treatment for tumor lysis syndrome, hyperuricemia, and gout. However, its long-term use is limited owing to potential immunogenicity, low thermostability, and short circulation time in vivo. Recently, urate oxidase isolated from Arthrobacter globiformis (AgUox) has been reported to be thermostable and less immunogenic than the Aspergillus-derived urate oxidase. Conjugation of human serum albumin (HSA) to therapeutic proteins has become a promising strategy to prolong circulation time in vivo. To develop a thermostable and long-circulating urate oxidase, we investigated the site-specific conjugation of HSA to AgUox based on site-specific incorporation of a clickable non-natural amino acid (frTet) and an inverse electron demand Diels–Alder reaction. We selected 14 sites for frTet incorporation using the ROSETTA design, a computational stability prediction program, among which AgUox containing frTet at position 196 (Ag12) exhibited enzymatic activity and thermostability comparable to those of wild-type AgUox. Furthermore, Ag12 exhibited a high HSA conjugation yield without compromising the enzymatic activity, generating well-defined HSA-conjugated AgUox (Ag12-HSA). In mice, the serum half-life of Ag12-HSA was approximately 29 h, which was roughly Citation: Yang, B.; Kwon, I. 17-fold longer than that of wild-type AgUox. Altogether, this novel formulated AgUox may hold Thermostable and Long-Circulating enhanced therapeutic efficacy for several diseases.
    [Show full text]
  • Alternative Pathways of Glucose Metabolism II. Nucleotides from The
    Alternative Pathways of Glucose Metabolism II . Nucleotides from the Acid-soluble Fraction of Normal and Tumor Tissues and Studies on Nucleic Acid Synthesis in Tumors*t HANNS SCHMITZ4 VAN R. POTTER, ROBERT B. HTJRLBERT,@ AND DWAIN M. WHITE (McArdie Memovial Laboratory, the Medical School, University of Wisconain, Madison, WI..) The first paper (18) in this series on the alterna MATERIALS AND METHODS tive pathways of glucose metabolism established The present study has involved the measure the fact that radioactivity from glucose-i-C'4 was ment of the specific activities of the free 5' mono-, readily incorporated into the pentose moiety of the di-, and triphosphates of adenosine, guanosine, ribonucleic and desoxyribonucleic acids of Flexner cytidine, and uridine from the acid-soluble extract Jobling tumors in rats, and described the over-all of tumor tissue in relation to the specific activities distribution of radioactivity in the acid-soluble of the corresponding nucleotides that were oh and acid-insoluble fractions of tumor and liver tis tamed by chemical or enzymatic hydrolysis of the sue at various time periods. The acid-soluble frac nucleic acids from the same tissue samples, at tion of tissue contains an appreciable amount of specified time intervals after the injection of glu free nucleotides which are possible intermediary cose-1-C'4. The experimental plan corresponds compounds in the synthesis of the nucleic acids exactly to that described in the preceding paper; (6, 7, 8, 9, 13, 16). It was noted (18) that as the C'4 many of
    [Show full text]
  • Low Uric Acid Diet Diet FAQ's What Is Uricvs Acid? Uric Acid Is a Byproduct of Purines (PYUR-Eenz)
    o ?? ou need t Y our reduce y Uric Acid! Understanding the Low Uric Acid Diet Diet FAQ's What is Uricvs Acid? Uric acid is a byproduct of purines (PYUR-eenz). Purines are naturally occurring substances and are found in many food items. As purines are broken down in the body, they are eliminated as uric acid. What does Uric Acid have to do with CKD? Normally, uric acid passes through the kidneys and is excreted in urine. However, when the kidneys cannot process all of the uric acid, hyperuricemia, or elevated uric acid in the blood, may develop. Recent research has determined that approximately 10% of Americans with Chronic Kidney Disease (CKD) also have gout, and if left untreated, can further worsen kidney function. Why do I need a diet that reduces Uric Acid? When your kidneys are not functioning properly, they do not filter out uric acid properly, thus potentially leading to a number of health issues. Elevated hyperuricemia (elevated uric acid levels) may cause: • Worsening of kidney function • Flare up of gout • Damage to affected joints Diet Do's and Don'ts Do Don't DO Don't Do Don't Exercise: even 1 minute of moderate to brisk Don’t take baker’s yeast or brewer’s yeast as a walking is helpful supplement Drink 8-12 cups o f fluid daily, this may help reduce Don't drink ( or try to limit) alcohol. Alcohol increases kidney stone formation and decrease uric acid purine production, thus further worsening crystals hyperuricemia Foods to limit Limit meat to 3 ounces per meal Limit high fat foods, such as salad dressings, ice cream, fried foods, & gravies.
    [Show full text]
  • Study of Purine Metabolism in a Xanthinuric Female
    Study of Purine Metabolism in a Xanthinuric Female MICHAEL J. BRADFORD, IRWIN H. KRAKOFF, ROBERT LEEPER, and M. EARL BALis From the Sloan-Kettering Institute, Sloan-Kettering Division of Cornell University Graduate School of Medical Sciences, and the Department of Medicine of Memorial and James Ewing Hospitals, New York 10021 A B S TR A C T A case of xanthinuria is briefly de- Case report in brief. The patient is a 62 yr old scribed, and the results of in vivo studies with Puerto Rican grandmother, whose illness is de- 4C-labeled oxypurines are discussed. The data scribed in detail elsewhere.' Except for mild pso- demonstrate that the rate of the turnover of uric riasis present for 30 yr, she has been in good acid is normal, despite an extremely small uric health. On 26 June 1966, the patient was admitted acid pool. Xanthine and hypoxanthine pools were to the Second (Cornell) Medical Service, Bellevue measured and their metabolism evaluated. The Hospital, with a 3 day history of pain in the right bulk of the daily pool of 276 mg of xanthine, but foot and fever. The admission physical examina- only 6% of the 960 mg of hypoxanthine, is ex- tion confirmed the presence of monoarticular ar- creted. Thus, xanthine appears to be a metabolic thritis and mild psoriasis. The patient's course in end product, whereas hypoxanthine is an active the hospital was characterized by recurrent fevers intermediate. Biochemical implications of this find- to 104°F and migratory polyarthritis, affecting ing are discussed. both ankles, knees, elbows, wrists, and hands over a 6 wk period.
    [Show full text]
  • Purine and Pyrimidine Metabolism in Human Epidermis* Jean De Bersaques, Md
    THE JOURNAL OP INVESTIGATIVE DERMATOLOGY Vol. 4s, No. Z Copyright 1957 by The Williams & Wilkins Co. Fri nte,1 in U.S.A. PURINE AND PYRIMIDINE METABOLISM IN HUMAN EPIDERMIS* JEAN DE BERSAQUES, MD. The continuous cellular renewal occurring inthine, which contained 5% impurity, and for uric the epidermis requires a very active synthesisacid, which consisted of 3 main components. The reaction was stopped after 1—2 hours in- and breakdown of nuclear and cytoplasmiecubation at 37° and the products were spotted on nucleic acids. Data on the enzyme systemsWhatman 1 filter paper sheets. According to the participating in these metabolic processes arereaction products expected, a choice was made of rather fragmentary (1—9) and some are, inat least 2 among the following solvents, all used terms of biochemical time, in need of up- in ascending direction: 1. isoamyl alcohol—5% Na2HPO4 (1:1), dating. In some other publications (10—18), 2. water-saturated n-butanol, the presence and concentration of various in- 3. distilled water, termediate products is given. 4. 80% formic acid—n-hutanol——n-propanol— In this paper, we tried to collect and supple- acetone—30% trichloro-aeetic acid (5:8:4: ment these data by investigating the presence 5:3), 5. n-butanol——4% boric acid (43:7), or absence in epidermis of enzyme systems 6. isobutyrie acid—water—ammonia 0.880—ver- that have been described in other tissues. sene 0.1M(500:279:21:8), This first investigation was a qualitative one, 7. upper phase of ethyl acetate—water—formic and some limitations were set by practical acid (12:7:1), 8.
    [Show full text]
  • Hypoxanthine, Xanthine, and Uric Acid Concentrations in Plasma
    003 1 -3998/93/3406-0767$03.00/0 PEDIATRIC RESEARCH Vol. 34, No. 6, 1993 Copyright O 1993 International Pediatric Research Foundation, Inc. Printed in U.S. A. Hypoxanthine, Xanthine, and Uric Acid Concentrations in Plasma, Cerebrospinal Fluid, Vitreous Humor, and Urine in Piglets Subjected to Intermittent Versus Continuous Hypoxemia LAURITZ STOLTENBERG, TERJE ROOTWELT, STEPHANIE BYASAETER, TORLEIV 0. ROGNUM, AND OLA D. SAUGSTAD Department of Pediatric Research [L.S.. T.R..S.0.. O.D.S.].Institute ofSurgica1 Research [L.S.. T.R.],and Insritute of Forensic Medicine [L.S., T.O.R.],The National Hospital, 0027 Oslo 1, Norway ABSTRACT. Infants with sudden infant death syndrome compared with 20% in infants that die suddenly or unexpectedly have higher hypoxanthine (Hx) concentrations in their from other causes (4). It was concluded in this study that SIDS, vitreous humor than infants with respiratory distress syn- in most cases, is probably not a sudden event but may be drome and other infant control populations. However, pre- preceded by a relatively long period of respiratory failure and vious research on piglets and pigs applying continuous hypoxia. However, previous experiments on piglets applying hypoxemia has not been able to reproduce the concentra- different degrees and durations of CH have not been able to tions observed in infants with sudden infant death syn- reproduce equally high vitreous humor Hx values as observed in drome. To test whether intermittent hypoxemia could, in SIDS (5). Perhaps the higher Hx concentration formed in vitre- part, explain this observed difference, Hx, xanthine (X), ous humor of SIDS victims is due to the fact that these infants and uric acid were measured in vitreous humor, urine, suffer repeated episodes of hypoxemia before they die.
    [Show full text]
  • Quercetin Lowers Plasma Uric Acid in Pre-Hyperuricaemic Males: a Randomised, Double-Blinded, Placebo-Controlled, Cross-Over Trial
    This is a repository copy of Quercetin lowers plasma uric acid in pre-hyperuricaemic males: a randomised, double-blinded, placebo-controlled, cross-over trial. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/92907/ Version: Accepted Version Article: Shi, Y and Williamson, G (2016) Quercetin lowers plasma uric acid in pre-hyperuricaemic males: a randomised, double-blinded, placebo-controlled, cross-over trial. British Journal of Nutrition, 115 (5). pp. 800-806. ISSN 0007-1145 https://doi.org/10.1017/S0007114515005310 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 1 Quercetin lowers plasma uric acid in pre-hyperuricemic males: a randomized, 2 double-blinded, placebo-controlled, cross-over trial 3 Yuanlu Shi1, Gary Williamson1* 4 1 School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK 5 Running Head: Quercetin lowers uric acid in humans 6 Key words: quercetin, bioequivalence, dietary supplement, human 7 * Corresponding Author: Gary Williamson, Tel: +44(0)113-343-8380; Email: 8 [email protected] 9 Clinical trial registration: The study was registered on ClinicalTrials.gov (identifier 10 number NCT01881919).
    [Show full text]
  • Nucleo'de)Metabolism) (Chapter)23)) INTRODUCTION)TO)NUCLEIC)ACIDS)
    BIOCH 765: Biochemistry II Spring 2014 Nucleo'de)Metabolism) (Chapter)23)) Jianhan)Chen) Office)Hour:)MF)1:30B2:30PM,)Chalmers)034) Email:)[email protected]) Office:)785B2518) INTRODUCTION)TO)NUCLEIC)ACIDS) (c))Jianhan)Chen) 2) Eukaryo'c)cell) 3 Genome)is)believed)to)define)a)species) 4 Nucleic)Acids) • Polymer(of( nucleotides:(highly( flexible((compared( to(peptides)( • Nucleic(acids(are( universal(in(living( things,(as(they(are( found(in(all(cells( and(viruses.( • Nucleic(acids(were( first(discovered(by( Friedrich(Miescher( in(1871.( (c))Jianhan)Chen) 5 Building)Blocks)of)Nucleo'des) • Phosphate(group(+(pentose(carbohydrate(+( base((nitrogenGcontaining(heterocyclic(ring)( • Deoxyribonucleic(acid((DNA):(A/G/C/T( • Ribonuclei(acid((RNA):(A/G/C/U( Nucleotide nucleobase 6 Nucleo'des)have)many)roles) • Building(blocks(of(the(nucleic(acid(polymers(RNA(and( DNA.( • Energy(transfer(or(energy(coupling(to(drive(biosynthesis( and(other(processes((muscle(contraction,(transport,(etc).( • Oxidation(reduction(reactions.( • Intracellular(signaling.( ATP 7 Pentose)sugars) Base Phosphate sugar • The(pentose(sugar(in(the(nucloetide(is(either(ribose(or( deoxyribose.( ( – The(base(is(added(at(the(1(position(and(phosphates(are(added(at( the(5(position.( – Most(nucleotides,(including(those(incorporated(into(RNA,(contain( ribose.( – 2’GOH(reduced(to(–H(in(deoxynucleotides( – 3’GOH(participates(in(forming(phosphodiester(linkage( – Deoxynucleotides(are(exclusively(used(for(DNA(synthesis.( 8 Nucleo'de)forma'on) O ║ H N The base is added at the 1 6 N position and phosphates
    [Show full text]
  • Very Low Density Lipoprotein in Patients with Gout
    Ann Rheum Dis: first published as 10.1136/ard.44.6.390 on 1 June 1985. Downloaded from Annals of the Rheumatic Diseases, 1985, 44, 390-394 Demonstration of an abnormality of C apoprotein of very low density lipoprotein in patients with gout D G MACFARLANE, C A MIDWINTER, P A DIEPPE, C H BOLTON, AND M HARTOG From the University Department of Medicine, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HU, Avon SUMMARY The very low density (VLDL) apolipoproteins of 12 male patients with gout have been studied by analytical isoelectric focusing. The relative percentage distribution of the C apolipoproteins was calculated and compared with that from 12 normolipidaemic and 12 'lipid-matched' controls. In the gout patients apolipoprotein CII (apo CII) represented 19-6% of the VLDL C proteins and the CII/CIII2 ratio was 0-57. In the normolipidaemic controls apo CII represented 28*8% and in the lipid-matched controls 33*1% of VLDL apo C, and the CII/C0112 ratio approached one in each control group. These differences were significant. This suggests that a reduction in VLDL apo CII may predispose to the hypertriglyceridaemia that is commonly found in patients with gout. copyright. Key words: gout, hyperlipidaemia, apolipoprotein CII. Many studies have shown a high incidence of had been approved by the local ethical committee. hyperlipidaemia in patients with gout, commonly All their drug treatment was stopped for a period of hypertnxglyceridaemia due to raised endogenous six weeks, and they were also requested to reduce http://ard.bmj.com/ VLDL. -3 As well as lipid, VLDL particles contain their alcohol intake as much as possible and avoid B, C, and E apoproteins, and recent discoveries self medication.
    [Show full text]
  • Purine Metabolism in Adenosine Deaminase Deficiency* (Immunodeficiency/Pyrimidines/Adenine Nucleotides/Adenine) GORDON C
    Proc. Nati. Acad. Sci. USA Vol. 73, No. 8, pp. 2867-2871, August 1976 Immunology Purine metabolism in adenosine deaminase deficiency* (immunodeficiency/pyrimidines/adenine nucleotides/adenine) GORDON C. MILLS, FRANK C. SCHMALSTIEG, K. BRYAN TRIMMER, ARMOND S. GOLDMAN, AND RANDALL M. GOLDBLUM Departments of Human Biological Chemistry and Genetics and Pediatrics, The University of Texas Medical Branch and Shriners Burns Institute, Galveston, Texas 77550 Communicated by J. Edwin Seegmiller, June 1, 1976 ABSTRACT Purine and pyrimidine metabolites were MATERIALS AND METHODS measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, Subject. A 5-month-old boy born on December 5, 1974 with EC 3.5.4.4) deficiency. Adenosine and adenine were measured severe combined immunodeficiency was investigated. Physical using newly devised ion exchange separation techniques and examination revealed enlarged costochondral junctions and a sensitive fluorescence assay. Plasma adenosine levels were sparse lymphoid tissue (5). The serum IgG (normal values in increased, whereas adenosine was normal in erythrocytes and parentheses) was 31 mg/dl (263-713); IgM, 8 mg/dl not detectable in urine. Increased amounts of adenine were (34-138); found in erythrocytes and urine as well as in the plasma. and IgA was less than 3 mg/dl (13-71). Clq was not detectable Erythrocyte adenosine 5'-monophosphate and adenosine di- by double immunodiffusion. The blood lymphocyte count was phosphate concentrations were normal, but adenosine tri- 200-400/mm3 with 2-4% sheep erythrocyte (E)-rosettes, 12% phosphate content was greatly elevated. Because of the possi- sheep erythrocyte-antibody-complement (EAC)-rosettes, 10% bility of pyrimidine starvation, pyrimidine nucleotides (py- IgG bearing cells, and no detectable IgA or IgM bearing cells.
    [Show full text]