Process for the Removal of Spent Oil Dispersants from Test Water at the National Oil Spill Response Test Facility

Total Page:16

File Type:pdf, Size:1020Kb

Process for the Removal of Spent Oil Dispersants from Test Water at the National Oil Spill Response Test Facility Process for the Removal of Spent Oil Spill Dispersants From Test Water at the National Oil Spill Response Test Facility Science Applications International Corporation (SAIC Canada) Environmental Technologies Program Final report presented to: United States Department of the Interior Minerals Management Service March 31, 2003 SAIC project number B444-000 Removal of Spent Oil Spill Dispersants from Ohmsett SAIC Canada (B444-000) Client: U.S. Minerals Management Service (PO85235) March 2003 _________________________________________________________________________________________ PROJECT REVIEW AND RELEASE FORM QUALITY ASSURANCE AND MANAGEMENT SYSTEM Report Title Process for the Removal of Spent Oil Spill Dispersants Report Date March 31, 2003 Report Number B444-000 Author(s) David Cooper Project Manager March 31, 2003 Name Title Date Peer Review: to ensure the deliverable complies with Project Plan Konstantin Volchek Senior Engineer March 31, 2003 Name Title Date Management Review: to ensure the deliverable complies with contractually specified requirements, applicable policies and procedures specified by our Quality Assurance and Management System and applicable regulations or legislation. Bill Wong Program Manager March 31, 2003 Name Title Date SAIC QUALITY POLICY "Science Applications International Corporation (SAIC Canada), Information, Environmental and Engineering Solutions Division employees are dedicated to the delivery of quality scientific and technical products and services. The highest priority is placed on the quality, timeliness and competitiveness of products and services. Objectives are pursued with a commitment to personal integrity and high professional standards. “An environment that encourages new ideas, high quality work and professional achievement is promoted. Business dealings will be fair and professional and commitments to business partners will be honoured. Employee conduct will enhance and preserve the reputation of the company." Science Applications International Corporation (SAIC Canada) i Removal of Spent Oil Spill Dispersants from Ohmsett SAIC Canada (B444-000) Client: U.S. Minerals Management Service (PO85235) March 2003 _________________________________________________________________________________________ ACKNOWLEDGEMENTS The funding for this report was provided by the United States Department of the Interior, Minerals Management Service. Mr. James Lane was the Contracting Officer’s Technical Representative. This report has been reviewed by the U.S. Minerals Management Service staff for technical adequacy according to contractual specifications. The opinions, conclusions, and recommendations contained in this report are those of the authors and do not necessarily reflect the views and policies of the U.S. Minerals Management Service. The mention of a trade name or any commercial product in this report does not constitute an endorsement or recommendation for use by the U.S. Minerals Management Service. Finally, this report does not contain any commercially sensitive or proprietary data release restrictions and may be freely copied and widely distributed. To obtain additional copies please contact the U.S. Minerals Management Service or the Ohmsett facility at the following addresses: www.mms.gov www.ohmsett.com Science Applications International Corporation (SAIC Canada) ii Removal of Spent Oil Spill Dispersants from Ohmsett SAIC Canada (B444-000) Client: U.S. Minerals Management Service (PO85235) March 2003 _________________________________________________________________________________________ ABSTRACT Dispersants are an important tool in the response to oil spills. Proper testing of dispersants and the interpretation of results, however, is complicated by issues such as the weathering of oil (Fingas et al, 2001)(Moles et al, 2001) and by problems associated with scaling bench- top tests to a full response scenario. In order to fulfill the need to test dispersants on a large-scale and gain valuable scientific evidence of their efficacy and behaviour, the use of a large test tank such as the OHMSETT facility is a logical choice. The presence of even trace amounts of dispersants in the test tank, however, can affect the behaviour of standard test oils (Ross et al, 2000). This can influence subsequent dispersant tests or even alter the performance of other response techniques (e.g. booms and skimmers) that are also tested in the tank. As such, it is important to have an effective, reliable, quick and relatively inexpensive method of detecting and removing dispersants following their testing. This report looks at the development of two analytical techniques to detect trace quantities of dispersant in water, and a method of removing trace quantities of dispersant from the test tank using membrane separation. A suite of different membranes were selected based upon their documented compatibility to this task, and were tested at the bench scale. An additional step involving the use of Advanced Oxidation was also used as a possible polishing step. The testing protocols and results are presented in this report. Science Applications International Corporation (SAIC Canada) iii Removal of Spent Oil Spill Dispersants from Ohmsett SAIC Canada (B444-000) Client: U.S. Minerals Management Service (PO85235) March 2003 _________________________________________________________________________________________ TABLE OF CONTENTS ACKNOWLEDGEMENTS ....................................................................................................... ii ABSTRACT............................................................................................................................ iii LIST OF TABLES................................................................................................................... vi LIST OF FIGURES.................................................................................................................vi 1 INTRODUCTION .............................................................................................................1 2 BACKGROUND ...............................................................................................................1 3 ANALYTICAL METHOD DEVELOPMENT ......................................................................1 3.1 Non-ionic Surfactants ...............................................................................................2 3.1.1 Glassware..........................................................................................................2 3.1.2 Chemicals..........................................................................................................2 3.1.3 Procedure..........................................................................................................2 3.2 Anionic Surfactants...................................................................................................2 3.2.1 Glassware..........................................................................................................2 3.2.2 Chemicals..........................................................................................................2 3.2.3 Instrumentation..................................................................................................2 3.2.4 Procedure – Calibration.....................................................................................3 3.2.5 Procedure – Sample Analysis ...........................................................................3 3.3 Nonionic Surfactants Summary ................................................................................3 3.4 Anionic Surfactants Summary ..................................................................................5 4 DISPERSANT REMOVAL MATERIALS AND METHODS ..............................................7 4.1 Nanofiltration Membranes.........................................................................................8 4.2 Ultrafiltration Membranes..........................................................................................8 4.3 Microfiltration Membranes ........................................................................................9 4.4 Membrane Separation Parameters.........................................................................10 4.5 Dispersants.............................................................................................................10 4.6 Bench-scale Membrane Testing System ................................................................10 Science Applications International Corporation (SAIC Canada) iv Removal of Spent Oil Spill Dispersants from Ohmsett SAIC Canada (B444-000) Client: U.S. Minerals Management Service (PO85235) March 2003 _________________________________________________________________________________________ 4.6.1 Flat Sheet Membrane Tests ............................................................................10 4.6.2 Tubular Membrane Tests ................................................................................13 4.7 Experimental Procedures .......................................................................................15 4.7.1 Preparation of water samples..........................................................................15 4.7.2 Flat sheet membrane filtration tests ................................................................15 4.7.3 Tubular membranes filtration tests ..................................................................16 4.8 Analyses .................................................................................................................16
Recommended publications
  • Time for Action
    Time for Action Six Years After Deepwater Horizon Julie Dermansky “One of the lessons we’ve learned from this spill is that we need better regulations, better safety standards, and better enforcement when it comes to offshore drilling.” President Barack Obama June 15, 2010 Authors Acknowledgments Ingrid Biedron, Ph.D. The authors are grateful for the reviews, comments and and Suzannah Evans direction provided by Dustin Cranor, Claire Douglass, Michael April 2016 LeVine, Lara Levison, Kathryn Matthews, Ph.D., Jacqueline U.S. Coast Guard U.S. Savitz, Lora Snyder, Oona Watkins and Emory Wellman. 1 OCEANA | Time for Action: Six Years After Deepwater Horizon Executive Summary he Deepwater Horizon oil spill 2016, that show the damage the 2010 oil • Harmful oil and/or oil dispersant Tdevastated the Gulf of Mexico’s spill caused in the Gulf of Mexico. Scientists chemicals were found in about 80 marine life, communities and economy. are still working to understand the scale of percent of pelican eggs that were laid in Since the 2010 disaster, federal agencies devastation to wildlife, fisheries and human Minnesota, more than 1,000 miles from have done little to improve the safety of health. These catastrophic outcomes could the Gulf, where most of these birds offshore drilling using existing authorities happen in any region of the United States spend winters.3 and Congress has done virtually nothing where oil and gas activities are proceeding, • Oil exposure caused heart failure in to reduce the risk of another spill in our especially as those activities are moving juvenile bluefin and yellowfin tunas,4 waters or on our beaches.
    [Show full text]
  • Oil + Dispersant
    Effects of oil dispersants on the environmental fate, transport and distribution of spilled oil in marine ecosystems Don Zhao, Y. Gong, X. Zhao, J. Fu, Z. Cai, S.E. O’Reilly Environmental Engineering Program Department of Civil Engineering Auburn University, Auburn, AL 36849, USA Bureau of Ocean Energy Management Office of Environment, New Orleans, LA 70123, USA Outline • Roles of dispersants on sediment retention of oil compounds • Effects of dispersants on settling of suspended sediment particles and transport of oil compounds • Effects of dispersants and oil on formation of marine oil snow Part I. Effects of Oil Dispersants on Sediment Retention of Polycyclic Aromatic Hydrocarbons in the Gulf Coast Ecosystems Yanyan Gong1, Xiao Zhao1, S.E. O’Reilly2, Dongye Zhao1 1Environmental Engineering Program Department of Civil Engineering Auburn University, Auburn, AL 36849, USA 2Bureau of Ocean Energy Management Office of Environment, New Orleans, LA 70123, USA Gong et al. Environmental Pollution 185 (2014) 240-249 Application of Oil Dispersants • In the 2010 the DWH oil spill, BP applied ~2.1 MG of oil dispersants (Kujawinski et al., 2011) Corexit 9500A and Corexit 9527A • About 1.1 MG injected at the wellhead (pressure = 160 atm, temperature = 4 oC) (Thibodeaux et al., 2011) • Consequently, ~770,000 barrels (or ~16%) of the spilled oil were dispersed (Ramseur, 2010) Kujawinski, E.B. et al. (2011) Environ. Sci. Technol., 45, 1298-1306. Ramseur, J.L. (2010) www.crs.gov, R41531. Polycyclic Aromatic Hydrocarbons (PAHs) in Spilled Oil • A class of principal persistent oil components The Macondo well oil contained ~3.9% PAHs by weight, and ~21,000 tons of PAHs were released during the 2010 spill (Reddy et al., 2011) PAHs are toxic, mutagenic, carcinogenic and persistent • Elevated concentrations of PAHs were reported during the DWH oil spill (EPA, 2010) Naphthalene Phenanthrene Pyrene Chrysene Benzo(a)pyrene Reddy, C.M.
    [Show full text]
  • Independent Human Health and Environmental Hazard
    Independent Human Health and Environmental Hazard Assessments of Dispersant Chemicals in Australia, produced by NICNAS and CSIRO AMSA/National Plan preamble to the three independent reports by: NICNAS (April 2014) Chemicals used as oil dispersants in Australia: Stage 1. Identification of chemicals of low concern for human health NICNAS (October 2014) Chemicals used as oil dispersants in Australia: Stage 2. Summary report of the human health hazards of oil spill dispersant chemicals CSIRO (August 2015) A review of the ecotoxicological implications of oil dispersant use in Australian waters. The Australian National Plan Dispersant Strategy The Australian National Plan for Maritime Environmental Emergencies has had a longstanding dispersant response strategy that is transparent, fit for purpose and effective, and safe to use for people and the environment. At all stages of dispersant management: acceptance and purchase; storage and transport; and application in spill, the National Plan requires transparency. These requirements, results and processes are all published on the AMSA website. To ensure that Australia has suitable information to undertake all these steps, AMSA has always sought the best independent advice it could find. Most recently AMSA addressed questions of human health hazards and environmental hazards. Health hazard assessment by National Industrial Chemicals Notification and Assessment Scheme (NICNAS) NICNAS comprehensively addressed the question of dispersant health hazard in two stages. The first stage assessment identified 2 of 11 chemicals to be of low concern for human health. The second stage was a more full assessment that concluded that 7 of the 11 chemicals were of no concern. The remaining four were considered hazardous based on Safe Work Australia’s Approved Criteria for Classifying Hazardous Substances.
    [Show full text]
  • Dispersants Edition
    FREQUENTLY ASKED QUESTIONS: DISPERSANTS EDITION Chemical dispersants break oil into smaller droplets, limiting the amount of oil that comes into contact with wildlife and shorelines. Many people question how they work and whether they are safe for people and animals. FIGURE 1. Dispersants, though rarely used, can be applied to oil spills. The surfactant molecules in dispersants help oil and water mix, creating small oil droplets that are more easily broken down by microbes than an oil slick. (Florida Sea Grant/Anna Hinkeldey) WHAT ARE DISPERSANTS AND burning, and dispersants — depending upon the WHAT DO THEY DO? incident.3,4 For example, booms can concentrate oil in Dispersants are a mixture of compounds whose an area for removal by skimmers, but they often fail in components work together to break oil slicks into rough sea conditions and are less effective in open small oil droplets (Figure 1). The small droplets are then water. Where dispersant use is permitted, and broken down by evaporation, sunlight, microbes, and environmental conditions (e.g., waves) indicate it could other natural processes.1 Dispersants work under a wide be effective, dispersants may better protect animals and range of temperature conditions. Their components and habitats. Dispersants are rarely used; but when they are, dispersed oil can be broken down by microbes as well.2 they are typically applied at the water’ surface. However, during the Deepwater Horizon oil spill, responders WHEN AND WHERE ARE DISPERSANTS USED? also used dispersants directly at the source of the underwater blowout.5 There is no ‘one-size-fits-all’ technique for oil spill response.3 Decision-makers must weigh the WHAT IMPACTS DO DISPERSANTS environmental costs of each technique depending upon HAVE ON SEA LIFE? the scenario.
    [Show full text]
  • Persistence, Fate, and Effectiveness of Dispersants Used During The
    THE SEA GRANT and GOMRI PERSISTENCE, FATE, AND EFFECTIVENESS PARTNERSHIP OF DISPERSANTS USED DURING THE The mission of Sea Grant is to enhance the practical use and DEEPWATER HORIZON OIL SPILL conservation of coastal, marine Monica Wilson, Larissa Graham, Chris Hale, Emily Maung-Douglass, Stephen Sempier, and Great Lakes resources in and LaDon Swann order to create a sustainable economy and environment. There are 33 university–based The Deepwater Horizon (DWH) oil spill was the first spill that occurred Sea Grant programs throughout the coastal U.S. These programs in the deep ocean, nearly one mile below the ocean’s surface. The are primarily supported by large-scale applications of dispersants used at the surface and the National Oceanic and Atmospheric Administration wellhead during the Deepwater Horizon oil spill raised many questions and the states in which the and highlighted the importance of understanding their effects on the programs are located. marine environment. In the immediate aftermath of the Deepwater Horizon spill, BP committed $500 million over a 10–year period to create the Gulf of Mexico Research Initiative, or GoMRI. It is an independent research program that studies the effect of hydrocarbon releases on the environment and public health, as well as develops improved spill mitigation, oil detection, characterization and remediation technologies. GoMRI is led by an independent and academic 20–member research board. The Sea Grant oil spill science outreach team identifies the best available science from projects funded by GoMRI and others, and only shares peer- reviewed research results. Oiled waters in Orange Beach, Alabama. (NOAA photo) Emergency responders used a large (Figure 1).1,2 Before this event, scientists amount of dispersants during the 2010 did not know how effective dispersants DWH oil spill.
    [Show full text]
  • The Role and Regulation of Dispersants in Oil Spill Response
    Fighting Chemicals with Chemicals: The Role and Regulation of Dispersants in Oil Spill Response Charles L. Franklin and Lori J. Warner or most Americans, and many American environmen- dentnews.gov/ (last visited July 17, 2011) (searching reported tal lawyers, the tragic Deepwater Horizon oil spill of incidents in which dispersants were evaluated and used). Even 2010 provided the first close-up look at the role that so, their use has not been without controversy. One of the oil dispersants and surfactant chemicals (dispersants) first documented uses of dispersing agents occurred in 1967 Fplay in modern-day oil spill response efforts. While dispersants during the response to the Torrey Canyon tanker spill off the have been used for decades, dispersants played a particularly English Coast. DOT, EPA, The Exxon Valdez Oil Spill: A Report pivotal, if controversial role, in the Gulf spill response, osten- to the President, Doc. No. OSWER-89-VALDZ, (May 1989) sibly helping to reduce the onshore impact of the release. Dis- [herinafter Exxon Valdez Report], App. D-23. This early effort persants were a workhorse of the recovery effort, and in turn, proved catastrophic, however, as the chemicals used in the arguably might be credited with limiting the land impacts of effort—little more than industrial degreasing agents devel- the largest spill in history. For some, however, the central role oped for cleaning tanks—resulted in an “ecological disaster” that chemical dispersants played in the Gulf cleanup effort in which extensive mortalities of animals and algae occurred is more a cause for question than credit. This article reviews immediately, and the natural recovery was severely slowed and the historic use and regulation of oil dispersants in oil spill still incomplete in some areas ten years later.
    [Show full text]
  • Bioaccumulation Potential of Surfactants: a Review © EOSCA
    © EOSCA EOSCA European Oilfield Speciality Chemicals Association Bioaccumulation Potential of Surfactants: A Review © EOSCA This report was commissioned by the European Oilfield Specialty Chemical Association (EOSCA). EOSCA was founded in 1990 and has grown to an organisation comprising 40 full members and 7 associate members. As it stands today it represents almost all of the chemical manufacturers and chemical services companies involved in the supply and application of chemicals to Oil and Gas Operations in Europe. The primary function is to act as a focus of interest and concern on issues relating to Environmental and Safety Regulation. To this end it is recognised by government and operators as a first point of contact for chemical issues and is a fully recognised Non-Governmental Organisation within the OSPAR framework. It has the intention of acting as an advocacy group with regulatory and governmental bodies. EOSCA provides an opportunity for members to network with Health, Safety and Environmental Affairs professionals in the field of Oilfield Chemicals. Address for Correspondence: Graham Payne (Executive Secretary) Briar Technical Services Ltd 501 North Deeside Road Cults Aberdeen AB15 9ES Tel: +44 (0)1224 868827 Fax: +44 (0)1224 862503 [email protected] i © EOSCA EUROPEAN OILFIELD SPECIALITY CHEMICALS ASSOCIATION SUMMARY REPORT SURFACTANT BIOACCUMULATION REVIEW PROJECT Project funding: EOSCA Project Manager/Editor: Phil McWilliams ILAB Environmental Laboratory Contributors: Astrazeneca Limited, Brixham Environmental Laboratory Aquateam AS Chemex International Environmental and Resource Technology Limited Severn Trent Services The work performed in collating and evaluating the data on surfactant bioaccumulation reviewed in this report was funded entirely by EOSCA. The work was carried out over the period September 1999 to July 2000.
    [Show full text]
  • Oil Spill Dispersants: Effi Cacy and Eff Ects
    NATIONAL RESEARCH COUNCIL REPORT KEY FINDINGS Oil Spill Dispersants: Effi cacy and Eff ects Oil dispersants are chemicals that change the chemical and physical properties of oil to enable it to mix with water more easily, in a similar manner to the way that dish detergents break up cooking oil on a skillet. By increasing the amount of oil that mixes into sea water, dispersants can reduce the potential contamination of shoreline habitats—but at the same time, a larger volume of water at varying depths becomes exposed to spilled oil. This report reviews ongoing research on the use of dispersants as an oil spill response technique and the impact of dispersed oil on marine and coastal ecosystems. The report concludes that more information on the potential benefi ts or adverse impacts of dispersant use is needed to make effective, timely decisions on using dispersants in response to an oil spill. 1. Decisions to use dispersants involve trade-offs. Oil dispersants break up slicks, enhancing the amount of oil that physically mixes into the water column and reducing the potential that oil will contaminate shoreline habitats or come into contact with birds, marine mammals, or other organisms in coastal ecosystems. At the same time, using dispersants increases the exposure of water column and sea fl oor life to spilled oil. 2. The window of opportunity for using dispersants is early, typically within hours to 1 or 2 days after an oil spill. After that, natural “weathering” of an oil slick on the surface of the sea, caused by impacts such as the heat from the sun or buffeting by waves, makes oil more diffi cult to disperse.
    [Show full text]
  • Adsorption of Polyisobutylene-Based Dispersants Onto Carbon Black
    The University of Southern Mississippi The Aquila Digital Community Dissertations Fall 2019 Adsorption of Polyisobutylene-Based Dispersants onto Carbon Black Travis Paul Holbrook University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Polymer Chemistry Commons Recommended Citation Holbrook, Travis Paul, "Adsorption of Polyisobutylene-Based Dispersants onto Carbon Black" (2019). Dissertations. 1718. https://aquila.usm.edu/dissertations/1718 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. ADSORPTION OF POLYISOBUTYLENE-BASED DISPERSANTS ONTO CARBON BLACK by Travis Paul Holbrook A Dissertation Submitted to the Graduate School, the College of Arts and Sciences and the School of Polymer Science and Engineering at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by: Dr. Robson F. Storey, Committee Chair Dr. Sarah E. Morgan Dr. Yoan C. Simon Dr. William L. Jarrett Dr. Jeffrey S. Wiggins ____________________ ____________________ ____________________ Dr. Robson F. Storey Dr. Derek L. Patton Dr. Karen S. Coats Committee Chair Director of School Dean of the Graduate School December 2019 COPYRIGHT BY Travis Paul Holbrook 2019 Published by the Graduate School ABSTRACT The formation of carbonaceous by-products (e.g. soot) during the operation of an internal combustion engine is unavoidable and the aggregation of this soot leads to deleterious effects including abrasive wear of the engine, increased oil viscosities, and sludge deposition.
    [Show full text]
  • The Perplexing Physics of Oil Dispersants
    NEWS FEATURE The perplexing physics of oil dispersants NEWS FEATURE Massive amounts of oil, gas, and dispersant streamed into the Gulf of Mexico during the Deepwater Horizon disaster. Understanding the chemistry and physics of this mix as it churned through the salt water turns out to be an exceedingly complex problem with plenty of unknowns. M. Mitchell Waldrop, Science Writer On April 30, 2010, 10 days after a blowout destroyed wellhead, which was still spewing more than 6,000 liters the offshore drilling platform Deepwater Horizon off of oil per minute, it stuck the end of a kilometers-long the coast of Louisiana and triggered what was fast hose into the erupting plume and started pumping in becoming the worst oil spill in US history, the well’s dispersants: detergent-like chemicals designed to frag- owner, British Petroleum, sent a remotely piloted sub- ment the hydrocarbons into tiny droplets. It was the start marine 1,500 meters down to the floor of the Gulf of of a campaign that would ultimately inject the plume Mexico. Once the vehicle arrived at the broken with almost 3 million liters of the chemicals. No one knew the ecosystem impact of using huge amounts of dispersants in deep water to break up the massive oil slick caused by the 2010 British Petroleum disaster, seen here via satellite one month after the blowout. Image credit: Science Source/NASA. Published under the PNAS license. www.pnas.org/cgi/doi/10.1073/pnas.1907155116 PNAS | May 28, 2019 | vol. 116 | no. 22 | 10603–10607 Downloaded by guest on September 27, 2021 debate among scientists.
    [Show full text]
  • Biological Effects of Dispersants and Dispersed Oil on Surface and Deep Ocean Species
    Biological Effects of Dispersants and Dispersed Oil on Surface and Deep Ocean Species Ronald Tjeerdema, Ph.D. University of California, Department of Environmental Toxicology Adriana C. Bejarano, Ph.D. Research Planning, Inc. Sara Edge, Ph.D. Florida Atlantic University, Harbor Branch Oceanographic Institute INTRODUCTION Effects of Dispersant Use on Biological Systems Beginning with the use of industrial-strength detergents, dispersing agents have been employed in spill response for decades. The Corexit series of agents in common use today generally consist of non-ionic and/or anionic surfactants in a solvent base designed to enhance miscibility under varying temperature and salinity conditions; cationic surfactants tend to be too toxic for use. While dispersants generally serve to decrease the interfacial surface tension of oil, thus facilitating its weathering under low-energy conditions, their surface-active nature also causes their interaction with cell surfaces – those of single-celled organisms as well as the gills of vertebrates and invertebrates. Knowledge from Previous Oil Spills Biological Impacts Dispersant use is usually considered by spill responders when other means of response, such as containment and removal, are not deemed to be adequate1. For instance, during the Deepwater Horizon (DWH) spill dispersants were quickly employed when it became apparent that other means of response were insufficient2. However, there are usually consequences for both hydrocarbon bioavailability and toxic impacts, thus environmental tradeoffs must be evaluated. For instance, while undispersed oil generally poses the greatest threat to shorelines and surface- dwelling organisms, most dispersed oil remains in the water column where it mainly threatens pelagic and benthic organisms1. This tradeoff was a prime consideration during the DWH spill3.
    [Show full text]
  • Federal Register/Vol. 80, No. 14/Thursday, January 22, 2015
    3380 Federal Register / Vol. 80, No. 14 / Thursday, January 22, 2015 / Proposed Rules ENVIRONMENTAL PROTECTION information to support agent information whose disclosure is AGENCY preauthorization or authorization of use restricted by statute. Certain other decisions. material, such as copyrighted material, 40 CFR Parts 110 and 300 DATES: Comments must be received on will be publicly available only in hard copy. Publicly available docket [EPA–HQ–OPA–2006–0090; FRL–9689–9– or before April 22, 2015. OSWER] ADDRESSES: Submit your comments, materials are available either identified by Docket ID No. EPA–HQ– electronically in http:// RIN 2050–AE87 OPA–2006–0090, by one of the www.regulations.gov or in hard copy at the EPA Docket, EPA/DC, EPA West, National Oil and Hazardous following methods: • Federal Rulemaking Portal: http:// Room 3334, 1301 Constitution Avenue Substances Pollution Contingency NW., Washington, DC. The Public Plan www.regulations.gov. Follow the on-line instructions for submitting comments. Reading Room is open from 8:30 a.m. to AGENCY: U.S. Environmental Protection • Mail: The mailing address of the 4:30 p.m., Monday through Friday, Agency (EPA). docket for this rulemaking is EPA excluding legal holidays. The telephone number for the Public Reading Room is ACTION: Proposed rule. Docket Center (EPA/DC), Docket ID No. EPA–HQ–OPA–2006–0090, 1200 202–566–1744 to make an appointment SUMMARY: The Environmental Protection Pennsylvania Avenue NW., Washington, to view the docket. Agency (EPA or the Agency) proposes to DC 20460. FOR FURTHER INFORMATION CONTACT: For amend the requirements in Subpart J of • Hand Delivery: Such deliveries are general information, contact the the National Oil and Hazardous only accepted during the Docket’s Superfund, TRI, EPCRA, RMP, and Oil Substances Pollution Contingency Plan normal hours of operation, and special Information Center at 800–424–9346 or (NCP) that govern the use of dispersants, arrangements should be made for TDD at 800–553–7672 (hearing other chemical and biological agents, deliveries of boxed information.
    [Show full text]