Diversity of Ants and Termites of the Botanical Garden of the University of Lomé, Togo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AUSTRALIAN TERMITOPHILES ASSOCIATED with MICROCEROTERMES (Isoptera: Amitermitinae) I
Pacific Insects 12 (1): 9-15 20 May 1970 AUSTRALIAN TERMITOPHILES ASSOCIATED WITH MICROCEROTERMES (Isoptera: Amitermitinae) I. A new Subtribe, genus, and species (Coleoptera, Staphylinidae) with notes on their behavior1 By David H. Kistner2 Abstract: A new Subtribe (Microceroxenina) of the tribe Athetini is described. The single included genus and species (both new) is Microceroxenus alzadae which was cap tured with Microcerotermes turneri in North Queensland. Behavioral observations are presented which support the interpretation that Microceroxenus is well-integrated into the social life of the termites. Observations of the release of alates by the host ter mites are presented which support the interpretation that the release of alates in these termites is simultaneous among colonies in a given area, is of short duration, and oc curs rather infrequently. Not many species of termitophiles have been found with termites of the genus Micro cerotermes Silvestri (Amitermitinae) or even from the genera related to Microcerotermes such as Amphidotermes or Globitermes (Ahmad 1950). Only 1 species of staphylinid has been previously recorded and that species is Termitochara kraatzi Wasmann which was collected with Microcerotermes sikorae (Wasmann) from Madagascar (Seevers 1957). The same species of termitophile has also been recorded from a nest of Capritermes capricor- nis (Wasmann), which belongs to an entirely different subfamily (Termitinae), by Was mann (1893). No one really believes either of these termites is the true host of the species as the nearest relatives of Termitochara are found principally with the Nasutiter- mitinae. It was therefore a real pleasure to open up a Microcerotermes nest and find numerous staphylinids there, particularly when opening up nests of the same genus in Africa had never yielded any staphylinids. -
Ant‐Termite Interactions
Biol. Rev. (2020), 95, pp. 555–572. 555 doi: 10.1111/brv.12577 Ant-termite interactions: an important but under-explored ecological linkage Jiri Tuma1,2,3* , Paul Eggleton4 and Tom M. Fayle1,5 1Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic 2Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Ceske Budejovice, Czech Republic 3Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic 4Life Sciences Department, Natural History Museum, London, UK 5Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia ABSTRACT Animal interactions play an important role in understanding ecological processes. The nature and intensity of these inter- actions can shape the impacts of organisms on their environment. Because ants and termites, with their high biomass and range of ecological functions, have considerable effects on their environment, the interaction between them is important for ecosystem processes. Although the manner in which ants and termites interact is becoming increasingly well studied, there has been no synthesis to date of the available literature. Here we review and synthesise all existing literature on ant– termite interactions. We infer that ant predation on termites is the most important, most widespread, and most studied type of interaction. Predatory ant species can regulate termite populations and subsequently slow down the decomposi- tion of wood, litter and soil organic matter. As a consequence they also affect plant growth and distribution, nutrient cycling and nutrient availability. Although some ant species are specialised termite predators, there is probably a high level of opportunistic predation by generalist ant species, and hence their impact on ecosystem processes that termites are known to provide varies at the species level. -
Stable Isotope Methods in Biological and Ecological Studies of Arthropods
eea_572.fm Page 3 Tuesday, June 12, 2007 4:17 PM DOI: 10.1111/j.1570-7458.2007.00572.x Blackwell Publishing Ltd MINI REVIEW Stable isotope methods in biological and ecological studies of arthropods CORE Rebecca Hood-Nowotny1* & Bart G. J. Knols1,2 Metadata, citation and similar papers at core.ac.uk Provided by Wageningen University & Research Publications 1International Atomic Energy Agency (IAEA), Agency’s Laboratories Seibersdorf, A-2444 Seibersdorf, Austria, 2Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands Accepted: 13 February 2007 Key words: marking, labelling, enrichment, natural abundance, resource turnover, 13-carbon, 15-nitrogen, 18-oxygen, deuterium, mass spectrometry Abstract This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can be used to understand fundamental processes in the biology and ecology of arthropods, which range from nutrition and resource allocation to dispersal, food-web structure, predation, etc. It is concluded that falling costs and reduced complexity of isotope analysis, besides the emergence of new analytical methods, are likely to improve access to isotope technology for arthropod studies still further. Stable isotopes pose no environmental threat and do not change the chemistry or biology of the target organism or system. These therefore represent ideal tracers for field and ecophysiological studies, thereby avoiding reductionist experimentation and encouraging more holistic approaches. Con- sidering (i) the ease with which insects and other arthropods can be marked, (ii) minimal impact of the label on their behaviour, physiology, and ecology, and (iii) environmental safety, we advocate more widespread application of stable isotope technology in arthropod studies and present a variety of potential uses. -
Evaluation of the Chemical Defense Fluids of Macrotermes Carbonarius
www.nature.com/scientificreports OPEN Evaluation of the chemical defense fuids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides S. Appalasamy1,2*, M. H. Alia Diyana2, N. Arumugam2 & J. G. Boon3 The use of chemical insecticides has had many adverse efects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fuid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC– MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography–mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained fve insecticidal and three repellent compounds. The most obvious fnding was that G. sulphureus defense fuid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fuids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fuid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products. A termite infestation could be silent, but termites are known as destructive urban pests that cause structural damage by infesting wooden and timber structures, leading to economic loss. -
Download Download
J. Ent. Acarol. Res. 30 September 2011 Ser. II, 43 (2): 99-106 L. MAISTRELLO, J. D’ILARIO, G. BICHERON, C. BOULEAU Damage by insect pests to the Djingarey Ber Mosque in Timbuktu: detection and control Abstract - The Djingarey Ber Mosque in Timbuktu (Mali) is one of the most sig- nificant earthen construction in West Africa. Originally constructed in 1327, it was included in 1988 on the World Heritage UNESCO List for its unique architecture and historical importance. During its restoration, recently undertaken by the Aga Khan Trust for Culture, the wooden parts of the roof and architraves showed clear signs of threatening insect presence. In order to identify the pests responsible of the damage, evaluate its extent and suggest a proper control strategy, a detailed survey was performed inside the Mosque complex and in its immediate surround- ings. The entomological inspection, performed in the dry-cold season, allowed to detect signs of insect damage in most of the wooden elements, even in the recently replaced beams, but also in walls, pillars and the precious decorated panels. Dam- ages in the wood elements could be attributed to Amitermes evuncifer Silvestri (Termitidae), Bostrychoplites zycheli Marseuli (Bostrichidae) and Lyctus africanus Lesne (Lyctidae), which were collected alive on site. Injures in the walls and deco- rated panels appeared to be performed by hymenopterans such as “plasterer bees” (Colletidae) and Sphecidae. From the evaluation of the type and extent of damage in relation to the architecture and materials used in its construction and decoration, the most serious pest and the worse threat for the mosque is represented by ter- mites. -
Smithsonian Miscellaneous Collections
Ubr.C-ff. SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 143, NO. 3 SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO I960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution (Publication 4463) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION DECEMBER 29, 1961 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 143, NO. 3 SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO 1960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution ><%<* Q (Publication 4463) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION DECEMBER 29, 1961 PORT CITY PRESS, INC. BALTIMORE, NID., U. S. A. CONTENTS Pagre Introduction i Acknowledgments i List of subject headings 2 Subject headings 3 List of authors and titles 72 Index 115 m SUPPLEMENT TO THE ANNOTATED, SUBJECT-HEADING BIBLIOGRAPHY OF TERMITES 1955 TO 1960 By THOMAS E. SNYDER Honorary Research Associate Smithsonian Institution INTRODUCTION On September 25, 1956, an "Annotated, Subject-Heading Bibliography of Ter- mites 1350 B.C. to A.D. 1954," by Thomas E. Snyder, was published as volume 130 of the Smithsonian Miscellaneous Collections. A few 1955 papers were included. The present supplement covers publications from 1955 through i960; some 1961, as well as some earlier, overlooked papers, are included. A total of 1,150 references are listed under authors and tides, and 2,597 references are listed under subject headings, the greater number being due to cross references to publications covering more than one subject. New subject headings are Radiation and Toxicology. ACKNOWLEDGMENTS The publication of this bibliography was made possible by a grant from the National Science Foundation, Washington, D.C. -
Formate Dehydrogenese Gene Phylogeny in Higher Termites
3-1 Formate dehydrogenese gene phylogeny in higher termites suggests gut microbial communities have undergone an evolutionary bottleneck, convergent evolution, and invasion Abstract The majority of termites and termite species on the planet belong to the phylogenetically ‘higher’ termite family Termitidae. Higher termites thrive on diverse lignocellulosic substrates with the aid of symbiotic gut microbiota. H2 consuming CO2 reductive acetogenic bacteria are an important group of symbionts that produce a significant fraction of the acetate used by their insect host as its primary carbon and energy source. A recent metagenomic analysis of the hindgut paunch bacterial community of a wood- feeding higher termite suggested spirochetes are the dominant acetogens in higher termites, as they appear to be in phylogenetically lower termites. However, a certain genetic feature of actogenesis in higher termites was not resolved. Genes for hydrogenase-linked formate dehydrogenase (FDHH), an enzyme implicated in H2 turnover and CO2 fixing capacities of a termite gut acetogenic spirochete isolate and many uncultured lower termite gut acetogens, were notably depleted with respect to abundance and diversity relative to other acetogenesis genes in the metagenome and the gut communities of lower termites. Here, we use FDHH primers to determine whether higher termite gut communities are as poor in FDHH genes as previous data suggest. We 3-2 report that each and every FDHH gene inventory generated from the whole gut communities of 8 species of taxonomically and nutritionally diverse higher termites (subfamilies Nasutitermitinae and Termitinae) was considerably more diverse than the metagenomic data set (4-15 phylotypes versus 1 phylotype), indicating the near absence of FDHH genes in the metagenomic data set may result from artifacts of sampling or methodology. -
Termitidae, Termitinae) Castes and Colonies: a Modelling Approach
RESEARCH ARTICLE The Distribution of Wolbachia in Cubitermes (Termitidae, Termitinae) Castes and Colonies: A Modelling Approach Virginie Roy1, Marc Girondot2, Myriam Harry3* 1 iEES—Institut d’écologie et des sciences de l’environnement de Paris, Département SOLéO, Université Paris-Est Créteil, Faculté des Sciences et Technologie, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France, 2 Laboratoire d’Ecologie, Systématique et Evolution, Département d’Ecologie des Populations et des Communautés, Université Paris-Sud 11, Bâtiment 362, 91405 Orsay Cedex, France, 3 Laboratoire Evolution, Génomes et Spéciation, UPR 9034 CNRS, UR 072 IRD, Université Paris Sud-11, avenue de la Terrasse, Bâtiment 13, 91198 Gif sur Yvette, France/ UFR de Sciences, Université Paris-Sud 11, 91400 Orsay, France a11111 * [email protected] Abstract Wolbachia are endosymbiotic bacteria of arthropods and nematodes that are able to manipu- OPEN ACCESS late host reproduction. Although vertically transmitted via the cytoplasm in eggs, horizontal Citation: Roy V, Girondot M, Harry M (2015) The transmission of Wolbachia among and within arthropod species has been shown to be com- Distribution of Wolbachia in Cubitermes (Termitidae, Termitinae) Castes and Colonies: A Modelling mon. Eusocial insects represent interesting models for studying Wolbachia transmission due Approach. PLoS ONE 10(2): e0116070. doi:10.1371/ to colonial organization and close interaction between nestmates. Here we conducted a de- journal.pone.0116070 tailed screening of Wolbachia infection for 15 colonies of the very common soil-feeding ter- Academic Editor: Kostas Bourtzis, International mites Cubitermes spp. affinis subarquatus (Termitidae, Termitinae) that consist of four Atomic Energy Agency, AUSTRIA distinct phylogenetic species in the Lopé forest Reserve, Gabon. -
Isoptera, Termitidae, Termitinae)
A peer-reviewed open-access journal ZooKeys 340: 107–117 (2013) Redescription of Genuotermes 107 doi: 10.3897/zookeys.340.6131 REVIEW ARTICLE www.zookeys.org Launched to accelerate biodiversity research Redescription of the enigmatic genus Genuotermes Emerson (Isoptera, Termitidae, Termitinae) Mauricio M. Rocha1 1 Museu de Zoologia da Universidade de São Paulo, Cx. Postal 42.494, 04218-970 São Paulo, SP, Brasil Corresponding author: Mauricio M. Rocha ([email protected]) Academic editor: E. Cancello | Received 21 August 2013 | Accepted 29 September 2013 | Published 4 October 2013 Citation: Rocha MM (2013) Redescription of the enigmatic genus Genuotermes Emerson (Isoptera, Termitidae, Termitinae). ZooKeys 340: 107–117. doi: 10.3897/zookeys.340.6131 Abstract The imago and soldier castes of the Neotropical Termitinae species Genuotermes spinifer Emerson are redescribed. The gut anatomy of the worker is described in detail for the first time, and morphological variations in the soldier are noted and illustrated. The known geographical distribution of G. spinifer is greatly expanded. Keywords Taxonomy, morphology, worker gut anatomy, new distributional records, Neotropical region Introduction The subfamily Termitinae is represented in the Neotropical region by 18 genera and 96 species (Constantino 2013). Some Neotropical Termitinae genera were recently revised, and the remaining genera are very heterogeneous and poorly defined, much in need of redefinition of the specific limits. The genus Genuotermes was first described by Emerson (1950) from a single soldier specimen collected under a log in the municipality of Corumbá, state of Mato Grosso do Sul, Brazil. Later, Mathews (1977) collected specimens of Genuotermes spinifer Em- erson, the type-species of Genuotermes, inside Cornitermes nests in the Serra do Ronca- dor, state of Mato Grosso, and described the imago and worker caste and redescribed the soldier caste, based on external morphological characters. -
Structure, Function and Evolution of the Labral and Frontal Glands in Termites Valeria Danae Palma Onetto
Structure, function and evolution of the labral and frontal glands in termites Valeria Danae Palma Onetto To cite this version: Valeria Danae Palma Onetto. Structure, function and evolution of the labral and frontal glands in termites. Populations and Evolution [q-bio.PE]. Université Sorbonne Paris Cité, 2019. English. NNT : 2019USPCD027. tel-03033808 HAL Id: tel-03033808 https://tel.archives-ouvertes.fr/tel-03033808 Submitted on 1 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS 13, SORBONNE PARIS CITÉ ECOLE DOCTORALE GALILEÉ THESE présentée pour l’obtention du grade de DOCTEUR DE L’UNIVERSITE PARIS 13 Spécialité: Ethologie Structure, function and evolution Defensiveof the labral exocrine and glandsfrontal glandsin termites in termites Présentée par Valeria Palma–Onetto Sous la direction de: David Sillam–Dussès et Jan Šobotník Soutenue publiquement le 28 janvier 2019 JURY Maria Cristina Lorenzi Professeur, Université Paris 13 Présidente du jury Renate Radek Professeur, Université Libre de Berlin Rapporteur Yves Roisin Professeur, -
NOTES on GRALLATOTERMES GRALLATOR (DESNEUX) and the TAXONOMIC STATUS of the GENUS GRALLATOTERMES (Isoptera : Termitidae : Nasutitermitinae)
Pacific Insects 13 (1) : 41-48 15 June 1971 NOTES ON GRALLATOTERMES GRALLATOR (DESNEUX) AND THE TAXONOMIC STATUS OF THE GENUS GRALLATOTERMES (Isoptera : Termitidae : Nasutitermitinae) By F. J. Gay1 Abstract: The alate caste of Grallatotermes grallator (Desneux) from New Guinea is described, and additional data are presented on the soldier and worker castes, as well as on the biology and distribution of this species. The taxonomic status of the genus Grallatotermes is examined and it is concluded that, on present evidence, the concept that it is a complex of 4 genera is untenable. In 1905 Desneux described a number of termites collected in New Guinea by L. Biro, and made special reference to 1 species, Termes grallator, as "representing a parallel type to the group of long-legged nasute-species of the Indo-malayan fauna (T. monoceros Kon. etc.) : like the latter, this species travels in the day-time, and possesses long legs and antennae." This species, which was known only from soldiers and workers, was placed in a new subgenus, Grallatotermes, of the genus "Eutermes" by Holmgren in 1912, and this subgenus was elevated to full generic rank by Light in 1930 when he described all castes of a second species, G. admirabilus. The only reproductive castes of Grallatotermes that have been described so far are the winged adults of G. admirabilus and G. africanus Harris and a dealated queen of G. weyeri Kemner. A recent collection of all castes of G. grallator from the Bulolo area of New Guinea has provided material for the description of the winged adult of this species. -
The Nature of Alarm Communication in Constrictotermes Cyphergaster (Blattodea: Termitoidea: Termitidae): the Integration of Chemical and Vibroacoustic Signals Paulo F
© 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 1649-1659 doi:10.1242/bio.014084 RESEARCH ARTICLE The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals Paulo F. Cristaldo1,*, Vojtĕch Jandák2, Kateřina Kutalová3,4,5, Vinıciuś B. Rodrigues6, Marek Brothánek2, Ondřej Jiřıć̌ek2, Og DeSouza6 and Jan Šobotnıḱ3 ABSTRACT INTRODUCTION Predation and competition have long been considered major ecological Alarm signalling is of paramount importance to communication in all factors structuring biotic communities (e.g. Shurin and Allen, 2001). In social insects. In termites, vibroacoustic and chemical alarm signalling many taxa, a wide range of defensive strategies have evolved helping are bound to operate synergistically but have never been studied organisms to deal with costs imposed by such interactions. Strategies simultaneously in a single species. Here, we inspected the functional consist in combining mechanical (biting, kicking, fleeing) and/or significance of both communication channels in Constrictotermes chemical (toxic or repellent compounds) arsenal with an effective cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis alarm communication. The ability to give and perceive conspecific that these are not exclusive, but rather complementary processes. In signalling about imminent threats has attained maximum complexity natural situations, the alarm predominantly attracts soldiers, which in social groups, such as vertebrates (Manser, 2001, 2013) and insects actively search for the source of a disturbance. Laboratory testing (Blum, 1985; Hölldobler, 1999; Hölldobler and Wilson, 2009). revealed that the frontal gland of soldiers produces a rich mixture of In termites, one facet of such complexity is represented by the terpenoid compounds including an alarm pheromone.