Issues in Environmental Science and Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FOODINTEGRITY Ensuring the Integrity of the European Food Chain
FOODINTEGRITY Ensuring the Integrity of the European food chain 613688: Collaborative Project Seventh Framework Programme KBBE.2013.2.4-01: Assuring quality and authenticity in the food chain Deliverable: 14.1 Title: Report on development of chemical and metabolomic markers of product integrity and stability along processing. Author(s): Baroni, María Verónica; Erban, Alexander; Kopka, Joachim; Wunderlin, Daniel Beneficiary(s): Food Integrity Consortia Date of preparation: September 21th 2017. Period covered: November-2016; August-2017 Status: version 1 Dissemination level PU Public X PP Restricted to other participants RE Restricted to a group specified by the consortium CO Confidential, only members of the consortium The project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 613688. Deliverable 14.1, version 1, 21‐09‐2017 Deliverable 14.1 Report on development of chemical and metabolomic markers of product integrity and stability along processing. TABLE OF CONTENTS Page Nr. 1 Description of Deliverable 3 2 Achievement of the Deliverable 3 2.1 Chemical fractionation and profiling of seeds for the discovery of potential chemical markers by GC-MS (MPIMP). 3 2.1.1 Seed selection (EU market). 3 2.1.2 Fractionation scheme to evaluate chemical markers in seeds 4 2.1.3 Evaluation of chemical markers in seeds by GC-MS and chemometrics 5 2.2 Chemical fractionation and profiling of seeds, and bakery products containing seeds, for the discovery of potential chemical markers by LC-MS (CONICET-ICYTAC). 10 2.2.1 Seed sampling, extraction and analytical procedures (AR mark et). -
How to Create Your Own Environmental Emphasis
HOW TO CREATE YOUR OWN ENVIRONMENTAL EMPHASIS 2019 ENVIRONMENTAL STUDIES PROGRAM, UCSB 2020 Because of the interdisciplinary design of the B.A. and B.S. Environmental Studies major requirements students are afforded the opportunity to customize their upper-division electives (Area B) and outside concentration (Area C) to create a distinct environmental emphasis or concentration unique to their personal and professional goals and needs. Students may choose from a wide selection of courses from the ES Program as well as departments across campus. This information sheet demonstrates how one may create a personalized concentration by offering some example emphases popular with current ES students. Although one may choose to follow one of the emphases included here, they are SUGGESTIVE ONLY! One may satisfy their major requirements with any combination of applicable courses/units as long as they form a coherent and comprehensive emphasis. Be sure to review the upper-division ES major requirements below before starting an emphasis. A Request to Petition Degree Requirements will be required to apply courses from multiple departments towards the Area C, and can be download here: www.es.ucsb.edu/degreerequirements Please Note: Pursuing an environmental emphasis as part of your Area B & C requirements can help prepare students for a specialized field or profession. However, one’s interdisciplinary emphasis will not be officially noted on their diploma or transcripts. One can highlight their emphasis on their resume and/or cover letter. Please consult an ES Academic Advisor (Bren Hall 4L, Rm. 4312 or 4313) if you have any questions. Review of ES Degree’s Upper-division Requirements: B.A. -
Supplementary Information
Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262 -
Natural Products As Alternative Choices for P-Glycoprotein (P-Gp) Inhibition
Review Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition Saikat Dewanjee 1,*, Tarun K. Dua 1, Niloy Bhattacharjee 1, Anup Das 2, Moumita Gangopadhyay 3, Ritu Khanra 1, Swarnalata Joardar 1, Muhammad Riaz 4, Vincenzo De Feo 5,* and Muhammad Zia-Ul-Haq 6,* 1 Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India; [email protected] (T.K.D.); [email protected] (N.B.); [email protected] (R.K.); [email protected] (S.J.) 2 Department of Pharmaceutical Technology, ADAMAS University, Barasat, Kolkata 700126, India; [email protected] 3 Department of Bioechnology, ADAMAS University, Barasat, Kolkata 700126, India; [email protected] 4 Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan; [email protected] 5 Department of Pharmacy, Salerno University, Fisciano 84084, Salerno, Italy 6 Environment Science Department, Lahore College for Women University, Jail Road, Lahore 54600, Pakistan * Correspondence: [email protected] (S.D.); [email protected] (V.D.F.); [email protected] (M.Z.-U.-H.) Academic Editor: Maria Emília de Sousa Received: 11 April 2017; Accepted: 15 May 2017; Published: 25 May 2017 Abstract: Multidrug resistance (MDR) is regarded as one of the bottlenecks of successful clinical treatment for numerous chemotherapeutic agents. Multiple key regulators are alleged to be responsible for MDR and making the treatment regimens ineffective. In this review, we discuss MDR in relation to P-glycoprotein (P-gp) and its down-regulation by natural bioactive molecules. P-gp, a unique ATP-dependent membrane transport protein, is one of those key regulators which are present in the lining of the colon, endothelial cells of the blood brain barrier (BBB), bile duct, adrenal gland, kidney tubules, small intestine, pancreatic ducts and in many other tissues like heart, lungs, spleen, skeletal muscles, etc. -
Ecological and Environmental Chemistry
CHEMISTRY JOURNAL OF MOLDOVA. General, Industrial and Ecological Chemistry. 2017, 12(1), 9-19 ISSN (p) 1857-1727 ISSN (e) 2345-1688 http://cjm.asm.md http://dx.doi.org/10.19261/cjm.2017.427 ECOLOGICAL AND ENVIRONMENTAL CHEMISTRY Nowadays, our human civilization existing of industrial and humanitarian aspects of life, to on Earth faces a series of top importance defend against the cosmic threats, etc. People challenges that represent direct impact on its have to harmonize their relations with nature, to existence and development, both industrial and ensure the long-term and sustainable life of their social. All the natural compartments and their civilization, under conditions of rapid changes in components are subjected to the strong and technology, sciences, social life, natural processes unprecedented anthropogenic influence, including and permanently emerging challenges. lithosphere, soil, surface and ocean water, In the previous years of progressively atmosphere, vegetal and animal world. increasing industrial development (XVIII - Anthropogenic activities has reached such high mid-XX centuries), practically no attention was proportions that provoke the changes in the paid to the danger of deliberated interference of energy (heat) balance of certain regions and man into the material processes occurring on the planet as a whole that can affect the climate, planet. Along the decades, the scientists increase of water level in oceans and seas, considered the nature possessing the unlimited flooding of large areas. capacity to compensate the anthropogenic Almost, all the ecosystems and natural impacts. However, even centuries ago, the facts of compartments are affected by the anthropogenic irreversible changes in environment as a result of pollution. -
Smoke and Mirrors Are Not the Solu- Tion to Global Warming Alan Robock (Rutgers University, [email protected])
Royal Society of Chemistry—Environmental Chemistry Group—Bulletin—July 2016 19 DGL Article Smoke and mirrors are not the solu- tion to global warming Alan Robock (Rutgers University, [email protected]) Geoengineering is the “deliberate large- scale manipulation of the planetary environment to counteract anthropogenic climate change” (1). Proposed schemes include carbon dioxide reduction (CDR) and radiation management (RM). CDR technology exists but is very expensive, and no facilities exist for doing it on a large scale. It presents very different engineering, scientific, governance, and ethical issues than RM. Here I focus on the most studied proposed RM scheme, artificial creation of stratospheric aerosol clouds. I use the term “geoengineering” to refer to that scheme (2). Geoengineering is currently impossible. The technology does not exist, and there are serious questions as to whether it would be possible to create a cloud in the stratosphere that would have the desired effects. We can investigate the impacts of a geoengineering intervention Figure 1. Proposed methods of stratospheric aerosol by using analogues, in particular volcanic eruptions, to injection. A mountain top location would require less explore some of the resulting benefits and risks. We can energy for lofting to stratosphere. Drawing by Brian also use climate models, that is, computer simulations West. Reprinted with permission from (5). that calculate the climate response to geoengineering scenarios. These are the same models that we use for African summer monsoons, reducing precipitation to the weather forecasting and global warming climate food supply for billions of people; ozone depletion; no simulations. They are validated with simulations of past more blue skies; reduction of solar power; and rapid climate, in particular the response to volcanic eruptions. -
Green Chemistry
Green Chemistry View Article Online PERSPECTIVE View Journal | View Issue Education in green chemistry and in sustainable chemistry: perspectives towards sustainability Cite this: Green Chem., 2021, 23, 1594 Vânia G. Zuin, *a,b,c Ingo Eilks, d Myriam Elschami c,e and Klaus Kümmerer c,e Innovation in green and sustainable technologies requires highly qualified professionals, who have critical, inter/transdisciplinary and system thinking mindsets. In this context, green chemistry education (GCE) and sustainable chemistry education (SCE) have received increasing attention, especially in recent years. However, gaps remain in further understanding the historical roots of green chemistry (GC) and sustain- able chemistry (SC), their differences, similarities, as well the implications of this wider comprehension into curricula. Building on existing initiatives, further efforts are needed at all levels to mainstream GCE and SCE into chemistry and other education curricula and teaching, including gathering and disseminating best practices and forging new and strengthened partnerships at the national, regional and global levels. Creative Commons Attribution 3.0 Unported Licence. Received 1st October 2020, The latest perspectives for education and capacity building on GC and towards SC will be presented, Accepted 22nd January 2021 demonstrating their crucial role to transform human resources, institutional and infrastructural settings in DOI: 10.1039/d0gc03313h all sectors on a large scale, to generate effective cutting-edge knowledge that can be materialised in rsc.li/greenchem greener and more sustainable products and processes in a challenging world. 1. Historical perspective on the struct. We cannot change behaviour and properties of chemicals ff under given conditions. How they do this is according to their similarities and di erences of green nature. -
Environmental Chemistry
Narrative for a Lecture on Environmental Chemistry Slide 1: Environmental chemistry is that branch of chemical science that deals with the production, transport, reactions, effects, and fates of chemical species in the water, air, terrestrial, and biological environment and the effects of human activities thereon. ENVIRONMENTAL CHEMISTRY Environmental chemistry is that branch of chemical science that deals with the production, transport, reactions, effects, and fates of chemical species in the water, air, terrestrial, and biological environments and the effects of human activities thereon. Reference: Stanley E. Manahan, Fundamentals of Environmental Chemistry, 3rd ed., Taylor & Francis/CRC Press, 2009 ([email protected]) For additional information about environmental chemistry and to download this and other presentations see: http://sites.google.com/site/manahan1937/Home http://manahans1.googlepages.com/ Slide 2: The definition of environmental chemistry is illustrated with a typical pollutant species. In this case sulfur in coal is oxidized to sulfur dioxide gas that is emitted to the atmosphere. The sulfur dioxide gas can be oxidized to sulfuric acid by atmospheric chemical processes, fall back to Earth as acid rain, affect a receptor such as plants, and end up in a "sink" such as a body of water or soil. ILLUSTRATION OF THE DEFINITION OF ENVIRONMENTAL CHEMISTRY 1 SO2 + /2O2 + H2O H2SO4 SO2 H2SO4 S(coal) + O2 SO2 H2SO4, sulfates Slide 3: In the past many environmental problems were caused by practices that now seem to be totally unacceptable as expressed from the quote in this slide from what was regarded as a reputable book on the American chemical industry in 1954. -
Enterolactone Induces Apoptosis in Human Prostate Carcinoma Lncap Cells Via a Mitochondrial-Mediated, Caspase-Dependent Pathway
2581 Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway Li-Hua Chen,1 Jing Fang,1 Huaixing Li,1 United States and China (1, 2). Diet is considered a primary Wendy Demark-Wahnefried,2 and Xu Lin1 factor contributing to the huge differential in the preva- lence of prostatic carcinoma (3). Although there are several 1 Institute for Nutritional Sciences, Shanghai Institutes for dietary factors that may be important for this disease, we Biological Sciences, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Shanghai, China; propose a study that specifically focuses on dietary lignans and 2School of Nursing and Department of Surgery, Duke because the traditional plant-based diet in Asia is rich University Medical Center, Durham, North Carolina in lignans as compared with the omnivorous diet of the United States and Northern Europe (4). Moreover, our previous studies suggest an inhibitory effect of this Abstract phytochemical on prostate cancer growth (5). The mammalian lignan enterolactone is a major metabolite Dietary lignans have phytoestrogenic properties (6) and of plant-based lignans that has been shown to inhibit the are broadly available in cereals, legumes, fruits, vegetables, growth and development of prostate cancer. However, and grains, with the highest concentration in flaxseed and little is known about the mechanistic basis for its anti- sesame seeds (7, 8). Plant-based lignans, secoisolariciresinol cancer activity. In this study, we report that enterolactone and matairesinol, are converted by the intestinal microflora selectively suppresses the growth of LNCaP prostate to mammalian lignans of enterodiol and enterolactone, the cancer cells by triggering apoptosis. -
The Role of Green Chemistry in Controlling Environmental and Ocean Pollution
International Journal of Oceans and Oceanography ISSN 0973-2667 Volume 11, Number 2 (2017), pp. 217-229 © Research India Publications http://www.ripublication.com The Role of Green Chemistry in Controlling Environmental and Ocean Pollution Rummi Devi Saini Department of Chemistry, SMDRSD College Pathankot-145001, India Abstract Chemistry brought revolution till about the middle of 20th century. In this era, drugs and anti-biotics were discovered. The world’s food supply also increased enormously due to the discovery of hybrid varieties, improved methods of farming, better seeds and use of insecticides, herbicides and fertilizers. Soon the advancement of chemistry started showing its ill-effects [1]. The use of toxic reactants and reagents also make the situation worse. The gaseous, particulate substances, solvents and heat added to the environment due to laboratory and industrial chemical processes, reach directly or indirectly by incorporating in precipitation to oceans if these persist in the environment for long time. As a result these cause harm to both territorial and aquatic life. Long lived gases such as CO2, SO2, nitrogen oxides gets dissolved in ocean water causing its acidification which has been recently recognized as threat to marine organisms especially marine calcifies. At this stage, the beginning of Green Chemistry was marked. Green Chemistry is defined as environmentally benign chemistry. Green chemistry is one of the most explored topics these days. Main research on green chemistry aims to minimize or eliminate the formation of harmful bi-products and to maximize the desired products in an environment friendly way. The three main developments in green chemistry include the use of super critical carbon dioxide, water as green solvent, aqueous hydrogen peroxide as an oxidizing agent and use of hydrogen in asymmetric synthesis. -
Phenolic Compounds in Cereal Grains and Their Health Benefits
and antioxidant activity are reported in the Phenolic Compounds in Cereal literature. Unfortunately, it is difficult to make comparisons of phenol and anti- Grains and Their Health Benefits oxidant activity levels in cereals since different methods have been used. The ➤ Whole grain cereals are a good source of phenolics. purpose of this article is to give an overview ➤ Black sorghums contain high levels of the unique 3-deoxyanthocyanidins. of phenolic compounds reported in whole ➤ Oats are the only source of avenanthramides. grain cereals and to compare their phenol and antioxidant activity levels. ➤ Among cereal grains, tannin sorghum and black rice contain the highest antioxidant activity in vitro. Phenolic Acids Phenolic acids are derivatives of benzoic and cinnamic acids (Fig. 1) and are present in all cereals (Table I). There are two Most of the literature on plant phenolics classes of phenolic acids: hydroxybenzoic L. DYKES AND L. W. ROONEY focuses mainly on those in fruits, acids and hydroxycinnamic acids. Hy- TEXAS A&M UNIVERSITY vegetables, wines, and teas (33,50,53,58, droxybenzoic acids include gallic, p- College Station, TX 74). However, many phenolic compounds hydroxybenzoic, vanillic, syringic, and in fruits and vegetables (i.e., phenolic acids protocatechuic acids. The hydroxycinna- esearch has shown that whole grain and flavonoids) are also reported in cereals. mic acids have a C6-C3 structure and Rconsumption helps lower the risk of The different species of grains have a great include coumaric, caffeic, ferulic, and cardiovascular disease, ischemic stroke, deal of diversity in their germplasm sinapic acids. The phenolic acids reported type II diabetes, metabolic syndrome, and resources, which can be exploited. -
Environmental Sciences 1
Environmental Sciences 1 ENVIRONMENTAL SCIENCES Emerita Associate Professor: Jane Roberts Specific Requirements for Admission to the Program Director: Mary Ann Vinton Environmental Science Major Program Office: Hixson-Lied Science Building, Room 438 and Creighton • Successful completion of EVS 113 Introduction To Atmospheric Hall 110 Sciences or BIO 201 General Biology: Organismal and Population The Environmental Science Program approaches environmental issues or CHM 203 General Chemistry I and CHM 204 General Chemistry I from a strong natural science perspective yet transcends disciplinary Laboratory. boundaries and prepares students to analyze and solve complex problems with scientific, societal and ethical dimensions. The program Majors in Environmental Sciences is interdepartmental, with 19 faculty from eight departments: Biology, • B.S. Evs., Environmental Science: Global and Environmental Systems Chemistry, Communication Studies, Cultural and Social Studies, History, Track (http://catalog.creighton.edu/undergraduate/arts-sciences/ Philosophy, Physics and Political Science. environmental-sciences/environmental-science-global-environmental- systems-bsevs/) The major produces well-rounded scientists with the background and • B.S. Evs., Environmental Science: Organismal/Population Ecology skills necessary to enter graduate degree programs or gain employment Track (http://catalog.creighton.edu/undergraduate/arts-sciences/ in diverse environmental careers such as conservation biology, natural environmental-sciences/environmental-science-organismal-