Enterolactone Induces Apoptosis in Human Prostate Carcinoma Lncap Cells Via a Mitochondrial-Mediated, Caspase-Dependent Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Enterolactone Induces Apoptosis in Human Prostate Carcinoma Lncap Cells Via a Mitochondrial-Mediated, Caspase-Dependent Pathway 2581 Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway Li-Hua Chen,1 Jing Fang,1 Huaixing Li,1 United States and China (1, 2). Diet is considered a primary Wendy Demark-Wahnefried,2 and Xu Lin1 factor contributing to the huge differential in the preva- lence of prostatic carcinoma (3). Although there are several 1 Institute for Nutritional Sciences, Shanghai Institutes for dietary factors that may be important for this disease, we Biological Sciences, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Shanghai, China; propose a study that specifically focuses on dietary lignans and 2School of Nursing and Department of Surgery, Duke because the traditional plant-based diet in Asia is rich University Medical Center, Durham, North Carolina in lignans as compared with the omnivorous diet of the United States and Northern Europe (4). Moreover, our previous studies suggest an inhibitory effect of this Abstract phytochemical on prostate cancer growth (5). The mammalian lignan enterolactone is a major metabolite Dietary lignans have phytoestrogenic properties (6) and of plant-based lignans that has been shown to inhibit the are broadly available in cereals, legumes, fruits, vegetables, growth and development of prostate cancer. However, and grains, with the highest concentration in flaxseed and little is known about the mechanistic basis for its anti- sesame seeds (7, 8). Plant-based lignans, secoisolariciresinol cancer activity. In this study, we report that enterolactone and matairesinol, are converted by the intestinal microflora selectively suppresses the growth of LNCaP prostate to mammalian lignans of enterodiol and enterolactone, the cancer cells by triggering apoptosis. Mechanistic studies major forms in the biological fluids of humans and animals showed that enterolactone-induced apoptosis was char- (ref. 9; Fig. 1A). Enterolactone was reported to inhibit acterized by a dose-dependent loss of mitochondrial mem- mammary carcinogenesis in rats (10), and enterolactone, c brane potential, release of cytochrome and cleavage of enterodiol, and other mammalian lignan derivatives were procaspase-3 and poly(ADP-ribose)-polymerase (PARP). also found to suppress breast and colon cancer cell growth Caspase dependence was indicated by the ability of the pan- in vitro (11, 12). caspase inhibitor z-VAD-fmk to attenuate enterolactone- The association between enterolactone and prostate mediated apoptosis. Mechanistic studies suggested roles for cancer risk in epidemiologic studies is limited and remains B Akt, GSK-3 , MDM2, and p53 in enterolactone-dependent controversial. Kilkkinen et al. (13) reported the results from apoptosis. Our findings encourage further studies of enter- a nested case-control study, in which serum enterolactone olactone as a promising chemopreventive agent against levels were not significantly different between prostate prostate cancer. [Mol Cancer Ther 2007;6(9):2581–90] cancer patients and controls. In contrast, in a recent population-based study from Sweden, Hedelin et al. (14) Introduction found that serum levels of enterolactone were inversely Prostatic carcinoma is the second most frequently diagnosed associated with prostate cancer risk. However, due to the cancer worldwide and is one of the major life-threatening limited availability of purified lignans, only a few studies diseases among men (1). Although the incidence of latent have investigated the causal relationship between lignans prostate cancer is similar across all ethnic populations, and prostate cancer. Demark-Wahnefried et al. (15) there is an 80-fold difference in incidence and a 16-fold observed lower rates of proliferation and higher rates of difference in mortality of prostate cancer between the apoptosis in the tumors of patients following a flaxseed- supplemented, fat-modified diet before prostatectomy; they also found suppressed levels of total and free testosterone from baseline to follow-up. Reduced free Received 3/29/07; revised 6/7/07; accepted 7/18/07. androgen index was also reported by Dalais et al. (16) in Grant support: National Natural Science Foundation of China (Grant 30371209), the Innovation Direction Projects of the Chinese Academy patients treated with flaxseed and soy grits. Our previous of Sciences (KSCX2-2-25), Science and Technology Commission of animal study also showed that 5% flaxseed supplementa- Shanghai Municipality (Grant 04DZ14007), and the National Cancer Institute (R01 CA85740). tion significantly inhibited tumor burden and malignancy The costs of publication of this article were defrayed in part by the in male transgenic adenocarcinoma mouse prostate mice payment of page charges. This article must therefore be hereby marked (17). Moreover, our in vitro study also showed that advertisement in accordance with18 U.S.C. Section 1734 solely to enterodiol and enterolactone significantly decreased cell indicate this fact. viability in three human prostate cancer cell lines, and Requests for reprints: Xu Lin, Institute for Nutritional Sciences, 294 Tai Yuan Rd., Shanghai 200031, China. Phone: 86-21-5492-0249; enterolactone was more potent than enterodiol (5). More Fax: 86-21-5492-0291. E-mail: [email protected] recently, the plant lignan 7-hydroxymatairesinol, a precur- Copyright C 2007 American Association for Cancer Research. sor of enterolactone, was found to significantly reduce doi:10.1158/1535-7163.MCT-07-0220 tumor burden in mice with LNCaP xenografts (18). Mol Cancer Ther 2007;6(9). September 2007 Downloaded from mct.aacrjournals.org on October 1, 2021. © 2007 American Association for Cancer Research. 2582 Enterolactone Induces Apoptosis in Prostate Cancer Figure 1. Enterolactone decreases cell viability in human prostate carcinoma LNCaP cells but not in human nontumorigenic prostate epithelial cells. A, chemical structure of enterolactone. B, MTT assay on LNCaP cells. C, MTT assay on human nontumorigenic prostate epithelial CRL-2221 cells. D, trypan blue dye exclusion assay on LNCaP cells. Columns, mean of three independent experiments; bars, SE. Non-corresponding letters indicate significant differences at P < 0.05. Together, the evidence from in vivo and in vitro research Materials and Methods suggests anticancer activity of lignans in prostate cancer; Reagents however, the specific mechanisms are not yet well This study used JC-1 dye (5,5¶,6,6¶-tetrachloro-1,1¶,3,3¶-tetra- understood. In general, the modulation of cell proliferation ethylbenzimidazolylcarbocyanine iodide; Molecular Probes) and apoptosis have been highlighted as key players for the and the pan-caspase inhibitor, z-VAD-fmk (Promega). We also overall efficacy of anticancer agents (19). Lower prolifera- purchased antibodies from Cell Signaling [phospho-Akt tion rates and higher apoptotic indices have been observed (Ser473), Akt, phospho–GSK-3h and phospho-MDM2], Santa in both humans and animals treated with lignan-rich diets Cruz Biotechnology [p53, MDM2, caspase-3 (cleaved), and (15, 17, 18, 20, 21). Accumulating evidence suggests that glyceraldehyde-3-phosphate dehydrogenase (GAPDH)], and reduced cancer cell apoptosis is essential for the transition BD PharMingen [cleavage site-specific poly(ADP-ribose)- of prostatic carcinoma from latent to clinically overt and polymerase (PARP) and cytochrome c]. Enterolactone, 3-(4,5- from hormone-sensitive to hormone-insensitive disease dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (22, 23). Therefore, the objective of the present study was (MTT), trypan blue dye, and other chemicals that were not to thoroughly investigate enterolactone-induced apoptosis specifically indicated were purchased from Sigma. and explore potential mechanism(s) by which enterolactone Cell Culture and Treatment inhibits prostate cancer cell survival and stimulates The androgen-dependent human LNCaP prostate cancer apoptosis. cells and human nontumorigenic CRL-2221 prostate Mol Cancer Ther 2007;6(9). September 2007 Downloaded from mct.aacrjournals.org on October 1, 2021. © 2007 American Association for Cancer Research. Molecular Cancer Therapeutics 2583 epithelial cells were obtained from American Type Culture 100 Amol/L of enterolactone for 72 h. The floating and Collection. The normal human ovarian epithelial cell line trypsinized adherent cells were collected and washed IOSE80 and hepatocyte cell line HL-7702 (gifts from with PBS. The cell pellets were resuspended in 300 ALof Dr. Dong Xie, Institute for Nutritional Sciences, Shanghai, PBS and fixed by the addition of 700 AL of ice-cold China) and LNCaP cells were cultured in RPMI 1640 ethanol at À20jC. After incubation for 30 min, the cells supplemented with 10% fetal bovine serum (FBS), were re-pelleted by centrifugation and resuspended in 10 mmol/L HEPES, and 1% penicillin and streptomycin. 0.5 mL of PBS containing 100 Ag/mL of RNase and then CRL-2221 cells were cultured in keratinocyte-SFM media incubated at 37jC for 30 min. Finally, the cells were supplemented with epidermal growth factor (0.2 ng/mL), stained with 0.5 mL of PI solution (100 Ag/mL in PBS) bovine pituitary extract (30 Ag/mL), and 1% penicillin and for 30 min. Cell cycle distribution was detected by a streptomycin (all components were purchased from Life FACScalibur flow cytometer (Becton Dickinson), and data Technologies BRL). The cells were maintained at 37jC were analyzed using the ModFit LT for Mac V1.01 in a 5% CO2 humidified incubator. Enterolactone was software. Cells with sub–G0-G1
Recommended publications
  • Lignan Accumulation in Two-Phase Cultures of Taxus X Media Hairy Roots
    Plant Cell, Tissue and Organ Culture (PCTOC) https://doi.org/10.1007/s11240-018-1390-0 ORIGINAL ARTICLE Lignan accumulation in two-phase cultures of Taxus x media hairy roots K. Sykłowska‑Baranek1 · K. Łysik1 · M. Jeziorek1 · A. Wencel1 · M. Gajcy1 · A. Pietrosiuk1 Received: 3 August 2017 / Accepted: 6 February 2018 © The Author(s) 2018. This article is an open access publication Abstract The biosynthetic potential for six lignans accumulation in two lines of Taxus x media hairy roots was investigated. The cul- tures of KT and ATMA hairy root lines were supplemented with precursors: coniferyl alcohol (CA 1, 10 or 100 µM) and/or L-phenylalanine (100 µM PHEN) and/or methyl jasmonate (100 µM MeJa). Moreover the two-phase in vitro cultures sup- ported with perfluorodecalin (PFD) as a gas carrier and in situ extrahent were used. The hairy root lines differed in lignan production profiles. In the control untreated cultures KT roots did not accumulate secoisolariciresinol and lariciresinol while ATMA roots did not accumulate matairesinol. In ATMA roots the treatment with CA (1 or 10 µM) resulted in the production of lariciresinol and secoisolariciresinol whereas solely lariciresinol was present after 100 µM CA application. Elicitation with 1 µM CA and MeJa yielded with hydroxymatairesinol aglyca and lariciresinol glucosides with their highest content 37.88 and 3.19 µg/g DW, respectively. The stimulatory effect of simultaneous treatment with 1 µM CA, PHEN and MeJa on lignan production was observed when the cultures were supplemented with PFD-aerated or degassed. In ATMA root cultures these applied conditions were the most favourable for matairesinol content which amounted to 199.86 and 160.25 µg/g DW in PFD-aerated and PFD-degassed supported cultures, respectively.
    [Show full text]
  • Serum Enterolactone
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Julkari Annamari Kilkkinen SERUM ENTEROLACTONE D E T E R M I N A N T S A N D A S S O C I A T I O N S W I T H B R E A S T A N D P R O S T A T E C A N C E R S A C A D E M I C D I S S E R T A T I O N To be presented with the permission of the Faculty of Medicine, University of Helsinki, for public examination in Auditorium XII, University Main Building, on June 11th, 2004, at 12 noon. National Public Health Institute, Helsinki, Finland and Department of Public Health, University of Helsinki, Finland Helsinki 2004 P u b l i c a t i o n s o f t h e N a t i o n a l P u b l i c H e a l t h I n s t i t u t e K T L A 1 0 / 2 0 0 4 Copyright National Public Health Institute Julkaisija-Utgivare-Publisher Kansanterveyslaitos (KTL) Mannerheimintie 166 00300 Helsinki Puh. vaihde (09) 474 41, telefax (09) 4744 8408 Folkhälsoinstitutet Mannerheimvägen 166 00300 Helsingfors Tel. växel (09) 474 41, telefax (09) 4744 8408 National Public Health Institute Mannerheimintie 166 FIN-00300 Helsinki, Finland Telephone +358 9 474 41, telefax +358 9 4744 8408 ISBN 951-740-448-4 ISSN 0359-3584 ISBN 951-740-449-2 (pdf) ISSN 1458-6290 (pdf) Hakapaino Oy Helsinki 2004 S u p e r v i s e d b y Professor Pirjo Pietinen Department of Epidemiology and Health Promotion National Public Health Institute, Helsinki, Finland Professor Jarmo Virtamo Department of Epidemiology and Health Promotion National Public Health Institute, Helsinki, Finland R e v i e w e d b y Associate Professor Sari
    [Show full text]
  • FOODINTEGRITY Ensuring the Integrity of the European Food Chain
    FOODINTEGRITY Ensuring the Integrity of the European food chain 613688: Collaborative Project Seventh Framework Programme KBBE.2013.2.4-01: Assuring quality and authenticity in the food chain Deliverable: 14.1 Title: Report on development of chemical and metabolomic markers of product integrity and stability along processing. Author(s): Baroni, María Verónica; Erban, Alexander; Kopka, Joachim; Wunderlin, Daniel Beneficiary(s): Food Integrity Consortia Date of preparation: September 21th 2017. Period covered: November-2016; August-2017 Status: version 1 Dissemination level PU Public X PP Restricted to other participants RE Restricted to a group specified by the consortium CO Confidential, only members of the consortium The project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 613688. Deliverable 14.1, version 1, 21‐09‐2017 Deliverable 14.1 Report on development of chemical and metabolomic markers of product integrity and stability along processing. TABLE OF CONTENTS Page Nr. 1 Description of Deliverable 3 2 Achievement of the Deliverable 3 2.1 Chemical fractionation and profiling of seeds for the discovery of potential chemical markers by GC-MS (MPIMP). 3 2.1.1 Seed selection (EU market). 3 2.1.2 Fractionation scheme to evaluate chemical markers in seeds 4 2.1.3 Evaluation of chemical markers in seeds by GC-MS and chemometrics 5 2.2 Chemical fractionation and profiling of seeds, and bakery products containing seeds, for the discovery of potential chemical markers by LC-MS (CONICET-ICYTAC). 10 2.2.1 Seed sampling, extraction and analytical procedures (AR mark et).
    [Show full text]
  • Supplementary Information
    Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262
    [Show full text]
  • Issues in Environmental Science and Technology
    ISSUES IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY EDITORS: R. E. HESTER AND R. M. HARRISON 12 ROYAL SOCIETY OF CHEMISTRY ISBN 0-85404-255-5 ISSN 1350-7583 A catalogue record for this book is available from the British Library @ The Royal Society of Chemistry 1999 All rights reserved Apart from any lair dealing for the purposes of research or private study, or criticism or review as permitted under the terms of the UK Copyright, Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Societ}' of Chemistry, or in the case ofreprographic reproduction only in accordance with the terms of the licence.~ issued b}' the Cop}Tight Licensing Agenc}' in the UK, or in accordance Ilith the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the addre.~.~ printed on this page. Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 OWF, UK For further information see our web site,at www.rsc.org Typeset in Great Britain by Vision Typesetting, Manchester Printed and bound by Redwood Books Ltd., Trowbridge, Wiltshire Editors Ronald E. Hester, BSc, DSc(London), PhD(Cornell), FRSC, CChem Ronald E. Rester is Professor of Chemistry in the University of York. He was for short periods a research fellow in Cam bridge and an assistant professor at Cornell before being appointed to a lectureship in chemistry in Y orkin 1965.
    [Show full text]
  • Natural Products As Alternative Choices for P-Glycoprotein (P-Gp) Inhibition
    Review Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition Saikat Dewanjee 1,*, Tarun K. Dua 1, Niloy Bhattacharjee 1, Anup Das 2, Moumita Gangopadhyay 3, Ritu Khanra 1, Swarnalata Joardar 1, Muhammad Riaz 4, Vincenzo De Feo 5,* and Muhammad Zia-Ul-Haq 6,* 1 Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India; [email protected] (T.K.D.); [email protected] (N.B.); [email protected] (R.K.); [email protected] (S.J.) 2 Department of Pharmaceutical Technology, ADAMAS University, Barasat, Kolkata 700126, India; [email protected] 3 Department of Bioechnology, ADAMAS University, Barasat, Kolkata 700126, India; [email protected] 4 Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan; [email protected] 5 Department of Pharmacy, Salerno University, Fisciano 84084, Salerno, Italy 6 Environment Science Department, Lahore College for Women University, Jail Road, Lahore 54600, Pakistan * Correspondence: [email protected] (S.D.); [email protected] (V.D.F.); [email protected] (M.Z.-U.-H.) Academic Editor: Maria Emília de Sousa Received: 11 April 2017; Accepted: 15 May 2017; Published: 25 May 2017 Abstract: Multidrug resistance (MDR) is regarded as one of the bottlenecks of successful clinical treatment for numerous chemotherapeutic agents. Multiple key regulators are alleged to be responsible for MDR and making the treatment regimens ineffective. In this review, we discuss MDR in relation to P-glycoprotein (P-gp) and its down-regulation by natural bioactive molecules. P-gp, a unique ATP-dependent membrane transport protein, is one of those key regulators which are present in the lining of the colon, endothelial cells of the blood brain barrier (BBB), bile duct, adrenal gland, kidney tubules, small intestine, pancreatic ducts and in many other tissues like heart, lungs, spleen, skeletal muscles, etc.
    [Show full text]
  • 7-Hydroxymatairesinol Improves Body Weight, Fat and Sugar Metabolism in C57BJ/6 Mice on a High-Fat Diet
    Downloaded from British Journal of Nutrition (2018), 120, 751–762 doi:10.1017/S0007114518001824 © The Authors 2018 https://www.cambridge.org/core 7-Hydroxymatairesinol improves body weight, fat and sugar metabolism in C57BJ/6 mice on a high-fat diet Giorgio Biasiotto1,2†, Isabella Zanella1,2†, Federica Predolini1,2, Ivonne Archetti3, Moris Cadei4, . IP address: Eugenio Monti2, Marcello Luzzani5, Barbara Pacchetti5, Paola Mozzoni6, Roberta Andreoli6, Giuseppe De Palma7, Federico Serana1, Annika Smeds8 and Diego Di Lorenzo1* 170.106.34.90 1Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, P. Le Spedali Civili 1, 25123 Brescia, Italy 2Department of Molecular and Translational Medicine, University of Brescia, Via Valsabbina 1, 25123 Brescia, Italy , on 3Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), “Bruno Ubertini”, Via Bianchi, 9, 02 Oct 2021 at 07:24:15 25124 Brescia, Italy 4Human Pathology, School of Medicine, University of Brescia, P. Le Spedali Civili 1, 25123 Brescia, Italy 5Linnea SA, via Cantonale 123, CH-6595 Riazzino, Switzerland 6Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy 7Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, P. Le Spedali Civili 1, 25123 Brescia, Italy , subject to the Cambridge Core terms of use, available at 8Laboratory of Wood and Paper Chemistry, Åbo Akademi University, 20500 Turku, Finland (Submitted 18 December 2017 – Final revision received 30 April 2018 – Accepted 15 May 2018 – First published online 14 August 2018) Abstract 7-Hydroxymatairesinol (7-HMR) is a plant lignan abundant in various concentrations in plant foods.
    [Show full text]
  • Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha
    Molecules 2013, 18, 1122-1127; doi:10.3390/molecules18011122 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Communication Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha Jong-Sik Jin 1, Jong-Hyun Lee 2 and Masao Hattori 1,* 1 Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan 2 College of Pharmacy, Dongduk Women’s University, 23-1 Wolgok-Dong, Sungbuk-Gu, Seoul 136-714, Korea * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +81-766-52-4314. Received: 8 October 2012; in revised form: 10 January 2013 / Accepted: 14 January 2013 / Published: 16 January 2013 Abstract: Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−)-arctigenin, the aglycone of arctiin, was demethylated to (−)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono- desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−)-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)- butyrolactone was 7.9 × 10−4 M. Keywords: arctigenin; estrogen receptor alpha; demethylation; ligand binding affinity 1. Introduction Some plant lignans have been categorized as phytoestrogens or their precursors with isoflavones because natural compounds and/or their metabolites act like estrogen [1–3].
    [Show full text]
  • Anticancer Mechanisms of Flaxseed and Its Derived Mammalian
    ANTICANCER MECHANISMS OF FLAXSEED AND ITS DERIVED MAMMALIAN LIGNAN ENTEROLACTONE IN LUNG A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Shireen Chikara In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Program: Cellular and Molecular Biology April 2017 Fargo, North Dakota North Dakota State University Graduate School Title ANTICANCER MECHANISMS OF FLAXSEED AND ITS DERIVED MAMMALIAN LIGNAN ENTEROLACTONE IN LUNG By Shireen Chikara The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Katie Reindl Chair Dr. Jane Schuh Dr. Yeong Rhee Dr. Steven Qian Approved: 04-13-2017 Dr. Jane Schuh Date Department Chair ABSTRACT Whole flaxseed and its derived lignans have shown anti-cancer properties in a variety of malignancies. However, their potential remains uninvestigated in lung cancer, the leading cause of cancer-related deaths worldwide. We investigated the anti-tumor effects of flaxseed-derived mammalian lignan enterolactone (EL) in human lung cancer cell cultures and the chemopreventive potential of 10% whole flaxseed in a mouse model of lung carcinogenesis. We found that EL inhibits in vitro proliferation and motility of a panel of non-small cell lung cancer cell (NSCLC) lines. EL-mediated inhibition in lung cancer cell proliferation was due to a decrease in mRNA and protein expression levels of G1-phase cell cycle promoters and a simultaneous increase in mRNA and protein expression levels of p21WAF1/CIP1, a negative regulator of the G1-phase.
    [Show full text]
  • Phenolic Compounds in Cereal Grains and Their Health Benefits
    and antioxidant activity are reported in the Phenolic Compounds in Cereal literature. Unfortunately, it is difficult to make comparisons of phenol and anti- Grains and Their Health Benefits oxidant activity levels in cereals since different methods have been used. The ➤ Whole grain cereals are a good source of phenolics. purpose of this article is to give an overview ➤ Black sorghums contain high levels of the unique 3-deoxyanthocyanidins. of phenolic compounds reported in whole ➤ Oats are the only source of avenanthramides. grain cereals and to compare their phenol and antioxidant activity levels. ➤ Among cereal grains, tannin sorghum and black rice contain the highest antioxidant activity in vitro. Phenolic Acids Phenolic acids are derivatives of benzoic and cinnamic acids (Fig. 1) and are present in all cereals (Table I). There are two Most of the literature on plant phenolics classes of phenolic acids: hydroxybenzoic L. DYKES AND L. W. ROONEY focuses mainly on those in fruits, acids and hydroxycinnamic acids. Hy- TEXAS A&M UNIVERSITY vegetables, wines, and teas (33,50,53,58, droxybenzoic acids include gallic, p- College Station, TX 74). However, many phenolic compounds hydroxybenzoic, vanillic, syringic, and in fruits and vegetables (i.e., phenolic acids protocatechuic acids. The hydroxycinna- esearch has shown that whole grain and flavonoids) are also reported in cereals. mic acids have a C6-C3 structure and Rconsumption helps lower the risk of The different species of grains have a great include coumaric, caffeic, ferulic, and cardiovascular disease, ischemic stroke, deal of diversity in their germplasm sinapic acids. The phenolic acids reported type II diabetes, metabolic syndrome, and resources, which can be exploited.
    [Show full text]
  • Chem. Pharm. Bull. 51(4) 378—384 (2003) Vol
    378 Chem. Pharm. Bull. 51(4) 378—384 (2003) Vol. 51, No. 4 Transformation of Arctiin to Estrogenic and Antiestrogenic Substances by Human Intestinal Bacteria a a b a Li-Hua XIE, Eun-Mi AHN, Teruaki AKAO, Atef Abdel-Monem ABDEL-HAFEZ, a ,a Norio NAKAMURA, and Masao HATTORI* a Institute of Natural Medicine, Toyama Medical and Pharmaceutical University; 2630 Sugitani, Toyama 930–0194, Japan: and b Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University; 2630 Sugitani, Toyama 930–0194, Japan. Received October 23, 2002; accepted January 18, 2003 After anaerobic incubation of arctiin (1) from the seeds of Arctium lappa with a human fecal suspension, six -metabolites were formed, and their structures were identified as (؊)-arctigenin (2), (2R,3R)-2-(3؅,4؅-dihydroxy -(benzyl)-3-(3؆,4؆-dimethoxybenzyl)butyrolactone (3), (2R,3R)-2-(3؅-hydroxybenzyl)-3-(3؆,4؆-dimethoxybenzyl butyrolactone (4), (2R,3R)-2-(3؅-hydroxybenzyl)-3-(3؆-hydroxy-4؆-methoxybenzyl)butyrolactone (5), (2R,3R)-2- -3؅-hydroxybenzyl)-3-(3؆,4؆-dihydroxybenzyl)butyrolactone (6), and (؊)-enterolactone (7) by various spectro) scopic means including two dimensional (2D)-NMR, mass spectrometry, and circular dichroism. A possible metabolic pathway was proposed on the basis of their structures and the time course of the transformation. En- terolactones obtained from the biotransformation of arctiin and secoisolariciresinol diglucoside (SDG, from the (seeds of Linum usitatissium) by human intestinal bacteria were proved to be enantiomers, with the (؊)-(2R,3R and (؉)-(2S,3S) configurations, respectively. Compound 6 showed the most potent proliferative effect on the growth of MCF-7 human breast cancer cells in culture among 1 and six metabolites, while it showed inhibitory activity on estradiol-mediated proliferation of MCF-7 cells at a concentration of 10 mM.
    [Show full text]
  • Urinary and Serum Concentrations of Seven Phytoestrogens in a Human Reference Population Subset
    Journal of Exposure Analysis and Environmental Epidemiology (2003) 13, 276–282 r 2003 Nature Publishing Group All rights reserved 1053-4245/03/$25.00 www.nature.com/jea Urinary and serum concentrations of seven phytoestrogens in a human reference population subset LIZA VALENTI´ N-BLASINI, BENJAMIN C. BLOUNT, SAMUEL P. CAUDILL, AND LARRY L. NEEDHAM National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA Diets rich in naturally occurring plant estrogens (phytoestrogens) are strongly associated with a decreased risk for cancer and heart disease in humans. Phytoestrogens have estrogenic and, in some cases, antiestrogenic and antiandrogenic properties, and may contribute to the protective effect of some diets. However, little information is available about the levels of these phytoestrogens in the general US population. Therefore, levels of phytoestrogenswere determined in urine (N ¼ 199) and serum (N ¼ 208) samples taken from a nonrepresentative subset of adults who participated in NHANES III, 1988– 1994. The phytoestrogens quantified were the lignans (enterolactone, enterodiol, matairesinol); the isoflavones (genistein, daidzein, equol, O- desmethylangolensin); and coumestrol (urine only). Phytoestrogens with the highest mean urinary levels were enterolactone (512 ng/ml), daidzein(317 ng/ ml), and genistein (129 ng/ml). In serum, the concentrations were much less and the relative order was reversed, with genistein having the highest mean level (4.7 ng/ml), followed by daidzein (3.9 ng/ml) and enterolactone (3.6 ng/ml). Highly significant correlations of phytoestrogen levels in urineand serum samples from the same persons were observed for enterolactone, enterodiol, genistein, and daidzein. Determination of phytoestrogen concentrations in large study populations will give a better insight into the actual dietary exposure to these biologically active compounds in the US population.
    [Show full text]