Understanding Water in Transformer Systems

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Water in Transformer Systems Chemist’s Perspective nderstanding Water U in Transformer Systems The Relationship Between Relative Saturation and Parts per Million (ppm) ater content in transformer oil in parts per million (ppm) is a familiar concept to most in our industry, and limits of 30 to 35 W ppm are generally referenced. However, these simple concen- by Lance Lewand tration limits have limited value in diagnosing the condition of trans- Doble Engineering former systems and, thus, the concept of relative saturation (RS) of water in transformer oil has been re-introduced over the past 15 years. The concept of relative saturation of water in transformer oil is not a new one and was originally championed by Frank Doble as early as as the water content in the paper the mid 1940s.Thus, this article discusses and details the relationship doubles so does the aging rate of the paper. The deterioration of the between RS and ppm. paper insulation results from the It is well known that moisture continues to be a major cause of prob- weakening of the hydrogen bonds lems in transformers and a limitation to their operation. Particularly prob- of the molecular chains of the pa- lematic is excessive moisture in transformer systems, as it affects both per fibers. For these reasons it is solid and liquid insulation with the water in each being interrelated. Water important to have a means of as- affects the dielectric breakdown strength of the insulation, the tempera- sessing the moisture content of ture at which water vapor bubbles are formed, and the aging rate of the transformer systems and to main- insulating materials. In the extreme case, transformers can fail because tain transformers in a reasonably of excessive water in the insulation. The dielectric breakdown strength dry state. of the paper insulation decreases substantially when its water content In order to fully understand rises above two to three percent by weight. Similarly, the dielectric break- water and its dynamics in trans- down voltage of the oil is also affected by the relative saturation (RS) of former systems, a short explana- water in oil. The maximum loading that is possible while retaining reli- tion of the different types of water able operation (i.e., preventing the formation of water vapor bubbles) is encountered and the concepts of a function of the insulation water content. For example, dry transform- solubility and relative saturation ers (<0.5 percent water in paper) are much less susceptible to water bubble are provided. evolution. In this case, emergency loading at hot-spot temperatures be- low 180°C may be possible with little risk of bubble formation. In con- Types of Water in Oil trast, a wetter transformer, with 2.0 percent moisture in the paper, runs Water can exist in several differ- the risk of water bubble formation with hot-spot temperatures as low as ent states within the transformer. ° 139 C under the same conditions. A more long-term problem is that ex- There are three basic types of wa- cessive moisture accelerates the aging of the paper insulation, with the ter found associated with trans- aging rate being directly proportional to the water content. For example, former oil: Spring 2002 1 •Dissolved water is hydrogen bonded to the hy- drocarbon molecules of which oil is composed. Table 1 — Water in Oil Solubility as a Function of Temperature •Emulsified water is supersaturated in solution Oil Temperature Water Content in Oil, ppm but has not yet totally separated from the oil. It 0°C22 usually gives oil a milky appearance. 10°C36 •Free water is also supersaturated in solution but 20°C55 in a high enough concentration to form water 30°C83 droplets and separate from the oil. 40°C 121 In most cases, when one is analyzing or discussing 50°C 173 the amount of water in oil, dissolved water is being 60°C 242 referred to as emulsified, and free water is visually 70°C 331 apparent. 80°C 446 90°C 592 What is Water in Oil (ppm), Solubility of 100°C 772 Water in Oil, and RS of Water in Oil? The detection of water in oil performed in the labo- ratory is most often performed by an analytical tech- The solubility for mineral oil can be calculated using nique called Karl Fischer titration described in ASTM Equation 1: Test Method D 1533 or IEC Method 60814. Both meth- ods are very comparable and involve a coulometric (Equation 1) Log So = -1567/K + 7.0895 titration technique involving the reduction of an io- dine-containing reagent. The methods are used to Where: So is the solubility of water in mineral oil ° determine the amount of water in an oil sample on a K is the temperature in Kelvin ( C + 273) weight-to-weight (mg/kg) basis or what is commonly known as ppm (parts per million). Relative Saturation (RS) is the actual amount of The concepts of solubility and relative saturation water measured in the oil in relation to the solubility can sometimes be difficult to understand, but it is an level at that temperature. Relative saturation, ex- important concept when trying to assess the dryness pressed in units of percent, is the concentration of or wetness of a transformer system. Solubility is de- water (Wc) in the oil relative to the solubility (So) or fined as the total amount of water than can be dis- concentration of water the oil can hold at the mea- solved in the oil at a specific temperature. The solu- surement temperature, as shown in Equation 2. bility of water is not constant in oil but changes due to temperature. As the temperature increases, the (Equation 2) RS = Wc /So (100%) amount of water that can be dissolved in oil also in- creases. The increase is not linear but exponential in Where: Wc is in ppm wt./wt. function. For example, at 10°C only 36 ppm of water So is in ppm wt./wt. can be dissolved in the oil, whereas when the tem- perature increases to 90°C, the amount of water that For example, a sample of oil was taken for deter- can be dissolved in the oil increases tremendously to mination of the water content. The temperature of the ° almost 600 ppm. The table shown lists the calculated oil at the time of sampling was 62 C. The laboratory solubility limits for oil at various temperatures. These performed the analysis and determined the water con- levels are the greatest amount of water that can be tent to be 11 ppm. From Equation 1, it is calculated ° dissolved at the temperatures listed. If the concentra- that the solubility level at 62 C is 259 ppm. As dis- tion of water in oil is greater than that shown for that cussed previously, relative saturation is the actual specific temperature then, in all likelihood, the oil is measured value compared to the solubility value. In supersaturated with water, and free or emulsified this case it is 11 ppm divided by 259 ppm resulting in water could exist. a relative saturation of 4.25 percent. Effects of Relative Saturation on Dielectric Strength To properly maintain and operate transformers, an understanding of the effects of moisture on the dielectric breakdown strength of the electrical in- sulating liquids is necessary. Increasing moisture content reduces the dielectric breakdown voltage of insulating liquids. The correlation between the 2 NETA WORLD water content in new, filtered, mineral oils at room The dielectric breakdown voltage would be ex- temperature and the dielectric breakdown voltage pected to be about half of what it was when the rela- using ASTM method D 1816 (0.04 inch gap) is given tive saturation was very low. If the temperature is in Figure 1 (water content, ppm). Of course, the cooled to 0°C, the results of a dielectric breakdown dielectric breakdown voltage is also a function of voltage should be quite low because the solubility of the number and type of particles and their conduc- water in oil at this temperature is about 22 ppm (Table tivity, not just the water content. 1). As the water content in the oil is higher than this, Taking the same dielectric breakdown voltage data the water forms an emulsion and begins to condense. and converting it to RS (Figure 1, %RS graph) pro- During all this time the concentration of water in oil vides a much straighter curve except at the extremes. has not changed. This relationship is shown in It is evident that there is a better correlation between Figure 2. RS and dielectric breakdown voltage than with mois- ture concentration and dielectric breakdown voltage. The water Decreasing Relative High RS concentration was 48 % Saturation, 44 constant at 30 ppm. 40 The temperature was 36 changed to change the 32 Medium RS 28 relative saturation. 24 20 16 Low RS 12 8 4 Dielectric Break k Voltage, down 04812162024283236404448525660 Increasing Dielectric Strength Water Content, ppm, wt./wt. 48 44 Figure 2 — Relationship between Dielectric Strength and RS 40 36 32 Transformers are more complicated systems than 28 24 this simple example. However, the same basic prin- 20 ciples apply for the dielectric breakdown strength of 16 12 the liquid dielectric. That is, it remains a function of 8 the relative saturation of water in the oil. During the 4 Dielectric Break k Voltage, down cool-down cycle of a thermal transient in a transformer 0102030405060708090100 RS, %@22°C some of the moisture returns to the paper and some of the moisture remains in the oil. The relative satura- Figure 1— Dielectric Strength Versus Water Content and tion of water remaining in the oil will influence its Relative Saturation (RS) dielectric breakdown voltage.
Recommended publications
  • Liquid Dielectrics, Their Classification, Properties, and Breakdown Strength
    CHAPTER 6 LIQUID DIELECTRICS, THEIR CLASSIFICATION, PROPERTIES, AND BREAKDOWN STRENGTH From the point of view of molecular arrangement, a liquid can be described as “ highly compressed gas ” in which the molecules are very closely arranged. This is known as kinetic model of the liquid structure. A liquid is characterized by free movement of the constituent molecules among themselves but without the tendency to separate. However, the movement of charged particles, their microscopic streams, and interface conditions with other materials cause a distortion in the otherwise undisturbed molecular structure of the liquids. The well known terminology describ- ing the breakdown mechanisms in gaseous dielectrics — such as impact ionization, mean free path, electron drift, and so on — are, therefore, also applicable for liquid dielectrics. Liquid dielectrics are accordingly classifi ed in between the two states of matter; that is, gaseous and solid insulating materials. Wide range of application of liquid dielectircs in power apparatus also characterizes this intermediate position of liquid dielectrics. Insulating oils are used in power and instrument transformers, power cables, circuit breakers, power capacitors, and so on. Liquid dielectrics perform a number of functions simultaneously, namely: • insulation between the parts carrying voltage and the grounded container, as in transformers • impregnation of insulation provided in thin layers of paper or other materials, as in transformers, cables and capacitors, where oils or impregnating com- pounds are used • cooling action by convection in transformers and oil fi lled cables through circulation • fi lling up of the voids to form an electrically stronger integral part of a com- posite dielectric • arc extinction in circuit breakers High Voltage and Electrical Insulation Engineering, First Edition.
    [Show full text]
  • The Capacitor: Posi- Tive on One Side, Negative on the Other
    TESLA COIL by George Trinkaus Third edition, originally ©1989 by George Trinkaus (ISBN 0-9709618-0-4) published by High Voltage Press in paper format High Voltage Press PO Box 1525 Portland, OR 97207 Content copyright ©2003 George Trinkaus Layout, design, and e-book creation are copyright ©2003 Good Idea Creative Services Published by Wheelock Mountain Publications, an imprint of Good Idea Creative Services Good Idea Creative Services 324 Minister Hill Road Wheelock VT 05851 www.tesla-ebooks.com i How To Use This Book Text links Click on red colored text to go to a link within the e-book. Click on blue colored text to go to an external link on the internet. The link will automatically open your browser. You must be connected to the internet to view the externally linked pages. Buttons The TOC button will take you to the table of contents. The left facing arrow will take you to the previous page. The right facing arrow will take you to the next page. ii Table Of Contents Preface . iv Tesla Free Energy . 1 How It Works. 5 How to Build It . 9 Tesla Lighting . 54 Magnifying Transmitter . 60 Tuning Notes. 66 For More Information. 69 Click on the red text or red page number to go to the page. iii Preface Invented by Nikola Tesla back in 1891, the tesla coil can boost power from a wall socket or battery to millions of high frequency volts. In this booklet, the only systematic treatment of the tesla coil for the electrical nonexpert, you’ll find a wealth of information on one of the best-kept secrets of electric technology, plus all the facts you need to build a tesla coil on any scale.
    [Show full text]
  • “Contribution to Liquid Lens Technology”
    “CONTRIBUTION TO LIQUID LENS TECHNOLOGY” Thesis submitted in partial fulfillment of the requirement for the PhD Degree issued by the Universitat Politècnica de Catalunya, in its Electronic Engineering Program Nom del doctorand Maziar Ahmadi Zeidabadi Directors: Prof. Dr. Luis Castañer Prof. Dra. Sandra Bermejo data de lectura de la tesi Mayo 2016 2 3 4 Contents Contents .............................................................................................................................. 5 1 Summary ................................................................................................................... 21 1.1 Introduction........................................................................................................ 23 1.2 Thesis challenges and outlines .......................................................................... 25 2 Liquid lens (Fundamentals and theory) ................................................................... 27 2.1 Liquid lens devices overview ............................................................................ 29 2.2 Basic principles of capillarity and wetting ........................................................ 30 2.3 Hydrophobic surfaces ........................................................................................ 32 2.3.1 Wenzel model ............................................................................................. 33 2.3.2 Cassie-Baxter model................................................................................... 34 2.4 Electrical
    [Show full text]
  • Transformer Protection
    Power System Elements Relay Applications PJM State & Member Training Dept. PJM©2018 6/05/2018 Objectives • At the end of this presentation the Learner will be able to: • Describe the purpose of protective relays, their characteristics and components • Identify the characteristics of the various protection schemes used for transmission lines • Given a simulated fault on a transmission line, identify the expected relay actions • Identify the characteristics of the various protection schemes used for transformers and buses • Identify the characteristics of the various protection schemes used for generators • Describe the purpose and functionality of Special Protection/Remedial Action Schemes associated with the BES • Identify operator considerations and actions to be taken during relay testing and following a relay operation PJM©2018 2 6/05/2018 Basic Concepts in Protection PJM©2018 3 6/05/2018 Purpose of Protective Relaying • Detect and isolate equipment failures ‒ Transmission equipment and generator fault protection • Improve system stability • Protect against overloads • Protect against abnormal conditions ‒ Voltage, frequency, current, etc. • Protect public PJM©2018 4 6/05/2018 Purpose of Protective Relaying • Intelligence in a Protective Scheme ‒ Monitor system “inputs” ‒ Operate when the monitored quantity exceeds a predefined limit • Current exceeds preset value • Oil level below required spec • Temperature above required spec ‒ Will initiate a desirable system event that will aid in maintaining system reliability (i.e. trip a circuit
    [Show full text]
  • The Impulse Design of Transformer Oil-Cellulose Structures
    IEEE Transactions on Dielectrics and Electrical Insulation Vol. 13, No. 3; June 2006 477 The Impulse Design of Transformer Oil-Cellulose Structures J.K. Nelson and C. Shaw Rensselaer Polytechnic Institute. Dept. of Electrical, Computer and Systems Engineering Troy, NY 12180-3590, USA ABSTRACT Transformer oil/cellulose structures are often designed based on a cumulative stress criterion derived from experimental tests at power frequency. However, such structures must also meet stringent impulse requirements defined by a Basic Insulation Level (BIL). The industry has tried to establish an equivalence factor to permit power frequency cumulative stress methods to be used to estimate impulse withstand strength. Since the mechanisms of failure differ substantially under surge conditions, there would seem no good reason to suppose that a universal equivalence factor is appropriate. Tests are reported using a 2.3 MV generator to document impulse failure of a number of bulk, creep and hybrid structures to establish the nature of this relationship through statistical comparisons with the established 50/60 Hz methods. Factors varied from 1.94 to 3.34, depending on the configuration. The methodology is described and the results discussed in the context of the design of oil-cellulose structures, having regard to complicating factors such as waveshape and electrode covering. The study permits some speculation about impulse design under hybrid situations (i.e. failure paths involving both creep and bulk liquid). Index Terms — Insulation design, oil/cellulose structures, cumulative stress, impulse withstand. 1 BACKGROUND paths may be categorized as either “bulk” through oil volumes, “creep” along cellulose surfaces (paper or THE “cumulative stress” method is in industrial use for the pressboard) or some combination of the two.
    [Show full text]
  • Designed for Service in All Parts O F the World
    AUTOMATIC including T runk Main Rural designed for service Unit Private in all parts o f the world Private Branch DY dose attention to technical detail MANUAL EXCHANGES of all types the Company has maintained Its position in the forefront of Telecom­ CARRIER TRANSMISSION EQUIPMENT munication Engineers throughout its long experience. Its products enjoy TELEPHONE INSTRUMENTS of all types a world-wide reputation for sound TELEPHONE SWITCHING EQUIPMENT • design and technical excellence. PROTECTIVE DEVICES The Company undertakes the supply and installation of complete Auto- RELAYS matlcandManualTelephoneExchanges for Public and Private service, Auto­ TELEPHONE CABLES, WIRES & CORDS matic and Manual Trunk Exchanges, all types of Telephone Cables for LOADING COILS Trunk and Local Service, C arrier Transmission Equipment and Cables, MARINE RADIO EQUIPMENT Radio Equipments for Ships. SHIPS’ TELEGRAPHS & TELEPHONES CELLS & BATTERIES Dry, Fluid & Inert SIEMENS BROTHERS & CO., LIMITED ISTAtusHEPms WOOLWICH. LONDON. S.E.I8 TELEPHONE : WOOLWICH 2020 30 MAY 1947 SIXPENCE mm: «»». H k 3*ï RM »a BJS&» ¥ L*: b u i L ELECTROFLUX ‘ MAGNETIC CRACK DETECTION APPARATUS The Electroflux Universal Crack Detector will locate cracks in all directions. It is ideal for the rapid inspection of mass produced articles. Semi-automatic operation. TRAFFORD PARK ••• MANCHESTER 17. N/C70I THE ELECTRICIAN 30 M A Y 1947 1409 The Factory Manager gets asato hot w ater ! •VO'S e»V Yiot > %<>» to r i i0 o0.t& Ca° e?3 so in rfíXf tef ... • • 19 5OO VÖ1 fe<4o.Vr® •yec t o O-®” tn° î f lor VS° r&° ti» 6- / * # ie* - J / provÍ ct,at:¡A ^adj^L^ter 1,0 i.°°Ô !£* The model illustrated is just one from the w ide range o f G .E.C.
    [Show full text]
  • Dissolved Gas Analysis in Transformer Oil Using Transformer Oil Gas Analyzer
    APPLICATION NOTE Gas Chromatography Authors: Tracy Dini Manny Farag PerkinElmer, Inc. Shelton, CT Dissolved Gas Analysis in Transformer Oil Using Introduction Nearly 90% of the world’s population does not Transformer Oil Gas Analyzer know life without the ubiquity of electricity. It is a luxury that gets taken for granted by most people and TurboMatrix HS Sampler every day. Panic often ensues when the electricity supply is interrupted, as witnessed in Manhattan during the July 13, 2019 blackout that left over 73,000 people without electricity for several hours. While no injuries or fatalities were reported in this case, history offers many accounts of chaos and safety risks following blackouts of this magnitude, especially in a major metropolitan city. To prevent such interruptions in electrical power, transformers must be properly maintained and monitored. An effective means of conducting routine monitoring towards this goal of reduced blackouts includes the analysis of oil insulting the transformers. Acting as both an insulator and coolant, insulating oil in electrical transformers is expected to meet demanding chemical, electrical, and physical properties to ensure proper functioning of the transformer and its internal components. The American Society for Testing and Materials (ASTM) offers reference test methods as guidance for performing required routine analysis on the oil. As the insulating oil is subjected to high intensity thermal and electrical conditions, decomposition occurs over time and forms gases that dissolve into the oil. ASTM D3612 Method C is a standard test method using a headspace sampler to extract these dissolved gases for GC analysis. Dissolved gas analysis (DGA) is performed on the oil to identify the gases and their concentrations.
    [Show full text]
  • Preparation of Monodisperse Microbubbles in a Capillary Embedded T-Junction Device and the Influence of Process Control Parameters on Bubble Size and Stability
    Preparation of monodisperse microbubbles in a capillary embedded T-Junction device and the influence of process control parameters on bubble size and stability A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy By Maryam Parhizkar Department of Mechanical Engineering University College London Torrington Place, London WC1E 7JE U.K March, 2014 Declaration I, Maryam Parhizkar, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ………………………………….. Maryam Parhizkar 1 Abstract The main goal for this work was to produce microbubbles for a wide range of applications with sizes ranging between 10 to 300 µm in a capillary embedded T- junction device. Initially the bubble formation process was characterized and the factors that affected the bubble size; in particular the parameters that reduce it were determined. In this work, a polydimethylsiloxane (PDMS) block (100 x 100 x 10 mm3) was used, in which the T-shaped junction was created by embedded capillaries of fixed outer diameter. The effect of the inner diameter was investigated by varying all the inlet and outlet capillaries’ inner diameter at different stages. In addition, the effect of changes in the continuous phase viscosity and flow rate (Ql) as well as the gas pressure (Pg) on the resulting bubble size was studied. Aqueous glycerol solutions were chosen for the liquid phase, as they are widely used in experimental studies of flow phenomena and provide a simple method of varying properties through dilution.
    [Show full text]
  • Electrical Engineering Diploma Based 73 Important Mcq Pdf
    WWW.ALLEXAMREVIEW.COM ELECTRICAL ENGINEERING DIPLOMA BASED 73 IMPORTANT MCQ PDF 1.The temperature, under thermal and electrical system analogy, is considered analogous to (a) voltage (b) current (c) capacitance (d) charge (e) none of the above Ans: a 2.In electrical-pneumatic system analogy the current is considered analogous to (a) velocity (b) pressure (c) air flow (d) air flow rate Ans: d 3.In liquid level and electrical system analogy, voltage is considered analogous to (a) head (b) liquid flow (c) liquid flow rate (d) none of the above Ans: a 4.The viscous friction co-efficient, in force-voltage analogy, is analogous to (a) charge (b) resistance (c) reciprocal of inductance (d) reciprocal of conductance (e) none of the above Ans: b 5.In force-voltage analogy, velocity is analogous to (a) current (b) charge (c) inductance (d) capacitance Ans: a 6.In thermal-electrical analogy charge is considered analogous to WWW.ALLEXAMREVIEW.COM (a) heat flow (b) reciprocal of heat flow (c) reciprocal of temperature (d) temperature (e) none of the above Ans: d 7.Mass, in force-voltage analogy, is analogous to (a) charge (b) current (c) inductance (d) resistance Ans: c 8.In a stable control system backlash can cause which of the following ? (a) Underdamping (b) Overdamping (c) Poor stability at reduced values of open loop gain (d) Low-level oscillations Ans: d 9.In an automatic control system which of the following elements is not used ? (a) Error detector (b) Final control element (c) Sensor (d) Oscillator Ans: d 10.In a control system the output
    [Show full text]
  • Tesla Coil Works
    Matt Behrend http://home.earthlink.net/~electronxlc/ How a Tesla Coil works On this page, I will explain the basic theory of how a Tesla coil works. Below is the Table of Contents for this page. z Description of Components z How the Components Operate z LC Circuits z Voltage Gain z Resonant Rise z Oscillation and Tuning z Quarter Wavelength Frequency Description of Components A Tesla coil is a high-voltage air-core resonant transformer. A Tesla coil has 6 basic components. The first is the primary transformer, which is a high-voltage iron-core transformer. The second is the tank capacitor, which is a high-voltage capacitor that is usually homemade, but can be purchased for a high price from commercial suppliers. The third is the spark gap, basically two wires separated by a small gap of air. The fourth is the primary coil consisting of about 10 to 15 turns of thick heavy gauge wire wound around the base of the secondary coil. The fifth is the secondary coil, and it consists of many hundreds of turns of relatively thin, small gauge enameled wire. The primary and secondary coils make up an air-core transformer. That means that there is no iron core inside of the coils. The sixth basic component is the toroid. It is usually an aluminum doughnut-shaped object, and placed on top of the secondary coil. The high-voltage sparks radiate in all directions from the toroid out into the air. How the Components Operate The primary transformer converts the AC line voltage (120/240 volts AC) to over 10,000 volts.
    [Show full text]
  • DISTRIBUTION TRANSFORMERS SPECIFICATION #1212.01 12.47Kv Grd Wye Padmount & Polemount
    DISTRIBUTION TRANSFORMERS SPECIFICATION #1212.01 12.47kV Grd Wye Padmount & Polemount June 7, 2019 Page 1 of 17 Material Specification 1212.01 Distribution Transformers – Padmount & Polemount TABLE OF CONTENTS 1 SCOPE ............................................................................................................................................. 3 2 STANDARDS .................................................................................................................................. 3 3 EVALUATION AND AWARD ..................................................................................................... 3 4 INFORMATION TO BE FURNISHED WITH BID ................................................................... 4 5 POLEMOUNT TRANSFORMERS .............................................................................................. 6 6 PAD MOUNT TRANSFORMER – SINGLE PHASE ................................................................ 8 7 PAD-MOUNTED TRANSFORMERS – THREE PHASE ....................................................... 11 8 TRANSFORMER OIL ................................................................................................................. 15 9 NOISE ............................................................................................................................................ 15 10 PAINT FINISH ............................................................................................................................. 15 11 INSPECTION ...............................................................................................................................
    [Show full text]
  • Studies on Breakdown Voltages of Liquid Dielectrics
    ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified Vol. 7, Issue 4, April 2018 Studies on Breakdown Voltages of Liquid Dielectrics S Vasudevamurthy1, Girisha2, Shubham Shah3, Varun kumar B L4 , Uday N5 1 Associated Professor, Electrical and Electronics Engineering, Dr.AIT, Bengaluru, India 2,3,4,5 B.E in Electrical and Electronics Engineering, Dr AIT, Bengaluru, India Abstract: The objective of proposed work is to study the dielectric behavior of the natural ester based oil and it is compared with the transformer oil to find their suitability for use as liquid dielectric. Mineral oil contains a lot of toxic inhibitors to improve their properties. Due to this it is necessary to find a new source and that will be substitute for the mineral oil. For use as insulating liquids in power transformers, Natural ester based oils are gaining worldwide attention as biodegradable alternatives and competitors to the mineral based oils. Keywords: Liquid insulation, breakdown voltage, moisture content. INTRODUCTION Transformer plays a vital role in the field of transmission and distribution of electrical power. It is used to transforms electrical energy from one circuit to another circuit without change in frequency. Power transformers are used in transmission network of higher voltages for step-up and step-down .PT generally rated above 200MVA.A distribution transformer provides the final voltages transformation in the electrical power distribution system. it is used to stepping down the voltages as per the power requirement level of the customer. Transformer encounters lightning and other switching surges, hence it requires proper insulation.
    [Show full text]