Synonymy of Toxotrypana Gerstaecker with Anastrepha Schiner (Diptera: Tephritidae) Author(S): Allen L

Total Page:16

File Type:pdf, Size:1020Kb

Synonymy of Toxotrypana Gerstaecker with Anastrepha Schiner (Diptera: Tephritidae) Author(S): Allen L Synonymy of Toxotrypana Gerstaecker with Anastrepha Schiner (Diptera: Tephritidae) Author(s): Allen L. Norrbom, Norman B. Barr, Peter Kerr, Ximo Mengual, Norma Nolazco, Erick J. Rodriguez, Gary J. Steck, Bruce D. Sutton, Keiko Uramoto and Roberto A. Zucchi Source: Proceedings of the Entomological Society of Washington, 120(4):834-841. Published By: Entomological Society of Washington https://doi.org/10.4289/0013-8797.120.4.834 URL: http://www.bioone.org/doi/full/10.4289/0013-8797.120.4.834 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. PROC. ENTOMOL. SOC. WASH. 120(4), 2018, pp. 834–841 SYNONYMY OF TOXOTRYPANA GERSTAECKER WITH ANASTREPHA SCHINER (DIPTERA: TEPHRITIDAE) ALLEN L. NORRBOM,NORMAN B. BARR,PETER KERR,XIMO MENGUAL, NORMA NOLAZCO,ERICK J. RODRIGUEZ,GARY J. STECK,BRUCE D. SUTTON,KEIKO URAMOTO, AND ROBERTO A. ZUCCHI (ALN) Systematic Entomology Laboratory, USDA, ARS, c/o Smithsonian Institution, P.O. Box 37012, MRC 168, Washington, DC 20013-7012, USA (e-mail: [email protected]); (NBB) Center for Plant Health Science and Technology Mission Laboratory, USDA-APHIS, Moore Air Base, 22675 N. Moorefield Rd, Edinburg, TX 78541, USA (e-mail: [email protected]. gov); (PK) California State Collection of Arthropods, Plant Pest Diagnostics Branch, California Department of Food and Agriculture, 3294 Meadowview Rd., Sacramento, CA, 95832–1448, USA (e-mail: [email protected]); (XM) Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany (email: [email protected]); (NN) Centro de Diagno´stico de Sanidad Vegetal, Servicio Nacional de Sanidad Agraria, Av. La Molina 1915, La Molina, Peru´ (e-mail: [email protected]); (EJR) University of Florida; and Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, Florida 32608, USA (e-mail: erick.rodriguez@ufl.edu); (GJS) Division of Plant Industry, Florida Department of Agriculture and Consumer Services, 1911 SW 34th St., Gainesville, Florida 32608, USA (e-mail: [email protected]); (BDS) Research Associate, Department of Entomology, Smithsonian Institution, P.O. Box 37012, MRC 168, Washington, DC 20013–7012, USA (e-mail: [email protected]); (KU, RAZ) Escola Superior de Agricultura Luiz de Queiroz, Universidade de Sa˜o Paulo, Caixa Postal 9, 13418-900, Piracicaba, SP, Brazil (e-mails: [email protected]; [email protected]) Abstract.— Based on a recent phylogenetic analysis, Toxotrypana Gerstaecker (1860) is here placed in synonymy with Anastrepha Schiner (1868). Although Toxotrypana is the senior name, Anastrepha is recognized as valid because of the much greater economic significance of its species. Changing the names of the many pest species of Anastrepha would cause major nomenclatural instability and con- fusion in the applied literature, therefore a proposal to the International Commission on Zoological Nomenclature has been submitted to validate this usage. The following nomenclatural changes are proposed: Anastrepha australis (Blanchard 1960), new combination, Anastrepha curvicauda (Gerstaecker 1860), new combination, Anastrepha littoralis (Blanchard 1960), new combination, Anastrepha nigra (Blanchard 1960), new combination, Anastrepha picciola (Blanchard 1960), new combination, Anastrepha proseni (Blanchard 1960), new combination, Anas- trepha recurcauda (Tigrero 1992), new combination (all transferred from Toxo- trypana), and Anastrepha nigrina Norrbom, new name for Anastrepha nigra VOLUME 120, NUMBER 4 835 Norrbom and Korytkowski (2009). Some changes to the species group classification within Anastrepha are also discussed. Key Words: fruit flies, taxonomy, nomenclature, new name, new combination DOI: 10.4289/0013-8797.120.4.834 Toxotrypana Gerstaecker (1860) is clade of Anastrepha, and this lineage is a small genus of fruit flies (Diptera: sister to the tripunctata group of Anas- Tephritidae) restricted to the New World trepha (taxa sensu Norrbom et al. tropics and subtropics. Its species are 2012). presumed to be mimics of vespid wasps The purpose of this publication is to due to their body shape, bright yellow formally recognize the synonymy of and brown coloration, reduced setation, Anastrepha and Toxotrypana and to and their wing patterns with a broad, make changes to the names of the spe- complete costal band. Despite their dis- cies impacted by this synonymy. Some tinctive external appearance, the species changes to the species group classifica- of Toxotrypana have been known for tion within Anastrepha based on the some time to be closely related to results of the Mengual et al. (2017) Anastrepha Schiner (1868) on the basis analysis are also discussed. of genitalic characters (Norrbom et al. 1999b). Anastrepha and Toxotrypana together MATERIALS AND METHODS form a well-defined monophyletic group We follow the morphological termi- supported by both morphological nology of White et al. (1999), except for (Norrbom et al. 1999b) and molecular the wing venation, which follows that of studies (Han and McPheron 1997, Cumming and Wood (2017). McPheron et al. 1999, Han and Ro 2009). Toxotrypana also is clearly RESULTS AND DISCUSSION monophyletic (Norrbom et al. 1999b), Anastrepha Schiner Synonymy but the status of Anastrepha has been uncertain. Some studies suggested that it Anastrepha Schiner 1868: 263, type spe- might be paraphyletic, but were not cies Dacus serpentinus Wiedemann conclusive due to limited taxon sampling 1830, by original designation. or insufficient character evidence (McPheron Toxotrypana Gerstaecker 1860: 191, type et al. 1999, Norrbom et al. 1999b, Barr et al. species T. curvicauda Gerstaecker 2005). Recently, however, Mengual et al. 1860, by monotypy; New syno- (2017) investigated relationships within nym. the Anastrepha/Toxotrypana clade, uti- Acrotoxa Loew 1873: 227, type species lizing sequence data from six DNA re- Dacus fraterculus Wiedemann 1830, gions in a total of 150 species. Their by subsequent designation of Bezzi results conclusively demonstrate that 1909: 280. Toxotrypana arises within Anastrepha, Mikimyia Bigot 1884: xxix, type species confirming that Anastrepha as currently M. furcifera Bigot 1884 (= curvi- defined is paraphyletic. Toxotrypana is cauda Gerstaecker), by monotypy. the sister group of the cryptostrepha New synonym. 836 PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON Pseudodacus Hendel 1914a: 66, type commercial and subsistence crops such as species Anastrepha daciformis Bezzi citrus, guava, mango, melon, and many 1909, by original designation (as others (White and Elson-Harris 1992, subgenus of Anastrepha). Norrbom 2004). Numerous other species Pseudodacus Hendel 1914b: 13, type are minor or potential pests. Several species Anastrepha daciformis Bezzi species are invasive, including A. fra- 1909, by original designation (as terculus (Brazil-1 type in Argentina, subgenus of Anastrepha). Pre- Bolivia and Peru), A. grandis (Panama), occupied by Hendel 1914: 66. A. ludens (Panama), and A. suspensa Phobema Aldrich 1925: 7, type species (Florida) (Weems 1965, 1966; Sutton P. atrox Aldrich 1925, by original et al. 2015). designation. Despite differences in their external Lucumaphila Stone 1939: 340, type appearance, Toxotrypana and Anas- species L. sagittata Stone 1939, by trepha have been considered to be original designation. closely related on the basis of genitalic characters (Norrbom et al. 1999b). Al- Anastrepha is the largest genus of though it has been clear that together Tephritidae in the New World, including they form a monophyletic group, both nearly 300 valid species (Norrbom et al. have continued to be recognized as 1999a, 2012, 2015), with additional new genera because of the distinctiveness of species in the process of description Toxotrypana (based on numerous auta- (Norrbom et al., in prep.). Toxotrypana pomorphies) and the uncertainty of the currently includes seven valid species exact relationship of the two taxa, par- and a similar number of undescribed ticularly whether or not Anastrepha, species (Norrbom et al. 1999a, 1999b). sensu lato, is monophyletic. Both genera include agricultural pests, Based on the results of the phyloge- but Anastrepha is by far more econom- netic analysis by Mengual et al. (2017) ically important. Toxotrypana curvi- that Anastrepha, sensu lato, is para- cauda Gerstaecker, commonly known as phyletic, we here formally recognize the the papaya fruit fly, is a major pest of synonymy of Anastrepha and Toxo- papaya (Carica papaya L.) in the circum- trypana. Although Toxotrypana has Caribbean area (White and Elson-Harris priority, Anastrepha has far greater eco- 1992, Norrbom 2004). It is invasive in
Recommended publications
  • Daños Y Desarrollo De Anastrepha Fraterculus (Diptera: Tephritidae) En
    42 Agrociencia Uruguay - Volumen 19 2:42-48 - julio/diciembre 2015 Agrociencia Uruguay Damage and Development of Anastrepha fraterculus (Diptera: Tephritidae) in Fruits of Two Pear Cultivars Nunes Marcelo Z1, Boff Mari Inês C1, dos Santos Régis SS2, Franco Cláudio R1, Wille Paulo E1, da Rosa Joatan M1, do Amarante Cassandro VT1 1Departamento de Agronomia do Centro de Ciências Agroveterinárias da Universidade do Estado de Santa Catarina, UDESC.Universidade do Estado de Santa Catarina, Centro de Ciências Agroveterinárias, Av. Luiz de Camões 2090, Conta Dinheiro, 88.520-00, Lages - SC, Brasil. E-mail: [email protected] 2Embrapa Uva e Vinho, Estação Experimental de Fruticultura de Clima Temperado. BR 285, km 115, Caixa Postal 1513, 95.200-000, Vacaria - RS, Brasil Recibido: 13/10/14 Aceptado: 7/7/15 Summary Anastrepha fraterculus is the main horticultural pest for food crops in southern Brazil. This study aimed to identify the damage caused by this species, evaluate its development, and correlate its infestation rate with physical and chemical characteristics of Packhams and Williams pear fruit cultivars at five different stages of development. In the field, cages were installed on branches of the pear plants in which two couples of A. fraterculus were released for a period of 48 hours. The damage resulting from oviposition was evaluated at fifteen-day intervals from the day the insects were released until harvest. The evaluation of damage consisted of visual observation of decayed and deformed fruits and the presence of larvae. In the laboratory, two couples were individualized with one fruit in a 750 mL pot for 48 hours.
    [Show full text]
  • A New Species of Anastrepha from Amazonia, with Redescriptions of A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2003 A new species of Anastrepha from Amazonia, with redescriptions of A. caudata Stone and A. hendeliana Lima (Diptera: Tephritidae) Allen L. Norrbom Agriculture Research Service, U. S. Department of Agriculture Josefina Caraballa Universidad Central de Venezuela, Maracay, Aragua, Venezuela Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Norrbom, Allen L. and Caraballa, Josefina, A" new species of Anastrepha from Amazonia, with redescriptions of A. caudata Stone and A. hendeliana Lima (Diptera: Tephritidae)" (2003). Insecta Mundi. 41. https://digitalcommons.unl.edu/insectamundi/41 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 17, No. 1-2, March-June, 2003 33 A new species of Anastrepha from Amazonia, with redescriptions of A. caudata Stone and A. hendeliana Lima (Diptera: Tephritidae) Allen L. Norrbom Systematic Entomology Laboratory, PSI Agriculture Research Service, U. S. Department of Agriculture c/o National Museum of Natural History, MRC-168 Washington, DC 20013-7012, U.S.A. [email protected] and Josefina Caraballo Instituto de Zoología Agrícola Universidad Central de Venezuela Apartado 4579, Código Postal 2101-A Maracay, Aragua, Venezuela [email protected] Abstract. Three species of Anastrepha from upper Amazonia are described or redescribed and illustrated. They are considered closely related and are placed in the A.
    [Show full text]
  • Hot Peppers As a Host for the Mexican Fruit Fly Anastrepha Ludens (Diptera: Tephritidae)
    Scientific Notes 603 HOT PEPPERS AS A HOST FOR THE MEXICAN FRUIT FLY ANASTREPHA LUDENS (DIPTERA: TEPHRITIDAE) DONALD B. THOMAS United States Department of Agriculture, Agricultural Research Service Kika de la Garza Subtropical Agricultural Research Center, 2413 E. Hwy 83, Weslaco, TX 78596 On the 28th of April, 2003, a shipment of man- will breed in rotting vegetable matter including zano chile peppers (Capsicum pubescens Ruis & chile peppers, but these are non-pest species, and Pavon cv Rocoto) entering the United States at this incident involved sound fruit (Fig. 1). No Pharr, Texas, was found to be infested with insect dipterans are listed as economic pests of chile pep- larvae. USDA inspectors first noted maggots pers by English & Lewis (2004). Baker et al. crawling in the bed of the truck underneath the 16 (1944) cited incidents of A. ludens in “bell peppers cardboard boxes (240 Kg) containing the chile pep- and chili peppers” and there are equally ambigu- pers. Further inspection confirmed that the larvae ous reports of another tephritid, Zonosemata vitti- were in, and emerging from, the fleshy pods. Two gera (Coquillet), taken in “peppers” (Cole 1969). of the larvae were immediately preserved in alco- Zonosemata electa (Say) is known as the “pepper hol while 50 more larvae were kept alive. All spec- maggot” (Peterson 1960) and has been reared imens were hand carried to the nearby USDA- from “Capsicum annuum L.” (Smith & Bush ARS laboratory in Weslaco, Texas for identifica- 1999). The latter solanaceous plant species in- tion. Microscopic examination established that cludes both hot and sweet peppers.
    [Show full text]
  • Anastrepha Ludens
    EPPO Datasheet: Anastrepha ludens Last updated: 2021-01-08 IDENTITY Preferred name: Anastrepha ludens Authority: (Loew) Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Diptera: Tephritidae Other scientific names: Acrotoxa ludens Loew, Anastrepha lathana Stone, Trypeta ludens (Loew) Common names: Mexican fruit fly view more common names online... EPPO Categorization: A1 list view more categorizations online... more photos... EU Categorization: A1 Quarantine pest (Annex II A) EPPO Code: ANSTLU Notes on taxonomy and nomenclature This species was first described in 1873 by Loew as Trypeta ludens. The current combination was proposed by Wulp (1900). The name Anastrepha lathana Stone is considered a synonym. Name, host plant, and distribution data for this species and other fruit flies are available under Fruit Fly Databases on the USDA Compendium of Fruit Fly Host Information. HOSTS Mango (Mangifera indica) and various species of Citrus, especially grapefruit and oranges, are the most important commercial hosts (Hernandez-Ortiz, 1992) of A. ludens. Peach (Prunus persica) and various other fruit crops are attacked less frequently, but more than 40 plant species are reported as at least occasional field hosts of this polyphagous pest (Norrbom, 2004). Thomas (2004) provides an example of A. ludens adaptive capability to infest new host plants, describing the discovery of the introduced manzano pepper (Capsicum pubescens) as an unexpected new host in Mexico. Nearly all of the commercial hosts of A. ludens are exotic. Baker et al. (1944) considered Casimiroa greggii (Rutaceae) to be the only native wild host, although three other Casimiroa spp. (Jirón et al., 1988) and several other wild native plants could also have been original hosts.
    [Show full text]
  • Diccionario Campesino Hondureño Jeffery W. Bentley1 Prólogo Como
    Diccionario campesino hondureño Jeffery W. Bentley1 Prólogo Los campesinos tienen un vocabulario enorme, del cual este diccionario documenta una parte. Los campesinos llevan una vida verbal, con poca influencia de medios visuales como el periódico, el cine y la televisión. Tienen un vocabulario grande, a pesar de que muchos de ellos no saben leer ni escribir. El conversar y escuchar la radio son fuentes importantes de información y diversión. En el campo se estima mucho una conversación con gracia. Mucha gente de la ciudad cree que los campesinos usan palabras inventadas por ellos mismos. Sin embargo, la mayoría son palabras antiguas, con raíces en idiomas viejos, como latín o náhuat. Los campesinos saben muchas palabras que los capitalinos no saben, pero que sí se encuentran en el Diccionario de la Lengua Española de la Real Academia. Sin embargo, el español rural hondureño es un idioma moderno, actualizado, que sigue cambiando para servir los intereses de un pueblo en cambio. Pretendemos aquí lograr tres metas. La primera es ayudar a la comunicación con el pueblo rural. En segundo, esperamos documentar en parte el mundo conceptual de la gente de las aldeas, mostrando que sus palabras son claves para conceptos complicados, profundos, con definiciones concretas. Las palabras muestran las categorías conceptuales de la gente. La tercera meta es que por medio de una presentación formal, brindar el prestigio y respeto que merece el hablar del pueblo rural de Honduras. Empecé a escribir el diccionario con un enfoque de dialecto: pensaba que los campesinos por ser un grupo social tenían su propio hablar.
    [Show full text]
  • Papaya Fruit Fly, Toxotrypana Curvicauda Gerstaecker
    EENY-021 Papaya Fruit Fly (suggested common name), Toxotrypana curvicauda Gerstaecker (Insecta: Diptera: Tephritidae)1 H. L. Selman, J. B. Heppner, and T. R. Fasulo2 Introduction Venezuela). In the United States, the fly is found in south- ern Texas and southern Florida. The papaya fruit fly, Toxotrypana curvicauda Gerstaecker, is the principal insect pest of papaya (Carica papaya L.) throughout the tropical and subtropical areas of the New World. The insect was introduced into Florida in 1905, most likely from the West Indies on papaya shipments. It first became established in the Florida Keys and Miami, then spread throughout the state wherever papayas are grown. Papaya fruit fly larvae and adults have been found in Florida in every month of the year. Although originally considered to be monophagous, infesting only wild and cultivated papaya, the insect has also been reported on mango and milkweed in Florida, and other plant species in Mexico. Figure 1. Adult female papaya fruit fly, Toxotrypana curvicauda Synonymy Gerstaecker. Credits: Doug Caldwell, UF/IFAS Mikimyia furcifera Bigot. Description Distribution Adult The papaya fruit fly is distributed throughout the Carib- Commonly mistaken for a vespid wasp due to its size, form, bean, particularly in Puerto Rico, the Dominican Republic, coloration, and behavior, the papaya fruit fly is predomi- Trinidad, Cuba, and the Bahamas. It is also found in nantly yellow marked with black. The female has a very Central America (Belize, Costa Rica, Guatemala, Hon- long, slender abdomen with a greatly elongated, curved duras, Mexico, Panama) and South America (Columbia, ovipositor which exceeds the length of its body (body length: 8.5–12.5 mm; ovipositor length: 9–14 mm).
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • Mass-Production of Anastrepha Obliqua at the Moscafrut Fruit Fly Facility, Mexico
    Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 389–392 Mass-production of Anastrepha obliqua at the Moscafrut Fruit Fly Facility, Mexico T. Artiaga-López1*, E. Hernández1, J. Domínguez-Gordillo1, D.S. Moreno2 & D. Orozco-Dávila3 1Mexican National Campaign Against the Fruit Fly SAGARPA-IICA, Central Poniente No. 14. CP 30700, Tapachula, Chiapas, Mexico 2Subtropical Agricultural Research Center – USDA-ARS, Weslaco, TX 78596, U.S.A. 3Program MOSCAMED-SAGARPA The West Indian fruit fly, Anastrepha obliqua, is a serious pest which can be controlled using the sterile insect technique. From 1993 to 1995 several studies were conducted to optimize a mass- rearing system for A. obliqua. This article describes the rearing procedure and quality control parameters at the production facility. INTRODUCTION a bubbling system, which was achieved by inject- The West Indian fruit fly, Anastrepha obliqua ing air through the egg solution with an (Macquart), is a serious economic and quarantine aquarium pump (Schwarz et al. 1985). After three pest of mango, Mangifera indica L. and guava, days of incubation,2 ml of eggs and newly-eclosed Psidium guajava L. It is the second most impor- larvae were placed on the surface of 6 kg of larval tant species of economic significance in Mexico diet in a tray. The larval diet used was a modified (Aluja et al. 1987). This species is a target pest formulation of Zucoloto et al. (1979) and Moreno that can be controlled through the utilization of et al. (1997), which consisted of (by weight): 15% the sterile insect technique (SIT) (Rull Gabayet corn cob fractions, 5.83% Torula yeast, 8% corn et al.
    [Show full text]
  • Zootaxa, New Species and Records of Anastrepha Schiner
    Zootaxa 2425: 32–44 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) New species and records of Anastrepha Schiner (Diptera: Tephritidae) from Colombia NELSON A. CANAL Facultad de Ingeniería Agronómica, Universidad del Tolima, Barrio Santa Helena, Ibagué, Tol, Colombia. E-mail [email protected] Abstract Anastrepha is the most diverse and economically important genus of Tephritidae in the American tropics and many species remain undescribed. Three new species A. acuminata, A. carreroi and A. sinuosa collected from Colombia are described in this paper and six species: A.isolata, A. perdita, A. sororcula, A. montei, A. panamensis and A. lanceola are reported from Colombia for the first time. The Colombian species of Anastrepha are discussed. Key words: Diptera, Tephritidae, fruit flies, taxonomy, Anastrepha, Colombia Resumen Anastrepha es el género de tefrítidos más diverso y de mayor importancia económica en la América Tropical y muchas especies están aún por describir. En este artículo se describen las especies A. acuminata, A. carreroi y A. sinuosa, colectadas en Colombia y se refieren por primera vez seis especies para el país: A. isolata, A. perdita, A. sororcula, A. montei, A. panamensis y A. lanceola. Se discuten las especies colombianas de Anastrepha. Introduction Anastrepha Schiner is the most diverse genus of Tephritidae in the American tropics and subtropics with more than 200 species (Norrbom & Korytkowski 2007). However, many species remain undescribed. It is also the most economically important genus of fruit flies in the region, including a number of major fruit pests.
    [Show full text]
  • Diptera: Tephritidae) Research in Latin America: Myths, Realities and Dreams
    Dezembro, 1999 An. Soc. Entomol. Brasil 28(4) 565 FORUM Fruit Fly (Diptera: Tephritidae) Research in Latin America: Myths, Realities and Dreams MARTÍN ALUJA Instituto de Ecología, A.C., Apartado Postal 63, C.P. 91000, Xalapa, Veracruz, Mexico This article is dedicated to J.S. Morgante, R.A. Zucchi, A. Malavasi, F.S. Zucoloto, A.S. Nascimento, S. Bressan, L.A.B. Salles, and A. Kovaleski who have greatly contributed to our knowledge on fruit flies and their parasitoids in Latin America An. Soc. Entomol. Brasil 28(4): 565-594 (1999) A Pesquisa com Moscas-das-Frutas (Diptera: Tephritidae) na América Latina: Mitos, Realidade e Perspectivas RESUMO – Apresento uma avaliação crítica da pesquisa com moscas-das-frutas na América Latina baseada na noção de que muitos mitos e mal-entendidos são transmitidos a estudantes, jovens pesquisadores ou administrações oficiais. Pondero que depois de um esclarecedor início de século, durante o qual muitas descobertas significativas foram feitas sobre a história natural desses insetos, pouco progresso tem sido observado em muitas áreas de pesquisas e manejo de moscas-das-frutas na América Latina durante os últimos 50 anos. Isso tem sido causado em parte pela escassez de estudos sob condições naturais, bem com pela abordagem reducionista utilizada no estudo desses insetos maravilhosos, considerando as espécies individualmente, ou apenas as espécies-praga. Para interromper esse círculo vicioso, proponho que demos mais atenção à história natural das espécies, independente de sua importância econômica, ampliemos o escopo e o período de tempo de nossos estudos, fortaleçamos os fundamentos teóricos e ecológicos das pesquisas com moscas-das-frutas na América Latina e enfatizemos o enfoque comparativo sempre que possível.
    [Show full text]
  • New Records of Fruit Flies of the Genus Anastrepha Schiner, 1868 (Diptera
    223 NOTE BRÈVE New records of fruit flies of the genus Anastreplia Schiner, 1868 (Diptera : Tephritidae) and their host plants, in the Amazon region Guy COUTURIER (*), Roberto A. ZUCCHI (**), Gladys SARAVIA M. (***) & Neliton M. da SILVA (****) (*) ORSTOMMuséum National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005 Paris. (**) Departamento de Entomologia,ESALQAJSP, C.P. 9, 13418-900 Piracicaba-SP, Brasil. (***) Museo de Historia Natural Javier Prado, Av. Arenales 1258, Lima, Peru. (****) FCA/FUAM, Campus Universitario, 69000 Manaus-AM, Brasil. The studies on fruit flies have been neglected in the Amazon region. Only 16 spe- cies (Zucchi, 1988) have been reported for the Brazilian Amazon, and only one record is known for the Peruvian Amazon (Saravia & Freidberg, 1988). However, about 150 spe- cies have been registered for the Neotropical region (Maddison & Bartlett, 1989). This paper deals with Anastrepha species collected in five localities of the Brazi- lian and Peruvian Amazon regions. The species cited herein were obtained from larvae in fruits of nine species of host plants (five families). TABLE I Species of Anastrepha and their related host plants in the Amazon region. The asterisk (*) indicates a primary record of host plant. Brazil : Manaus (3"8'S, 60"l'W). A. obliqua (Macquart, 1835) Myrtaceae : Eugeiiia stipitata Mc Vaugh(*) Myrciaria dubia H.B.K. (*) Apocynaceae : Couina guianeiisis Aubl.( *) A. pallidipeiiiiis Greene, 1934 Passifloraceae : Passiflora nitida H.B.K (*) Passiflora sp. A. striata Schiner, 1868 Myrtaceae : Eugenia stipitata Mc Vaugh (*) Psidium acutaizgulatum D.C. Eugenia uniflora L. Communication presented at the "14 Congresso Brasileiro de Entomologia", January 24-29, 1993, Piracicaba.
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]