Multimodal Activation of GPR68 (OGR1) Probed with a Genetically-Encoded Fluorescent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
G Protein-Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. -
Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners. -
G Protein‐Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. -
Identification of Novel CD4+ T Cell Subsets in the Target Tissue Of
Identification of Novel CD4+ T Cell Subsets in the Target Tissue of Sjögren's Syndrome and Their Differential Regulation by the Lymphotoxin/LIGHT Signaling Axis This information is current as of October 2, 2021. Scott Haskett, Jian Ding, Wei Zhang, Alice Thai, Patrick Cullen, Shanqin Xu, Britta Petersen, Galina Kuznetsov, Luke Jandreski, Stefan Hamann, Taylor L. Reynolds, Norm Allaire, Timothy S. Zheng and Michael Mingueneau J Immunol 2016; 197:3806-3819; Prepublished online 7 Downloaded from October 2016; doi: 10.4049/jimmunol.1600407 http://www.jimmunol.org/content/197/10/3806 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2016/10/06/jimmunol.160040 Material 7.DCSupplemental References This article cites 46 articles, 8 of which you can access for free at: http://www.jimmunol.org/content/197/10/3806.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. -
Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2013 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons Recommended Citation Bogard, Amy Sue , "Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells" (2013). Theses and Dissertations (ETD). Paper 330. http://dx.doi.org/10.21007/etd.cghs.2013.0029. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Molecular Therapeutics and Cell Signaling Research Advisor Rennolds Ostrom, Ph.D. Committee Elizabeth Fitzpatrick, Ph.D. Edwards Park, Ph.D. Steven Tavalin, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2013.0029 Comments Six month embargo expired June 2014 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/330 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Amy Sue Bogard December 2013 Copyright © 2013 by Amy Sue Bogard. -
Oxygenated Fatty Acids Enhance Hematopoiesis Via the Receptor GPR132
Oxygenated Fatty Acids Enhance Hematopoiesis via the Receptor GPR132 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lahvic, Jamie L. 2017. Oxygenated Fatty Acids Enhance Hematopoiesis via the Receptor GPR132. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42061504 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Oxygenated Fatty Acids Enhance Hematopoiesis via the Receptor GPR132 A dissertation presented by Jamie L. Lahvic to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Developmental and Regenerative Biology Harvard University Cambridge, Massachusetts May 2017 © 2017 Jamie L. Lahvic All rights reserved. Dissertation Advisor: Leonard I. Zon Jamie L. Lahvic Oxygenated Fatty Acids Enhance Hematopoiesis via the Receptor GPR132 Abstract After their specification in early development, hematopoietic stem cells (HSCs) maintain the entire blood system throughout adulthood as well as upon transplantation. The processes of HSC specification, renewal, and homing to the niche are regulated by protein, as well as lipid signaling molecules. A screen for chemical enhancers of marrow transplant in the zebrafish identified the endogenous lipid signaling molecule 11,12-epoxyeicosatrienoic acid (11,12-EET). EET has vasodilatory properties, but had no previously described function on HSCs. -
Pharmacological Inhibition of GPR4 Remediates Intestinal Inflammation in a Mouse Colitis
bioRxiv preprint doi: https://doi.org/10.1101/533174; this version posted January 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Pharmacological inhibition of GPR4 remediates intestinal inflammation in a mouse colitis model Edward J. Sanderlina, Mona Mariea, Juraj Velcickyc, Pius Loetscherc, Li V. Yanga,b,* aDepartment of Internal Medicine, Brody School of Medicine, East Carolina University, USA bDepartment of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, USA cNovartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland * Corresponding author: Li V. Yang, Ph.D., Department of Internal Medicine, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC 27834, U.S.A. Email: [email protected]; Phone: +1-252-744-3419 bioRxiv preprint doi: https://doi.org/10.1101/533174; this version posted January 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Inflammatory bowel disease (IBD) is characterized by chronic, recurring inflammation of the digestive tract. Current therapeutic approaches are limited and include biologics and steroids such as anti-TNFα monoclonal antibodies and corticosteroids, respectively. Significant adverse drug effects can occur for chronic usage and include increased risk of infection in some patients. -
Mechanical and Chemical Activation of GPR68 (OGR1) Probed with a Genetically-Encoded
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022251; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Mechanical and chemical activation of GPR68 (OGR1) probed with a genetically-encoded 2 fluorescent reporter 3 4 Alper D Ozkan1, Tina Gettas1, Audrey Sogata2, Wynn Phaychanpheng2 and Jérôme J Lacroix1* 5 6 1Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second 7 St, Pomona, CA 91766 8 9 2Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709 10 11 12 13 *corresponding author 14 Dr. Jerome J. Lacroix 15 Western University of Health Sciences 16 309 E. Second St, Pomona, CA 91766 17 Tel: 909-469-8201 18 Email: [email protected] 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022251; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 G-protein coupled receptor (GPCR) 68 (GPR68, or OGR1) couples extracellular acidifications and 24 mechanical stimuli to G protein signaling and plays important roles in vascular physiology, 25 neuroplasticity and cancer progression. Here, we designed a genetically-encoded fluorescent 26 reporter of GPR68 activation called "iGlow". -
The Role of Gpcrs in Bone Diseases and Dysfunctions
Bone Research www.nature.com/boneres REVIEW ARTICLE OPEN The role of GPCRs in bone diseases and dysfunctions Jian Luo 1, Peng Sun1,2, Stefan Siwko3, Mingyao Liu1,3 and Jianru Xiao4 The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. -
G Protein‐Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. -
Activation of the Orphan G Protein-Coupled Receptor GPR27 by Surrogate Ligands
Molecular Pharmacology Fast Forward. Published on March 17, 2017 as DOI: 10.1124/mol.116.107714 This article has not been copyedited and formatted. The final version may differ from this version. MOL #107714 Title Page Activation of the orphan G protein-coupled receptor GPR27 by surrogate ligands promotes β-arrestin 2 recruitment Nadine Dupuis, Céline Laschet, Delphine Franssen, Martyna Szpakowska, Julie Gilissen, Pierre Geubelle, Arvind Soni, Anne-Simone Parent, Bernard Pirotte, Andy Chevigné, Jean- Downloaded from Claude Twizere and Julien Hanson Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases (ND, CL, JG, molpharm.aspetjournals.org PG, AS, JH), Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM) (BP), Neuroendocrinology Unit, GIGA-Neurosciences (DF, ASP), Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases (JCT), University of Liège, Liège, Belgium. at ASPET Journals on October 3, 2021 Department of Infection and Immunity, Luxembourg Institute of Health (MS, AC), Esch-sur- Alzette, Luxembourg 1 Molecular Pharmacology Fast Forward. Published on March 17, 2017 as DOI: 10.1124/mol.116.107714 This article has not been copyedited and formatted. The final version may differ from this version. MOL #107714 Running Title Page Running title: Activation of GPR27 by surrogate agonists Corresponding author: Dr. Julien Hanson Laboratory of Molecular Pharmacology GIGA-Molecular Biology of Diseases, University of Liege, CHU, bat B34, +4 Avenue de l’hopital -
Expression Profiles of Proton-Sensing G-Protein Coupled Receptors In
www.nature.com/scientificreports OPEN Expression profles of proton‑sensing G‑protein coupled receptors in common skin tumors Wybke Klatt1, Susanne Wallner1, Christoph Brochhausen2, Judith A. Stolwijk1,3,4 & Stephan Schreml1,4* The proton-sensing GPCRs (pH-GPCRs) GPR4 (GPR19), TDAG8 (GPR65, T-cell death associated gene 8), OGR1 (GPR68, ovarian cancer GPCR1), and G2A (GPR132, G2 accumulation protein) are involved in sensing and transducing changes in extracellular pH (pHe). Extracellular acidifcation is a central hallmark of solid cancer. pH-GPCR function has been associated with cancer cell proliferation, adhesion, migration and metastasis, as well as with modulation of the immune system. Little is known about the expression levels and role of pH-GPCRs in skin cancer. To better understand the functions of pH-GPCRs in skin cancer in vivo, we examined the expression-profles of GPR4, TDAG8, OGR1 and G2A in four common skin tumors, i.e. squamous cell carcinoma (SCC), malignant melanoma (MM), compound nevus cell nevi (NCN), basal cell carcinoma (BCC). We performed immunohistochemistry and immunofuorescence staining on parafn-embedded tissue samples acquired from patients sufering from SCC, MM, NCN or BCC. We show the expression of pH-GPCRs in four common skin cancers. Diferent expression patterns in the investigated skin cancer types indicate that the diferent pH-GPCRs may have distinct functions in tumor progression and serve as novel therapeutic targets. In 2019, the United States are projecting 1,762,450 new cancer cases to occur1. Over the past decade particu- larly skin cancer, one of the most common types of malignancies, has shown an increasing incidence 2,3.