TH 1772 THE GEOLOGY AND PETROLOGY OF A PORTION OF THE BELL RIVER COMPLEX IN BOURDAUX TOWNSHIP, THE GEOLOGY AND PETROLOGY OF A PORTION OF THE BELL RIVER COMPLEX ,IN BOURBAUX TOWNSHIP, QUEBEC

A Thesis submitted in conformity with the requirements for the Degree of Master of Science at the University of Toronto,

Q Randolph Walter Scott 1980 ABSTRACT ~

The Bell River Complex is a large layered gabbro intrusion of Archean age within the Abitibi orogenic belt. After intrusion into the Lac Watson and Wabassee volcanics it underwent regional greenschist metamorphism and was folded into an east-southeast trending anticline. Granitic and quartz dioritic plutonism separated the complex into eastern and western lobes and caused amphibolite grade meta- morphism of the eastern lobe. The Bell River Complex has an intrusive relation- ship with the lower part of the volcanic sequence. The presence of sill-like subsidiary intrusions of the com- plex in the upper volcanic sequence indicates that the complex acted as a differentiation chamber for these vol- canics. REE data for the upper volcanics do not eliminate this possibility, but the data could also reflect residual phases in a mantle source.

The exposed part of the Bell River Complex is mainly a medium to coarse grained metagabbro with 60-80% plagioclase and 20-40% uralitized clino-

pyroxene. A complete range of gabbros from pyroxen- ite to anorthosite is present along with minor dunite and peridotite. The western lobe of the complex can be divided into a felsic rich and magnetite poor lower zone about 10,000 ft. thick and an upper layered zone richer in mafics and magnetite that is about 15,000 ft. thick. In the eastern lobe of the complex this twofold division can also be recognized. Detailed field mapping and laboratory work was carried out on the transition zone between these two divisions. Cryptic variations within the cumulus plagioclase and clinopyroxene are recognized in this transition zone., The plagioclase compositions vary from Ab17 to Ah30 and the

compositions vary from pyroxene Wo48.6 En43.6 Fs7.7 to Wo 49.4 En34.8 Fs15.9 over an 8000 ft. stratigraphic interval. A small increase in the Cu/Cu+Ni ratio of the weakly mineralized pyroxenites is also recognized. The Bell River Complex has many characteristics in common with the Dore Lake Complex, and also appears to represent the upper portion of a "Bushveld" type layered intrusion.

ii. TABLE OF CONTENTS Page ABSTRACT

ACKNOWLEDGEMENTS v LIST OF FIGURES vi LIST OF TABLES x CHAPTER I INTRODUCTION Introduction Topography 1 Previous work 2 3 CHAPTER II REGIONAL GEOLOGY Volcanic rocks Sedimentary rocks 4 Bell River Complex 9 Granitic rocks 10 Diabase dykes 10 Age dates 12 Structure western lobe 12 Structure eastern lobe 13 15 CHAPTER III BELL RIVER COMPLEX GEOLOGY Western lobe geology Marginal zones 17 Core zone 17 Apophyses and subsidiary intrusions 22 Eastern lobe geology 22 General Grid area geology 23 Unit 1 27 Unit 2 and 2a 27 Unit 3 32 Unit 4 35 Unit 5 36 Granitic dykes 38 Structure within the eastern lobe 39 40 CHAPTER IV MAGNETOMETRY Regional magnetometry Grid area magnetometry 43 45 CHAPTER V PETROGRAPHY Gabbros Amphibole 49 Igneous plagioclase 49 Metamorphic plagioclase 58 60

iii page-

Minor minerals 60 Unit 1 63 Unit 2a 69 Lamprophyre dykes 74 Granitic intrusions 77 Diabase 78 Western lobe petrography 80 CHAPTER VI MINERAL CHEMISTRY AND METAMORPHISM Mineral chemistry 85 Plagioclase 86 Metamorphic plagioclase 92 Pyroxene 92 Olivine 101 Amphiboles 105 Sulfides and oxides 106 Western lobe metamorphism 109 Eastern lobe metamorphism 110 CHAPTER VII PETROCHEMISTRY Whole rock analyses 116 Rare earth elements 123 Wabassee volcanics and subsidiary intrusion samples 124 Bell River Complex samples 129 Lamprophyre dyke samples 132 Cu, Ni, Pt, Pd contents 132 CHAPTER VIII SUMMARY AND CONCLUSIONS Sequence of events 142 Eastern lobe structure 143 Rock types and stratigraphy of the Bell River Complex 144 Comparison of the Bell River Complex with other layered intrusions 148 LIST OF REFERENCES 153 APPENDIX I Modal data 164 APPENDIX II Electron microprobe procedure and results 176 APPENDIX III Petrochemistry 227 APPENDIX IV Magnetometer survey 244

iv ACKNOWLEDGEMENTS

I would like to thank Dr. A.J. Naldrett for his guidance and advice during this work. I would like to thank Dr. J.J. Brummer of Canadian Occidental Petroleum Ltd. for summer field support during 1976. Thanks are also due to Mr. N. Saracoglu and Mr. W. Holmstead for their support in the field. I appreciate the assistance given by Dr. J.C. Rucklidge and Dr. M.P. Gorton with respect to microprobe analysis. Review of an early version of the manuscript by Dr. Van Loon and Dr. Gittins is gratefully acknowledged. • I appreciate the financial support provided by a Connaught Scholarship, a University of Toronto Fellowship and Dr. Naldrett's NSERC grant.

v LIST OF FIGURES Page 1. Location Map. i 2. Geologic map of the Abitibi orogenic belt. 5 3. Regional geologic setting of the 1;atagami area. 6 4. General geology-western end of the Bell River Complex. 8 5. Cross section through the western lobe of the Bell River Complex. 15 6. Geology within the western end of the Bell River Complex. 18 7. Larger scale layering within the Bell River Complex. 20 8. Rhythmic layering in the Bell River Complex. 20 9. General geology of the eastern lobe of the Bell River Complex. 24 10. Typical Bell River Complex rock types. 26 11. Geology map of the southern half of the claim area. 28 12. Geology map of the northern half of the claim area. 29

13. Gradational clinopyroxenite contact. 31 14. Sharp clinopyroxenite contact. 31 15. Inch scale layering in unit 2a. 34 16. Fafic rich layers in anorthos;.tic gabbro. 35 17. Cross bedding in anorthositic gabbro. 37 18. Lamprophyre dyke cutting anorthositic gabbro. 38 19. Aeromagnetic map of the Vatagami area. 44 20. Ground magnetic map of the southern half of the claim area. 46 21. Ground magnetic map of the northern half of the claim area. 47

vi Page

22. Clinopyroxene partially replaced by hornblende+ quartz. 50 23. Cumulus plagioclase within a large poikiblast of hornblende+quartz. 51 24. Hornblende+Quartz partially replaced by oriented hornblende. 53 25. Small oriented hornblende crystals. 53 26. Fibrous hornblende with euhedral hornblende. 54 27. Area of oriented hornblende crystals partially replaced by randomly oriented hornblende. 55 28. Plagioclase with finer grained, randomly oriented hornblende. 55 29. Plagioclase partially replaced by randomly oriented amphibole crystals. 57 30. Large subhedral to euhedral hornblende with plagioclase. 57 31. Adcumulus plagioclase. 59 32. Broken plagioclase crystal with metamorphic plagioclase and hornblende. 59

33. Fresh metamorphic plagioclase. 61 34. Metamorphic plagioclase and hornblende al- teration of igneous plagioclase. 61 35. Pyrrhotite and chalcopyrite mineralization in anorthosite. 62 36. Partially uralitized augite. 64 37. Pyrrhotite, containing exsolution flames of pentlandite, with chalcopyrite. 65 38. Adcumulus augite with poikilitic inverted pigeonite. 67 39. Augite with two sets of exsolution lamellae. 67 40. Cumulus olivine with intercumulus magnetite+ ilmenite. 70

vii Page Ilmenite grains and exsolutioris in magnetite. 70 42. Modal variation across unit 2a. 72 43, Intercumulus uralitized clinopyroxene with cumulus olivine and magnetite-filmenite. 74 14.4 • Lamprophyre dyke. 75 45. Medium grained diabase. 79 46. Cumulus plagioclase and uralitized hypersthene within a large augite oikocryst. 82 47. Intercumulus plagioclase and opaques with cumulus uralitized hypersthene. 82 48. Plagioclase compositions along line 204N. 88 49. Metamorphic plagioclase zoning. 94 50. Clinopyroxene compositions-unit 1 line 160N. 97 51. Clinopyroxene analyses plotted on a portion + of the Ca, Mg, (Fe +Fe++++Mn) diagram. 98 52. Olivine compositions across unLt 2a. 103 53. Amphibole analyses plotted in the trapezoid tremolite-tschermakite-pargasite-edenite. 106 54. Plot of % metamorphic plagioclase against p epidote in- the Bell River Complex gabbros. 113 55. Bell River Complex gabbros and lamprophyre dyke samples plotted on an MgO:FeO:(K20+Na20) diagram. 121 56. Volcanic samples and subsidiary gabbro in- trusion sample plotted on a Jensen Cation Plot. 122 57. Chondrite normalized plot. 126 58. Cu, Ni, Pt, and Pd histograms for the eastern lobe gabbros. 134 59. Contoured rock Cu results for trie southern half of the claim area. 138 60. Contoured rock Cu results for the northern half of the claim area. 139

viii

~ Page Cu/Cu+Ni plots across unit 1 pyroxenites. ► 61. 141 62. Schematic stratigraphic column for the marginal zone of the eastern lobe of the Bell River Complex. 146 63. General stratigraphic columns of several layered complexes. 149 64. Geologic map of the eastern lobe of the Bell River Complex showing the pace and compass traverses. 167 65. Location map for samples from the western lobe of the Bell River Complex. 168

ix LIST OF TABLES

Page

1. Table of formations. 7 2. Rock type classification. 25 3. Point count summary on lampropriyre dykes. 76 4. Primary plagioclase feldspar compositions. 87 5. Metamorphic plagioclase feldspar compositions. 93 6. Pyroxene compositions. 96 7. Olivine compositions. 102 8. Amphibole compositions. 105 9. Sulfide compositions. 107

10. Oxide compositions. 108 11. Whole rock analyses. 117 12. Rare earth element results.. 125 13. Summary of Cu, Ni, Pt, and Pd contents of gabbros. 137 14. Corrections to plagioclase analyses. 180 15. Initial oyroxene compositions on L160N. 208 16. REE elemental peaks, counters used, and counting times. 229

17. Rare earth element results with detection limits. 231 18. Rare earth element results for standards. 232

19. Cu and Ni results for standard samples. 234

x CHAPTER I INTRODUCTION

The Bell River complex is a layered gabbro intrusion located approximately 350 miles northwest of Montreal near , Quebec (Figure 1). The district is roughly bounded by latitudes 49°30'N and 49°55'N and by longitudes 76°45'W and 77°50'W. Matagami is easily accessible by route 61 from Amos, Quebec.

eo' rY se• »

\ A / `( eet i u.y.n illi k

oe:r. 411.1.1ie.e

ti

• xlirl Ier.m.

PROVNCE DE QUEBEC

frFnrenin ,-

.or

L. Mebe•.w ~

Melepemr: T. r e I Bell River ~`~ ~ `i'•"'r .~ S e•r ( A...1. COTpI0 a ae 1r ~s • r ~ .

' )

% /ll. .:11e

i gr ) ONTARIO . 1e•o ~ ~MeMrNI 0 50 ~ 1h POO ~~J Î U.S.A. ~ _ ~ r.rr • w1....

TY 6e• . Figure 1 Location map 2

The complex consists of eastern and western lobes

separated by granitic intrusions. The current research is centered on the eastern lobe which lies about 38

miles southeast of Matagami. The area is accessible

from Matagami by float plane or helicopter.

The present research began with field work for

Canadian Occidental Petroleum Ltd. during the summer of

1976. Geological mapping of the eastern lobe was

completed on a scale of 1" = 1000' by pace and compass

traverses. A part of this area (about 1.5 miles by

4.0 miles) was also grid mapped on a scale of 1" = 400'.

During a two week period in the fall of 1977, reconnai-

ssance mapping was completed of outcrops in the western lobe of the complex along the Bell River. In addition the grid area was revisited to complete more intensive samping of several rock units.

Topography

The eastern lobe of the Bell River complex lies within the Dalhousie Hills which rise as much as 500 ft. above the surrounding area. Exposures are common near the tops of individual hills underlain by Bell River rocks, but become very rare in the surrounding granites and volcanics. The best exposed part of the grid area

(up to 15% outcrop) is in the northwest. The majority of the grid area, however, contains only a few percent of. 3

outcrop. The western lobe of the complex is very poorly

exposed. The best exposures occur at the rapids along

the Bell River.

Previous work

Previous work in the Matagami area has concentrated

on the area around the Bell River. This situation was

initially due to the easier access in that area and

later to active exploration associated with the volcano-

genic massive sulfide deposits around Matagami.

The Bell River complex has been mentioned in various.

reports on the Matagami area including Longley (1943),

Claveau (1951), Beland (1953), and Jenny (1961). The

first evaluations of the complex itself were by Freeman

(1939) and Freeman and Black (1.944). Sharpe (1968)

investigated the area around Matagami in some detail.

He provides some of the most detailed work on the western

lobe of the complex. The eastern lobe of the complex was mentioned in reports by Freeman (1939), Freeman and Black (1944) , and Claveau (1951). 4

CHAPTER II REGIONAL GEOLOGY

The Bell River Complex lies near the north central margin of the Abitibi Orogenic Belt (Figure 2). It is one of three large mafic igneous complexes within the belt which also include the Dore Lake Complex near Chibougamou, Quebec and the Kamiskotia Complex near Timmins, Ontario. Figure 3 shows the regional geology in more detail. The western lobe of the complex is seen as a 25 mi. x 10 mi. body separated from the 8 mi x 8 mi. eastern lobe by granitic intrusions. The pre-granitic strike length of the complex was at least 40 miles. Volcanic rocks to the north and south of the complex merge into one belt west of Matagami. Sedimentary rocks are inter- calated with these volcanics near Matagami Lake and along the southern margin of the area. A large area of granitic rocks and migmatite occurs along the northern margin of the area. The general sequence for the area is shown in Table 1.

Volcanic Rocks

The volcanic rocks in the Matagami area have been divided into the Watson Lake and Wabassee Groups (Sharpe, 1968) . The older Watson Lake group contains mainly rhyolitic [tanin

ProN..Ml

1d...nM, w.. dIMM. ~~... Md..n ry 1 !v• • a..nhls rook. 10•

M.h. N .Ih.w.fl. Mtro.lw

l ~~T~, •~- ''„Ia.r ~~ - . ./ç✓ _~' r~ii ~ ~ --j.+fi~ C I V. . I.I l ~.. . . •r .~~. . .

~j ~ ~. -~.~ ,• ~ ~,- â~cC ~ '~: 'r ::~~``+ •.~`~

:r~• :!• M.,, 1 g . • • . ~. T~Z• 0.

.

MOI I MAP .«..w.«.

ABITIBI OROGENIC BELT .. M.»

'Ca. ONTARIO AND QUEBEC

Figure 2 Geologic map of Abitibi orogenic belt. Omitted from the map for cartographic reasons are diabase dikes and some thin pyritifetoua carbonaceous (± chert) zones in the Noranda-Val d'Or- area. The latter are shown in Figure 2 as sulphide facies iron formation. (Goodwin and Hid 1er,1970

••.- r t r . • T~ ~ • ~ • T • • r • . . r•. ` . • • . > < '~ • ~ `a • • ; ♦ ♦ a• ; : ,.(•, â r • ~ . EARLY PRECAMBRIAN é • • r r ••r, 4 'r •~ '. ~ •f a a♦ ,• (`,< • . ► ► ~ • •• r • ~ i r ♦ i ~♦ • . ~. 44••••..• . 41.4•411.: , 44 • i ' '•'a, ~.,â:`!~a• a~~~•+v~~~~~ i~,'• • w ► 4 4 i~~~~~~::•,~• ~':: ~ r' ~ r~ •• `a'.,1Grenilic rocks ► r• e • • • r • • Y . ` • • • ♦ ~ a •••• ' . . ► • 'I.• r r ► ! • ,• a • t / • > r • , • r ► • • •Y!•l • ••t ~• ♦• r•r( • • • •••••a ♦• 1, rr,a • ~•. `• •`••• V ► 1 K I I c A i Q a ma Y • C :1 • ,•••• 1 • ~•• 1 t , A L V 1y>+ +'L .1 r• r.•) C ,• ,••1 • I X ► f • .. •.,. . , ♦ v• • .a + . • x ~ Gebbre, Bali River temples y•••• ••, ...r• ` Lak e •'•' • • .a'..r !•, .,': `• ";``•~• ••••••• . ••••.•••.. , 1 ! • f 1 • ` ' • • • • • ' • • ( a w' • •♦ ► • w , ,• • 1 ' • • 1 I'. • ► • 1 , • • • ♦ • ~ •' ~ • f .• . • a vv .,• , - ► 1'.••• +~1~ •• ,1• • • Y• ► • •.~ ', , ` . Mainly aedimenreryrocks . a • . . .. • . • • •.• • ~ Y ~ •'~ • ; , ~ ,, . , • • • • • ' " • v • - ► a ' ► w • , ~ . - - - r • • • a ` ♦ • r • • •. + r • ► ► • • • , , • • , •' • • . . * "'a - _ • a • • ---- • 1• • . ~ •~, , • • >•(r rt • • __ ~Velcanicrocka r.• • ,v ,.r ~~.• • ., • • ,„-• --_-_-= _ = _~y _ _ . ` , i ~ • • • f 7 • • .. - -_ - • • • , • ] Q7 • • -,.. -i--,7,- • = AKE ~• 1•..••• • — .- - O L • >•r••••. -- .____--._..._-~.. MATAG.1M: - „- Q: ._-. ------~ • .•`• ♦ ~ -- ------__ • "• ------ - __ - _-_ _-.___------1014111114. -- pV•~ _- - ------_ _-ISLE _ E • UiEu_- - ~ -- - _ oNr. _E~ ~•~ ' --'---- O~~O -- 1~ - - ---- _-_ _ ~~,T -- ~~ J • • - • . > r Y < • , a r • • • . 1 r ■{1~ •a'••. ♦ _-_ - ~ . ~ X • ,• ` •a••• • • 1----- _ ~ ~• >" MATAGAMI • 7 , , •r•~ •r• -_-_-_--_ _— ♦' •• •r••~ ~ ^ • • - -_ ~_ _ X X X f _- __--~ .r~ r •• ~l-• .'~> 1•, a„•••^• - - - • 7 j• r• , :; •r„• •~• -----__ x a X X x X •ar ,f ~•,r.. • ___ ` x x fa • - ~, d~ ± . • ••••t• r , ■ •"r•••• X t , , .• ------x X x x x x x x r > ' ,.., • ► _---- - _ - _ ~ X •• , . • ^ ••' 1 •••• ' i ``Rüreloy'Q~rr<~ ~ _ _ _ _ _ ~ ` '•~ • _ ~ - ... X X X X X X i • • a" ; ;a • • • • g i r'• :• ,, > . > , > '7471...7,-7 - - -- <. • -- - G~r NEE ,w. r' • a•f 7',~' ••rr• .r5.~l.-.— —_:_—__—___—_-7. _ -\y...»{ x x x X g x x . ~ ••r • x x x'r, .r .\ _ ~ •. • . X r• r•, ••"~ - r X X X X X Y • X 1f•1• ,• X X X x X' ~ J a+ r ,•~~ _ _._ _y ~~ ( ~ • < <• r ^ , X x X ' X X X X ~ r . X X X X . • > c , 1 . , ♦ V ` • 1 X X X x 4". X X X• . . . y . ..~,. . I . . . r• ♦ r . ~t• , rl ! 1- - - - _ . • -. .1, • l Ÿ 7 w - ,.,. • •• ti ~ 4. ‘••f ' ,.',r • ••,,•^r~, . _ __ _ • ` •••.rr • - • r•r,, • - a r . •+ •<•~ • • . •• ~ 4 ~ - i• ,^- ' * , .' •" lt •• 0•♦ ^ '~= ~ ~' • ~, •••• ' ' ~ •" • `. • r~ p . ...:~~• ; • • , _ 40440PgWn .es • • `'> .. • fa-' • .._ .. •

Fig... 3

REGIONAL SETTING OF MATAGAMI AREA (modified from Sharpe, 1968 ) Table 1—Table of Formations

Recent fluvial and paludal deposits. Pleistocene till, glacial-lacustrrne and glacial-fluvial deposits. CENOZOIC _ 'nconiormity Diabase and gabbro dykes LATE PRECAMBRIAN

Younger hornblende and biotite granite, granodiorite, quartz diorite, Intrusive Rocks siliceous, feldspathic and mafic dykes (mainly symorogenic or post-orogenic) peridotite, diabase, lamprophyre dykes (age relations uncertain). Older Intrusive Rocks layered gabbro and anorthosite, pegmatitic gabbro-anor- EARLY (mainly pre-folding! Bell River com- thosite, uralitized pyroxenite, gabbro, quartz gabbro. plex and subsi- diorite, porphyritic gabbro. magnetite-ilmenite segrega- diary intrusions tions Sedimentary rocks ( 'Mattagami Series") (in part intercalated with lavas and PRECAMBRIAN pyroclastics) dacitic lavas (rhvodacite, dacite, oligoclasite1. andesite- Wabassee group basalt, tuff. agglomerate, cherty rocks ("tuffite"), sub- Volcanic volcanic intrusions Rocks .porphyriticspherulitic lite and hvodacite, tuff, Watson Lake agglomerate, breecciatedand osilicitsilicified rand chioritized group rhyolitic rocks, chioritized intermediate volcanic rock, mafic lavas, highly metamorphosed volcanic rocks (base not exposed). (Sharpe,1965)

rocks interstratified with pyroclastics. It has only been defined adjacent to the western end of the Bell River Complex where it varies from 200 to 3000 ft. thick (Figure 4). The base of this unit has been destroyed by the intrusion of the complex. The Wabassee group consists of dacitic, andesitic

and basaltic lavas which are in large part pillowed and interstratified with tuffaceous material. Very often individual flow units are discernible in this group.

It ranges from 600 to 10,300 ft. thick. This volcanic 8

MINISTER[ DES RICHESSES NATURELLES DEPARTMENT OF NATURAL RESOURCES • ••..•i •e..••.

MATAGAMI

.[0110[ LIMO

••[urwa rl•t.1[u• Ui[ Mt CAYMAN o.r Ln R.r • M[M:r.w1[r Ir•I7741I17 tAR. nl<[•N[RAn

1.4. _mun.r M~ • . r...

c..w...= r •...• MM •.tlr. ~R M .y.. rlr•, momim1r

0.•••••11 •r* i••• _•..•`M .._.. i.•••• 1..6...••••1r deem.rm. I..i MrW.•.4.4.1•••• i.N.•_iY r...,r._.••ir.l., ..,. r._. mime ri.r

...... Ia.rr *sot .r. 1/Mie ...m. ✓r.. Iamb M ammo

RN.4... _4..W..,.. w.w. [.,•W. and ..... *Wm mr. •,•••..•••••..•••„

C__•...... , _ maim moon

[rownr_.._...... r. / Comm _ mammy saw r ..r.

•_r. w...r.r_. AAA •.._r_. ..w.

11••••r_., 0.0 n.4..r.....• t i ~ i..i..•IM rn..r.._..: iium •M ~ l~irw:41_I_•,nlnn_.•. ••••••w• . Ir•+~.• N ..w. 411••••••• al. .r _1_ n1.I ,1.1r~ ~. GÉOLOGIE GENERALE GENERAL GEOLOGY 1_.. n_r,.r» REOION or , 1 , 4r j[ jl ._1._nIA, .rlr...M....1.. 1 MAT AOAMI AREA

• 4:r. ~ YrAr.

A.•Ir. wr Figure 4 (Sharpe, 1968) Ii. NIA•• . nil. MW, M,

Iv.w.• ... • tir.... i~.1•.• ~r. • .».o_ ~~~_1 4rw..0....• nr_r ) A irn_, Ir 1.•r n w J al Iwlr..l Yr. M. Inl 9

group occurs north and south of the Watson Lake group

and continues to the east around the Bell River Complex

(Figures 3 and 4). The contact between these two volcanic units south

of the complex is marked by a thin laminated chert and

tuff horizon at the base of the Wabassee group (Sharpe,

1968). In general, however, there is an intercalation

of the two groups so that the boundary is based on

gross lithologic changes. The copper-zinc volcanogenic

massive sulfide deposits in the Matagami area (shown

in Figure 4) all occur within the stratigraphic zone

between these two volcanic groups.

Sedimentary Rocks

The sedimentary rocks occur near the top of the

Wabassee group north and south of the Bell River Complex

(see Figure 3). The 1/2 mile wide band of sediments

north of the complex consists of conglomerates,

silicified graywacke, tuff, and argillite (Auger,1922;

Longley, 1943) . The southern band of sediments, which is up to 4 miles wide, contains sericite-phyllites, argillites, greywacke,and iron formation (Freeman and

Black,1944; Beland,1953). Quartzites and conglom- erates are reported in the eastern part of the belt

(Claveau, 1951). Bell River Complex The Bell River Complex is a gabbroic body which has intruded the volcanics and sediments in the Matagami area. The mineralogical and structural details on this body are discussed in Chapter 3.

Granitic Rocks The granitic rocks are some of the youngest intru- sions in the area (Table 1). They cut all other rock types except for the late diabase dykes. A large granitic intrusion occurs in the southeastern part of the area (Figure 3). This intrusion continues from the Bell River, north of Matagami, east to Ramsay Bay and south to within two miles of the southern boundary of the area. Freeman (1938) named this intrusion the Olga quartz-diorite. It is medium to coarse grained and composed .of oligoclase-albite and quartz with smaller and variable amounts of microcline, biotite, hornblende, magnetite, and apatite. Other workers in the area have noted quartz monzonitic and granitic phases of this intrusion (Longley1 1943; Claveau,1951; Auger,1942). The smaller granitic bodies south of Kitchigama Lake and in the southwestern corner of Daniel Township are thought to be genetically related to the Olga quartz diorite because of lithological similarities (Longley, 1943) . 11

The granitic intrusion east and south of the eastern

lobe of the Bell River Complex is a pink granite con- taining 30-40o K-feldspar, 25-40o quartz, 15-20% oligo- clase and 4-8% biotite (Claveau, 1951). A hornblende syenitic phase was noted as part of this study. This

granitic intrusion appears to be younger than the Olga

quartz diorite because Claveau (1951) notes it cutting and containing inclusions of the Olga body.

The small granitic intrusion on the southern rim

of Matagami Lake is called the Dunlap intrusion by

Longley (1943). He notes a gradation from diorite with Ab 50 in the southern part of the intrusion through monzonite and syenite into granite with Ab90 in the north. This distribution in rock types led Longley to

propose that this body was a differentiating intrusion

emplaced before or during the early stages of folding.

This theory would make the intrusion earlier than the

other granitic intrusions, which are post folding, and

possibly indicate an association with the Bell River

Complex. This interpretation is not entirely in agree- ment with the observation of Sharpe (1968) that dykes

from this body cut the Bell River Complex.

Along the northern shore of Matagami Lake a migmatite is noted by Longley (1943) and Auger (1942). It has an east-west trending, steeply dipping banding and contains amphibole, andesine, orthoclase and quartz.

This material is thought to represent completely

recrystallized volcanics and sediments. Longley states

that it has been extensively intruded by a biotite

diorite to biotite quartz diorite and later by pink

granite (probably a facies of the Olga quartz diorite)

aplite and pegmatite.

Diabase Dykes

Late gabbro dykes, which cut all other rock types, have been noted by several workers in the Matagami area.

These dykes are up to 200 ft. wide and traverse the area in a northeast direction.

The diabase is massive and has a pronounced Qphitic texture. It is composed of lathy plagioclase grains with interstitial clinopyroxene and accessory quartz and magnetite (Auger, 1942; Langley, 1943) .

Age dates

Previous workers in the Matagami area describe 'Lhe rocks as Precambrian in age. Although there are very few absolute age dates for the rocks in this area,and none on the Bell River Complex itself, some constraints on an age for the complex are possible.

One age date has been obtained from a meta-tuff approximately 20 miles east of the area shown in Figure 3 This sample comes from the eastern continuation of the

southern volcanic band. It has a hornblende K-Ar age

of 2,236+58 m.y., but Wanless et al. (1974) believe this

age represents a reheating event in the Aphebian. Therefore, no upper age limit for the intrusion of the

complex can be given. Two granitic intrusions about 17 miles south cf the area have also been dated. Lowdon et al. (1963) found a biotite K-Ar age of 2,510+125 m.y. on a 3 mile diameter quartz monzonite stock cutting volcanics and

Wanless et al. (1978) report a hornblende K-Ar age of 2,630+63 m.y. on a hornblende ademellite. If these intrusions are related to the granitic activity in the

Matagami area, these ages put a lower limit on the age for the Bell River Complex since the granitic intru- sions are younger than complex.

One age date is available from a diabase dyke on the northeastern shore of Anita Bay, Matagami Lake.

Wanless et al. (1970) give a hornblende K-Ar age of

2,035+65 m.y. indicating an Aphebian age for these dykes which cut all other rock types in the area.

Structure Western Lobe

The overall structure of the western part of the Bell River Complex was poorly understood until the work associated with active exploration and mining of the Cu-

Zn deposits in the area. Sharpe (1968) used a combination of top determina-

tions on pillowed lavas and the outcrop pattern of the two volcanic groups to define a westward-plunging anti- cline whose axis crosses the about 3/8 mi. south of New Hosco mine (see Figure 4). This anti- clinal axis is considered to be approximately co-axial with the longitudinal axis of the complex. The southern limb of the anticline is a moderately dipping homocline with only minor subsidiary folds such as an asymetrical anticline at Mattagami Lake Mines. The volcanics to the north of the complex are steeply north and south dipping. Because of only scattered top deter- minations, it is thought that at least several east- west trending fold axes are present (Sharpe, 1968;

Auger,1942). Within the complex, mineralogical. layering in the marginal zones parallels the orienta- tion of the volcanics. Since no repetition of the marginal zone lithologies is recognized within the complex, Sharpe (1968) postulates one large asyme- trical anticline over the complex (Figure 5).

Two types of faulting have been recognized in the area of the western nose of the Bell River Complex.

15

w.u.. i.l-/r.q ~}ww wswwi SM/+w 11.40.••••W.bNN fr17r1.1. ~~i,I Awe~p..11e A. la ~!

r ~ .- e.r r1 .., - 'AN.tl..el N s's% `i r'. ' 1 11•11.11 111.m'.i.r s. 14 A1 •.1/.il•• - 1 \r Î 1 r lr I 1 ' \P` 'd .. , 0",1, !~ .N ` ` ll . .` ~ ...• -V: IS r N ` ~ : ~' I . : éw. '1` E .G~ T. ... w \~f

Ri4110e d. Molepowi — Ouieee Yde/ea •ree—Deebee Secte.. dlepremweloqee A•Al Die/re/e.1•/le aeeele• •l•e

[LNll. 1, eaI.l. N•r.II.$t CUIS [e..ut Irar1..1.4 Mv.n.rM scot i~~ I..rp. NJ•• e•••r••• . .•r••• •r ..I r.... NI•.•.•....•• ELI e•46•• M.r«.w• dI••rIt I••t• ••••/I ••I H/•••.I e.•M• I•Irl•.N• •r•.•••, i..M • -. •/•N•••. 111111111 d/I•r•I I.r.rll/I

~ ...• M •N1•..• l.V.rl• I••..rl. rw•Nr. .•• .•rM•••. Nr.rlrV• •.. "' . l ••r Fig. 5 Cross section Ai A: across port not Matagami area. (Allard et al., 7l t/

All workers in the area have noted the development of schist zones up to 100' wide within the volcanics that parallel the fold axes. These belong to Sharpe's (1968) longitudinal faults which are thought to have developed during folding in the area. Sharpe (1968) also defines a group of transverse faults marked by clean fracture planes or narrow zones of schist or gouge. These faults have strikes between

N159W and N15°E.

Structure Eastern Lobe The structural picture in the vicinity of the eastern lobe of the Bell River Complex is not as well understood as that in the west. This situation is due to a lack of intense work in this area, the presence of granitic intrusions which have destroyed parts of the complex and surrounding volcanics, and a lack of exposures in the volcanics.

The most intensive work in the area was by Claveau (1951). He proposes at least one east-northeast trending anticline south of the complex based upon the repetition of a sedimentary unit intercalated with the volcanics. In this area the volcanics and sediments have moderate to steep dips. Top determinations are very scarce. Therefore little more can be said about the overall structure. If the anticlinorium in the western lobe continues east into this area, the simple homocline recognized to the south of the complex appears to be replaced by more complex folding.

Both transverse and longitudinal faults similar to those in the western lobe are reported in this area by Claveau (1951). He also notes the local warping of bedding schistocity in the volcanics parallel to con- tacts with granitic intrusions. .CHAPTER III BELL RIVER COMPLEX GEOLOGY

Western Lobe Geology The Bell River Complex has been described as a

layered gabbro-anorthosite intrusion by the previous

workers in the area. Freeman (1939) was the first to

attempt to define lithological units within the com-

plex. He concludes that the complex is a deformed

lopolith with bilaterally symetrical limbs of basal

norite which enclose a banded zone, a gneissic cata-

clastic zone and a central cataclastic zone. A later report by Freeman and Black (1944), however, does not mention these divisions.

Sharpe (1968) only investigated the western end of the complex (Figure 6). In this area he defines three divisions of the complex based upon petrographic and structural features. These divisions include mar- ginal zones, a core zone, and apophyses and subsidiary intrusions (Figure 6). These divisions appear to be reasonable based upon the outcrops along the Bell River examined in this study. Therefore, these zones will be discussed in more detail.

Marginal Zones

The marginal zones are well layered gabbros that occur along the northern and southern margins of the .18

DEPARTMENT OF NATURAL RESOURCES MINISTEREÿESRICNESSEI=_ ATURELLFS „

DANIEL ONG. r~ Lac Alalagami • O . o ô O C? s F:' lN . V Y1 i -!- act. ~~.r L W.i..11. '41 aaQ can 11 q , AnixuIlingrl.

D A NL I °E44311111e NEW NOVA rhililFDa 43mAiom ~ " ',•••••. sII \`I~a n' nar fJ~n °\ ~•1LLfp,,,' 14111=ETA.*1 .IV +s ~°'a, ,,uull r - ~ ~~lfü~tf+- .Lll~~l~lllmlllll` AIO~E RJ '>~~ ~ ~ I I DELL CHANNEL L~in~~p~in_ 4b ..~. , ,u --r-. . iqlul~ ! >< ~ .1111114111111t L~\ 411...: ti n. ~1 =-. \~IADIOIE •`QI' 1Irt 4 4 '., R.r`--14Wll1illiab • L 41. S/: MINIM ~ • ~,~~••~i~

■ R. l .a.'...' • ~ ~ itl ~ : : •r: • ~, ~ MIX_ M [.It' Ills .w..1.I~. COG 10I41. •.•1..m. •r••.11.• il ~ YATTAGAYI LADE . 1 ...... I .. •m. ••m • •••••• •.N.~•IN. . + ~. . . . . t0 • ~' I ELM .IlG[.LLI.GI`.• •ombrr WIGM•l 1a.l,I..w..a•.Wr• • INDIAN ~+' R . IX roarer, ••••••••••• ••••••••• •N.' ••...r.. r••.Ir.N•..• :•.. W:;.~I. y •1 A!Q + \L ‘11".1-4.11: a • k• . . li,l . ta.alawRltal•YILG•r.. W1 01•lllflM °O s ,Gw..•N . ~ ~ ~ 1+b..•Iw.••.•. • .•+—•. • ~••+..~. ~ • . •. 11.•4•••••— ::.,. ll l :;:• M.. Q • . VIII ~••.®ill1• i 1111 a.. sQa , ` • i • . • . ~ •r mirror 1413, 1 ~ I.• 1••. •••••. Am •.r• A a r Or r•. moor aomororo. r • r •.Yw•r..om A. .•.N• .•. NN.. r. ~` t414:-NT .._....N.••.._ ~ar tll `~ ~ r ....l..r....m..... ,,, ..•.l• • ~° G A L, ~-N`~; ~ E. : : : . : :~ Comoro MI ••m•.lU N.• r ..~.. ~ / C~.•..o r.~..1.1••.. 1+...•• tI. ` 1 -..—m.. • , ; ...... •..... :``~ .. • • CONS. TING ~~.M f GL.•• N •...•. • t.yr Nome N AND SMELTING 411na rmr r• omN

G•1.. .m, 1••1•1. .n IL.1r.R. l.I. tt,. ..1 PARTIE NORD-OUEST DU COMPLEXE IGNE DE LA RIVIERE BELL s . •• o Irmo . m .w l u.:a~ ... a`.r.I .. :P•r. NORTHWEST PART OF BELL RIVER IGNEOUS COMPLEX ♦ .1.• . N 1r.•• G.• .r ►. 1111 r1 m•. G....•J l..•..• „T Rt610N OC MATAOAMI MATAQAMI AREA

Figure 6 (Sharpe, 1968) 19

Western part of complex. They do not appear to continue around the western nose (Sharpe, 1968). The northern zone is about 6,000 ft. wide and has been traced for 3 miles on either side of Chenal rapids (Figure 6). The southern zone, seen in the south- eastern corner of Figure 6, is about 3 miles wide and not as continuous as the northern zone. The rocks in the marginal zone are medium to coarse grained and vary from pyroxenite to anorthosite. Sharpe (1968) considers gabbroic anorthosite and anorthosite to be the most common rock types. The layering within the gabbros of the marginal zone is caused by variations in the proportion of felsic and mafic minerals in addition to changes in texture and grain. size. In general, individual layers on a scale of a few inches are rare so that individual exposures don't appear to be strikingly layered. The most common type of layering consists of bands of different rock types from several feet to several hundred feet thick. The contacts between these bands vary from sharp to gradational over a few inches to several feet. Figure 7 shows a well exposed outcrop along the Bell River that contains this type of layering. The most striking layering within the complex is 20

Figure 7 Larger scale layering within medium grained anorthosite. Eastern bank of Bell River at Chenal rapids.

Figure 8 Rhythmic layering in gabbro. Northern end of portage at Cold Spring rapids, Bell River. 21

a rhythmical layering where mafic rich bands from 2 D 4'in. thick are spaced 6 to 12 in. apart in gabbro of varying compositions. The contacts of these mafic Lands are usually gradational over about 1/4 in. Figure E shows a typical example of this type of layering from the southern marginal zone. Most of the layers, in the complex are of a symetrical type where the rock is of nearly uniform composition on each side of the median line until near the margins there is a transition to the adjacent band. However, asymetrical layering is also present where - there may be a gradual decrease in the mafic content of the rock and then suddenly an abrupt increase. This second type of layering has been called mineral graded layering by Wager and Brown (1968). A consistent top direction was not indicated by this type of layering, however. Within the northern marginal zone,Sharpe (1968) defines a crude super layering with units up to 800 ft. thick. One of these layers is very rich in magnetite and varies from 150 to 200 ft. thick. Sharpe (1968) notes that similar but less extensive magnetite rich rocks occur along the southern margin of the complex. 22

core Zone Sharpe (1968) defines the core zone as the main

part of the complex between the northern and southern marginal zones. The outcrops along the Bell River that were examined as part of this study confirm Sharpe's observations of a lack of well defined layering, a general felsic nature, and a low magnetite content for the rocks in this zone. The most common rock type is a medium to coarse grained gabbro with 60% to 80% plagioclase. Several outcrops of pegmatitic gabbro with pyroxenes up to 1 ft. long were also noted.

Apophyses and Subsidiary Intrusions Sharpe (1968) notes numerous semi-concordant gabbro intrusions in the vicinity of the western part of the Bell River Complex (Figure 6). These intrusions are thought to be subsidiary intrusions because of their spatial relationship and petrographic similarity to the complex. They are fine to medium grained and vary from intermediate gabbro to anorthosite. Sharpe (1968) also notes that some intrusions are quartz gabbro. These intrusions are sill like but they do transect the volcanics at low angles. The contacts, when observed in drill core, have a fine grained chilled 23

border (Sharpe, 1968). Sharpe notes that some of the

8î11s contain amygdales and are not easily distin- guished from massive mafic flows. The outcrops observed for this study confirm this close similarity to the massive flows north of the complex.

Eastern Lobe Geology The eastern lobe of the Bell River Complex was examined in the most detail for this study. Figure 9 shows this area in more detail. The area around the claim area, was mapped by pace and compass traverses with 1/2 mile spacings. The claim area was mapped in more detail on a cut grid with a 400 ft. line spacing. The traverse mapping in the area located a general contact on the eastern and northern sides of the complex. This contact is poorly exposed, but is characterized by a wide zone 1000 ft. wide where the number and size of the granitic dykes increases away from the complex. The contact in Figure 9 is placed where granites and complex rocks are about equally abundant. The contact of the complex with the granites in the west and the vol- canics in the south was not observed because of time limitations and a lack of exposures. In these areas the contact is taken from Claveau (1951) and Freeman

24

r i —/ 3a 3a i i o0000000000000000000 . • ' 0000 .. o ✓ —.., C5 ~' • r1 ~ .

~` 1 ~ss ~ T ~1 2 i If i 1141 _ 1 .o00 + .~ /~ 1 , , FI>.I ...... 1 ~ 1 >. —~,.~, 1 / / c ~ / 1\ `1 ' 1 i /447 / ! '~ I I 1 /~ • ~ ~,• f"`i :1 i CLAIM/ / I . :; i i ~ ~ '( ( fTl: rl r I 1 I 1 • ` AREA 1 / 2 a4 ro • -f/; / 1" ~4 . .'. ~ ~ ./ ~: J~~ ~3c ~, x~ J ~ _.J ~ , ~ 1 ~ '.i•. t , ~,. ,‘,11/4 4. ~~ 1 / 1 3b,c ! 4 I --~ I i % 1 /f '/'I ~ ~ :• • 1 '/ ,/ S. 1 . 1 /1 ~/ ~6:~ t . ~ • 1 '3c~,~

Ts A ~ . - I / 4 , .r--- / : / f.>rX.ô . I 1 %rt,. '' 3b,c,'~ ' 4 1 / / 1~ t , i 3c •.• 000 ...... / ' , 3 .1 2 .~. / ~— i f'• 3c 1 1: i ,.t ‘.7"..—....,-*-- I / '• r~ ..•; • 2 ...... ,- ~{ I.i'`-.....\1. .1i / 4 ~ / ,I ••••••••••••,' •w 1 ` `_—,. ,, ~ ' . I ( ' 1 7. t' I N~ , Y ~ ~ 1 ✓, r % / ~ ~~; ROCK UNITS GENERAL GEOLOGY , LINENS of the •••

Figure 9 (modified from Freeman and Black (1944) and Claveau (1951)). 25

d Black (1944). The eastern lobe of the complex, like the western part, contains mainly medium to coarse grained gabbro which ranges in composition from pyroxenite to anor- thosite. Plagioclase feldspar and green to black amphibole are the two main constituents. The rock types in Table 2 were established for the purposes of field mapping. The classification is based on the amount of plagioclase present except in the case of the bleby anorthosite which is a textural classifica- tion. In addition to the gabbros, magnetite-ilmenite

Table 2

Rock Type Classification Rock Name Abbreviation % Plagioclase* Remarks Anorthosite An 90-100 Anorthositic gabbro aG 80-89 Feldspathic gabbro fG 65-79 Gabbro G 50-64 Pyroxenitic gabbro PyxG 10-49 Clinopyroxenite Cpc 0-9 Bleby anorthosite bAn variable but Contains clots usually of hornblende up 70-80 to 2" in diameter in nearly pure An

*Estimated from a standard percentage estimating chart. dunite and peridotite were found within the eastern lobe of the complex. Figure 10 shows representative examples of these rock types. 27

is area represents the eastern extension bf the southern marginal zone in the western lobe of the complex.

Grid Area Geology The geology within the claim area is better under- stood than that in the rest of the eastern lobe because of generally better exposures and grid line mapping control. Within the grid area, individual rock types can not usually be traced from one grid line to the next. However, larger units containing predominantly mafic or felsic rich gabbro can be recognized. Five of these units are defined within the grid area (Figures 11 and 12). In general these units range from mafic rich (unit 1) to felsic rich (unit 4). Unit 5 is a large lamprophyre dyke cutting the complex.

Unit 1

Unit 1 is a fine to medium grained clinopyroxenite which has been uralitized by green to black amphibole. Up to 10% magnetite and 1-2% disseminated sulfides

(pyrrhotite, pyrite, and chalcopyrite) are often present. Outcrops usually have a rusty colour and

28

u 05 4 , rr U04 4 1 —~_ u0 r 1511

1 4 L.12 4 ~: L5.

154

ulr 4 4 :•âme-~. 4 3 L72 ere LOS 4 ,O

154 ~.~5s 4/3 r ....,,,_: 110 a ; 3 .

4 L511~ 'r f~l 3 :'li 1!1.. ' 4 1.52 ~... —~ •~ r,. ~:: ~ !~ 41 rY~ 4 ..s L47) 4 ► ► 'rev 1 L44 M r

L40 i /3 L35

/55 L32 3 ` .55 125 70 T 55 L24 ~ 3 A72.: 3 **4•l L20 .;' 7'70 •. r 3 ut: 3 es-'5-1 3 ~ "54 ~ 1. [2 3 :' LOS

104 a 3 5$ • ' L00 3 3 Two. jLSo TL47 S.rtMwrs• 7.r. 54 1450

1110C11 LIMITS GEOLOGY LJCS[MO BOURBY CLAIMS L...Cl.sprsapllo weathered t• r,.ssr -4.75 Striae 1.4 •1r .. lessees Is7.n.4 SOUSSJ

F_gure 11 Geology-southern half of claim area.

29

OLIO'

1.212 r TL4T 4 1.20.1 fro i'.o • L204 Nç.`,\•Ty 2 20 •4% • 4* L200 I 411 !A. is 4f 20-1: r 3 1-s. !g

Uss

L142

Lida

1.154

1.160

U62

L14/

L144

1.140

LISS

U32

L121 se l--•~~^'+~. U24 ~ f ►q .. U20 ti i rs~ 4~~ati Uls ,4/.12 ~ Lo12 ~~4 L10g 4 4 4 4 I; 4 ,. ROCK 0537$ GEOLOGY 1. 1 END 8OURBY CLAIMS ■ 1....C1laapyr.s.nits Teetered t. goers /(21 !trite gad dip o Igneous layering WOMA IX Tip. R O. 2..„1141•1, pr.e.attls .süre, leers, ray n .J40 Strike .1vrtlsal ignerrs laming N.2.3. 32 F/10 add cll..pyrssestte.(2s—•ol.ey rie S• Strike and dip on ignore leyrng uncertain dealt.) all coaalaiq .age.tlte ltrlk• of igsers levering Sartain, ..Nainy cad pyreassitia 'sere bet Up reactor 4—Wisly rorteseMla orles, .logy ""412 Strlk• end dip of gseisrsity XO ...rle.dN • fslbpeIMc scare Strike of vortical g.elarclty 5.._Fism grained grieve aile panel 400 0 400 BOO 1200 •.olooic comae tosser appr.simelely •rbsic centeat located rosy eppraoIm.tsy melaerysts feet ~r..T ersieie twit

Figure 12 Geology-northern half of claim area. 30

and exhibit gossan development. The contacts of this unit with adjacent gabbros are usually not observable, but most of the exposed areas are gradational over several feet (Figure 13).

A few fairly sharp and irregular contacts were also noted (Figure 14). Unit 1 is present as four main zones in the grid area with a total strike length of about 12,000 ft. These zones are present in the south-central, east- central, and north-central parts of the grid (Figures 11 and 12). A minor occurrence is also seen on line 88N-59E. This occurrence demonstrates that more than one pyroxenite layer occurs within the complex and pro- vides support for the conclusion that the three main occurrences of unit 1 are not faulted segments of one zone. The unit 1 occurrences are usually between 50-100 ft. thick. Changes in the thickness of an individual zone are common. The most dramatic thickness change is seen in the north-central part of the grid where there is good outcrop control and no major dip changes. In this area the exposed width varies from less than 50 ft. to a maximum of 300 ft. At two locations (L124N - 57 + 20E and L188N -

75E and 400 ft. N) individual subangular blocks of gabbro Figure 13 Gradational contact between clino- pyroxenite (top) and anorthositic gabbro. west bank of the Bell Hiver at Cold Spring rabids.

Pigure 14 Sharp and irregular contact be- tween clinopyroxenite and gabbro (L160N-42+50E). 32

'to 2.5 ft. in diameter were observed within the pyroxenite. Their origin is not clear.

Unit 2 and 2a Unit 2 mainly consists of pyroxenitic gabbro, gabbro, and clinopyroxenite. It is present in the northwestern part of the grid (Figure 12). The most striking characteristics of this unit are a high magnetite-ilmenite content, which ranges up to 40-50% of the rock, and a well developed mineralo- gical layering. The sulfide mineralization in this unit is erratic. Up to 2% disseminated pyrrhotite is the most common sulfide phase. Unit 2a is a discontinuous olivine bearing zone along the eastern contact of unit 2 in the northern end of the grid. The eastern and western contacts of unit 2a are not exposed. However, the western contact at one point is only covered by a narrow 2 to 4 ft. wide zone where the contact appears to be relatively sharp and regular. Although there is not enough outcrop control to accurately define the northern and southern limits of unit 2a on line 196N, good exposures indicate that the occurrence north of line 208N does not continue 33

south to lines 208N and 204N. A detailed investigation of unit 2a north of L208N "found mainly magnetite-ilmenite dunite with minor layers up to several feet wide of magnetite-ilmenite peridotite and pyroxenite. Smaller scale layering was also noted as in Figure 15. The mineralogical layering is parallel to layering within the gabbros in the area and indi- cates that this unit is a layer in the complex. The available evidence indicates that this unit passes laterally into non-olivine bearing rocks via a facies change. The possibility of faulting can not be ruled out, however, because of poor outcrop control. Unit 2a is interesting because it is the only known documentation of olivine rich rocks that are part of the Bell River Complex. Sharpe (1968) notes the presence of small intrusions of peridotite at Mattagami Lake Mines (Figure 4). Another peridotite body two miles to the southwest of this occurrence at the mine has a synformal base of magnetite rich serpentinized peridotite, which grades upward into gabbro (Sharpe, 1968). The age relationship of these bodies to the Bell River complex is uncertain, however.

35

Jnit 3

Unit 3 has an intermediate composition and contains vainly gabbro and pyroxenitic gabbro. It is present in the southeastern and northern parts of the grid (Figures 11 and 12).

This unit is generally poorly layered, but several outcrops in the southeastern part of the grid contain nice rhythic layering similar to Figure 16. The mafic rich layers in this area contain up to 10% magnetite which is rare elsewhere in this unit.

Figure 16 Nafic rich layers in anorthositic gabbro (L188N-15E) 36

Sulfide mineralization in this unit is very erratic and at best 1-2% of the rock. Both disseminated and veinlet mineralization is present. At a few localities the sulfides were concentrated into blebs up to 1/2 in. in diameter. Pyrrhotite and pyrite are the most common sulfides along with rare chalcopyrite.

Unit 4 Unit 4 is predominantly composed of anorthositic gabbro, bleby anorthosite and feldspathic gabbro. This is the most felsic rich unit in the grid area. It is found in the southwestern, central, and northwestern parts of the property. Sulfide mineralization in this unit is similar to that in unit 3. This unit is only very rarely layered, but one outcrop in the northwestern part of the grid is parti- cularly interesting (Figure 17). This exposure shows a wispy layering with a cross bedding relationship. Freeman and Black (1944) describe similar structures in the western lobe of the complex and Wager and Brown (1967) note similar structures in the Skaergaard. This outcrop, which is one of the few clear top indicators within the complex, indicates stratigraphic tops are to the east in this area. Figure 17 Cross beading in anortnositic gabbro. Looking east. (BL15- 22+45N) . 38

Unit 5

This unit is present near the eastern ends of lines 56N and 64N and is the only mappable non-complex material within the claim area (Figure 11). It is a fine grained, dark coloured rock containing plagioclase, hornblende and up to 1/2" diameter garnet metacrysts. No contacts with complex material were observed. Smaller dykes of unit 5 material up to 1 ft. thick and without garnet metacrysts occur in the grid area, but these are not large enough to be mappable (Figure 18). These smaller dykes have sharp and often irregular

Figure 18 Fine grained lamprophyre dyke cutting mediur grained anorth- ositic gabbro (L188N-17+60E). Scale is 6 in. long. 39

boundaries with complex material. They typically have north to northeast strikes with average dips of 65°E. A few dykes have 100° - 124° strikes and 40° - 80° dips 'to the southwest. All of these dykes were originally mapped as fine grained gabbro, but they are now thought to be lampro- phyre dykes. Claveau (1951) notes similar dykes cut by granite pegmatites. He suspects that the lamprophyres are older than the large granitic intrusions since they were not seen in those areas. The presence of garnet metacrysts in the unit 5 material supports an older age than the granites (Chapter VI). In several places the lamprophyre dykes appear to have been intruded into fault zones because of different complex rock types on either contact. Many dykes often have a pronounced schistocity parallel to the contacts indicating fault movement after intrusion.

Granitic Dykes Numerous quartz diorite and granite dykes were observed within the grid area. These dykes are typically 1/2 to 6 in. thick, but several in the northern part of the grid are up to 50 ft. wide. Because of their small size and discontinuous nature they are not shown in 40

es 11 and 12. These dykes are medium to coarse grained and lack

`chilled border facies. The contacts with complex t material are sharp and show little alteration effects.

Since the majority of the dykes are quartz diorites, they appear to be part of the Olga quartz diorite. The less numerous granite dykes probably originated from the pink granite to the east of the complex.

Structure within the Eastern Lobe The gabbros within the eastern lobe of the Bell River Complex generally have north-northeast strikes and an average 70° dip to the southeast (Figures 9,

11 and 12). Local deviations are common resulting in east-west strikes and usually steep dips. These devia-

tions could represent local folding and/or faulting, but the exact cause could not be determined because marker horizons are not present.

The gabbros locally exhibit a foliation produced by the orientation of the amphiboles and chlorite. Two foliation directions are noted. The dominant direction has a northeast strike and an average 65° dip to the southeast. This direction is nearly parallel to the layering and is probably related to the folding of the complex. The minor foliation, which was only noted 41

thin the grid area, has a northwest strike and moderate steep dip to the southwest. Faulting within the grid area was indicated when field attempts were made to trace unit 1 between grid lines. Because of limited exposures, however, the faulting was only observed in this unit on line 16N where a 65° steeply dipping fault has a few feet of offset. When attempts were made to connect rock units from one grid line to another, particularly within the northern half of the property, faulting was also indicated from a combination of strike data, magnetometer data, and exposures. Several fault orientations were attempted, but the simplest interpretation resulted in a nearly east-west strike. This direction is supported by several minor faults within the grid area with 115°/?, 90°/78°S, 140°/? , and 80°/61°S orientations. These faults have offsets from a few inches to 20 ft. An east- west faulting direction is also supported by the minor foliation and minor stream valleys in the grid area. The east-west striking fault just north of line 188N is indicated by a persistent cliff and the linear stream channel cutting through that area. A series of faults with N40E strikes is also 42

icated on the geologic map of the grid area (Figures 11 and 12). These faults are inferred from the major northeast trending stream valleys and the major foliation which parallel this direction. 43

MUTER Iv MAGNETOMETRY

Regional Magnetometry Figure 19 is a regional aeromagnetic map of the Matagami area showing the outline of the Bell River Complex. Several distinctive magnetic anomalies are present., The northern margin of the complex is characterized by strong magnetic anomalies that are abruptly terminated in the vicinity of by the Olga quartz diorite intrusion. A weaker and less well developed anomalous area is also present along the southern margin of the complex. This zone is also truncated in the east by the Olga intrusion, but it reappears along the southern margin of the eastern lobe of the complex. The pre- sence of these magnetic anomalies is consistent with the magnetite rich nature of the marginal zone of the complex (see Chapter 3). A comparison of Figure 19 with the general geology of the area (Figure 2) shows that several other rock units contain distinctive magnetic anomalies. The sediments in the southern part of the area are parti- cularly conspicuous due to their iron formations. The volcanic rocks generally contain weaker and more erratic

78°30' ~ ~ ~ ; ~ ► ~ ~ ~ ~ ". ~/ -~^~~ ;~~ _-~~ ~ e ~ t~ c.-_,------..<71,,,4 ~ -_-' ~ .(~`Z / 1 i••c W~o el ~ ~- _ . - . P 15------~ C J 9 '~tf~ _ .J ~ • Y ~ C------___ l'St`~1•F ~/ ~~~; 7 C ~, ;~{ 7 c ~~ // `~~ - ~ . ~"`J a Y ~Ô~ ;, ~`~--~ pf ' ~0 ~ ' ...fl- ~D~Ii'_!, i - ~_' j • -- ~``fl~.. / 7 S --.`~ _ O f^ -. . ! LaoAIL CC~O•ICeC ~~YY-~y ~'~s ~y~(~~ ~ ~T~ ~` _ ...;-- £~\~ ~. „,,,,,,z,/i ~ `- .._10 ~Z. ~' ”.~- J _ ~ P '~-~\~~.~ , ia°°;y~,1^~~ ~ ~ • Aki- *V~VV ~ © ~4 ~ v~`. '~~~M' i` '4;. ~ •'J,~ , r ~ ~~~J p ~ ~ ~~~?. __Ç.~ ~ • :ti ~~~. ~ t` ! ~.:.-~ ~~ J ~' `a :. ~ 1 cr E ►~ 0 ~:''~ ~.~ ~ ~ ~~, ~.~ D~ P ~ f ~~~' ~..: ~_ c ~ ` ~ ~~~ ~ ~~~ ~~~ ~. ~..~~ ,.• ,i ~ ~ ~,:~ ~, t .. ~ ~G', ~8~ ~ \_ ~o • ~ ~~ ~.'1 ~ , . • ~ -' ~~\ w# `>~~... ~C'~Ci ~ • ~ a / ..~ ~ ~ ~~ ~ ~-c~~ ~ ._ ~ ~ ~)1 ~~ '3./..„~~~ ( ~ ! ~~ .. t.`•." _- C]~ C i~! (~~~ ~a~.0 c. 3 - ..._) ' _ ~ ~~~~<~~:~•.o N. ~ • 0~/ kc ~ ~ \, '. " • ` ~ ~ i Ir ..-1 : ` . 111 ra !- NIYC• ~ . /. ..,d\ O``~ `/' C✓ f ~ _. l ~ '-~ ~ ~C`=~e`~_ ~ . ~_1 i t~ R •` ~ `~. ^l (.~ , ' SaYi ~ ~ÿ ~ ~ ~1~~ ~y`~~CI ~ /^ ~~ ~ ~_~ c:=~ ~' , Z / ° /j ~-- -~ -.;~ (V~! ,~ •~ r \ ;i~L~t~ %D 1 ~, 1~~ -wl~ ,II .. _. ~ ,, ---':44;°:`---::... %f i . ~' ,_ --1 \ .1.•_,S_.-5+~~~./ ♦ t rr~ .~~~ ~ ~L/ 6ri~ArC• ~ J _.—G /~ ~ ~ \ 'PP ~~f~~ - y ~ ~~~ / ' Y...,~~~L/ l C ~ .• •~~ ~ ~ ~ ~ J r~✓ ) ~ "` ~ ~ '~ ~ ---'---) t~) .~' ~• ~ ~ {~ = l~ i,~ ~ ~ `r~; • ~ e . \ c ~~~~ ~~ ~ ~~. _ ~ ~ ~~~~~-t , -..1q--, 1 ~ , ~ ~,,~'- ~ ~~~ ,l ~,~~` `~, ~ - ~p ~',b _.5-‘,"------,. ( ls ~ k x-~. '~~- - »-w----- ~~~~~`~,. ;~rq ~~ ~ ~~f R'. j~'. : : ; ~1 ~ .. ~1 t~__ '. •; ~ i%t=~~'~ ï' _ _ ,a~ o ,,,„...... _,..--- -1-. :~~~ ~~~ ~,_( ~` ~~ f!l ~~ jl~r ~`~ ~U Y ~"~_ ~ ,~ l~ ~ ~ ~~ ~ 1C ~~~. n~~~~~~Ô.~~~ ~.'~"il ~.~'~,~Î~~,~~.. ~ ~~~ > _~~ ~ ~ o ~~/ '

0 1 2 3 4 Milos Figure 19 Aeromagnetic map of the Matagami area. The contact of the Bell Hiver Complex is indicated by dots. (from compilation for Canadian Occidental Petroleum Ltd.) 45

gnetic anomalies, but these contrast well with the magnetite poor granitic intrusions as in the area north of Ramsay Bay. Three northeast trending diabase dykes, which cut across all other rocks in the area, are defined by linear magnetic anomalies in the north- western and southeastern parts of the area.

Grid Area Magnetometry Within the grid area a ground magnetometer survey was conducted to help extend lithologies into covered areas. Figures 20 and 21 show the contoured data. Appendix IV describes the survey procedure. A comparison of Figure 20 and 21 with the geology in Figures 11 and 12 shows that unit 2 and often unit 1 are characterized by strong magnetic anomalies. As mentioned in Chapter 3 both of these units contain dis- tinctive magnetite and pyrrhotite mineralization. The strongest magnetic anomaly within the grid area is centered over unit 2 across the northwestern part of the grid (Figure 21). In Figure 19 this anomalous area does not extend far outside of the grid area. Therefore, unit 2 appears to be only locally present within the complex. Unit 1 is well defined by lower order magnetic 46

Figure 20 Ground magnetic map of the southern half of the claim area. 47

Figure 21 Ground magnetic map of the northern half of the claim area. 48

malies which contrast with adjacent units in the orthern and central parts of the grid. The southeastern corner of the grid is the only ether major area with significant magnetic anomalies. Magnetite was noted in this area mainly in the 2 - 4"

mafic rich layers in gabbro. No distinct change in rock type was observed in the rare outcrops in this area, so a discrete mappable unit was not defined. Since the northwestern boundary of this anomalous area parallels the northeast trending stream valleys and not the unit 1 pyroxenite, a faulted boundary is suspected. This anomalous area is seen in Figure :L9 to correspond with the anomaly along the southern margin of the eastern lobe of the complex. As men- tioned earlier, this anomaly appears to be the eastern continuation of the southern marginal zone in the western lobe of the complex. 49

TER V PETROGRAPHY

Gabbros Gabbro is the most common rock type within the eastern lobe of the Bell River Complex. Within the grid area units 3, 4 and the major part of unit 2 consist of gabbros. Aside from the variations in mafic and felsic minerals, these gabbros are very similar petrographically and will be discussed together. Forty-three rock samples were collected at roughly 200 ft. intervals along lines 28N and 204N to investigate the gabbros in more detail. In addition 19 grab samples were collected within the area (Appendix I). In thin section, the gabbros consist of varying proportions of hornblende or actinolite and plagioclase with minor chlorite, biotite, sulfides, magnetite and ilmenite.

Amphibole The typical gabbro contains a moderate to strongly pleochroic amphibole (hornblende/actinolite) with a = pale greenish yellow, S = deep green, and ô = bluish green. Five morphologic varieties of amphibole have been recognized in thin section which appear to represent 50

a progressive alteration of an original pyroxene. About one half of the gabbro samples contain an amphibole assemblage which appears to be one step removed from an original pyroxene. This assemblage typically consists of weakly to moderately pleochroic hornblende or actinolite that contains small (< .01 mm) irregular shaped quartz blebs. The identity of the quartz was verified in the microprobe. Similar amphibole + quartz textures have been noted in dolerites by Sutton and Watson (1951) and Spry (1969). The relationship of this assemblage to an original pyroxene was only observed in two sections (T-40 and T-33) where the replacement of clinopyroxene is not complete (Figure 22).

Figure 22 Clinopyroxene (botto centre) partially replaced by horn- blende + quartz (T-40). 51

The amphibole + quartz assemblage occupies inter- cumulus areas between plagioclase grains in most of the bleby anorthosite and a few anorthositic gabbro samples. These areas are typically about 2.5 mm in diameter, but they range up to 15 mm. The amphibole in these areas optically behaves as one grain indicating the replace- ment of an original pyroxene oikocryst (Figure 23). These observations confirm field suspictions on the identity of the "blebs" in the bleby anorthosite.

Figure 23 Cumulus plagioclase within a large poikiblast of hornblende + auartz,slightly disrupted by further hornblende growth (T-13). 52

In the majority of the gabbro samples, the amphibole + quartz assemblage doesn't have a clear intercumulus position. In these samples .5 - 5 mm areas (2 mm average) act like one amphibole grain. Larger areas are made up of several smaller amphibole + quartz areas with different extinction positions. In these samples the amphibole + quartz probably represents an original cumulus clino- pyroxene. The amphibole + quartz assemblage is very often disrupted by further amphibole growth. The first stage of this growth appears to be the replacement of the amphibole + quartz by an oriented matt of 0.1 - 0.5 mm amphibole. Figure 24 shows a hornblende + quartz area partially replaced by oriented hornblende and Figure 25 is a completely replaced area. No quartz remains in most of the areas with this amphibole morphology but when present it is much coarser (.1 mm) than in the original amphibole + quartz assemblage. A possible variant of the oriented amphibole morphology is present in five gabbro sections. This morphology consists of parallel fibers of hornblende or actinolite, with nearly the same optical orientation, in bundles up to 10 mm in diameter. Euhedral horn- blende crystals (.1 - .3 mm in size) are often present 53

Figure 24 Hornblende (blue)+quartz partially replaced by small oriented horn- blende (T-41)

Figure 25 Small oriented hornblende crystals (T-41) 54

within the bundles (Figure 26).

Figure 26 Large area of fibrous hornblende containing euhedral hornblende (T-301

More intensive amphibole recrystallization results in a replacement of the oriented amphibole crystals by a matt of randomly oriented amphibole. This amphibole is anhedral to subhedral, moderately to strongly pleochroic and typically .2 - .5 mm in diameter. Figure 27 shows an area of oriented amphibole partially replaced by randomly oriented grains. Figure 28 shows a typical area that has been completely replaced. When this recrystallization is intense the amphibole growth into Figure 27 Area of oriented hornblende crystals partially replaced by randomly oriented hornblende (T-40)

Figure 28 Plagioclase with finer grained, randomly oriented hornblende (T-31) 56

acent plagioclase completely destroys the original afic magmatic texture (Figure 29). This random amphibole morphology is the most common type observed in thin section. It is very often present with the amphibole + quartz assemblage and may represent an alternative alteration made to the oriented amphibole morphology. • A variation of the random amphibole morphology was seen in two sections from the eastern end of line 28N. In these samples a coarser grained (.5 - 1 mm) hornblende is present (Figure 30). It is subhedral to euhedral, deeply pleochroic and lacks the "ragged" appearance of the more typical random amphibole morphology. Similar, but smaller (.1 - .3 mm) euhedral meta- morphic amphibole is present in other gabbro samples along with metamorphic plagioclase (see next section). This similarity combined with the proximity of this part of the grid to the granitic intrusion to the east (Figure 9) indicates that this amphibole is metamorphic and not a cumulus phase.

Plagioclase Plagioclase feldspar is the other major constituent of the gabbros. Two types of plagioclase are present 57

Figure 29 Plagioclase partially replaced by randomly oriented amphibole

Figure 30 Large subhedral to euhedral horn- blende with ^lagioclase (T-1) 58

Lain section: a primary igneous plagioclase and a ndary metamorphic plagioclase.

igneous Plagioclase The igneous plagioclase ranges in composition from bytownite to labradorite (Chapter VI). It exhibits albite or more rarely pericline and carlsbad twinning. Rare grains are weakly zoned, but this zoning could not be detected on the microprobe. Plagioclase ranges from fresh to highly sericitized, sauceritized, or replaced by metamorphic plagioclase. Usually, however, it is only slightly sericitized and contains about 3% metamorphic plagioclase. Igneous plagioclase occurs as anhedral grains from 1 - 5 mm in size (maximum 15 mm). It is therefore usually coarser grained than the associated amphibole. In the felsic rich gabbros it has a nice adcumulus texture (Figure 31). A mesocumulate texture is also noted in parts of these samples (Figure 23). The original plagioclase textures in the mafic rich samples has usually been destroyed by amphibole recrystallization. The plagioclase grains in about 40% of the gabbro samples show evidence of tectonic activity. They are often bent or broken and have offset twin lamellae (Figure 32). Secondary plagioclase and hornblende are 59

Fi7ure 31 Fresh adcumulus plagioclase (T-36)

Figure 32 Broken plagioclase crystal with metamorphic plagioclase and horn- blende in the cracks (T-6) 60

usually present in the fractures. This fracturing has no doubt aided fluid movement and faciliated the meta- morphism of the complex.

Metamorphic Plagioclase Metamorphic plagioclase is present in about 60% of the gabbro samples where it typically makes up 1 - 5% (maximum 20%) of the rock. It ranges in composition from anorthite to andesine and occurs as anhedral grains that are usually .05 - .2 mm in diameter (range from .01 - .5 mm).. These grains are often strongly zoned (see Chapter VI), but only rarely twinned (Figure 33). This plagioclase is always fresh, even when the primary plagioclase is altered (Figure 33). Metamorphic plagioclase occurs along grain boundaries and within cracks of the primary' plagioclase (Figure 34). It is usually associated with small meta- morphic hornblende or actinolite.

Minor Minerals Chlprite is occasionally seen in the gabbro samples. When present it usually makes up 1 - 5% of the rock and is associated with the other mafic minerals. Biotite is rarely present in the gabbros and ranges from a trace to 2% of the rock. It is very Figure 33 Fresh metamorphic plagioclase and hornblende with moderately sericitized igneous plagioclase (T-15) .

Tigure 34 ietamorphic plagioclase and horn- blende around grain boundaries and within cracks of fresh igneous plagioclase (T-6) . 62

ragged and appears to be metamorphic. Magnetite and ilmenite are occasionally seen in the more mafic gabbros as isolated intercumulus grains. When present they make up 1 - 5% of the sample. Erratic sulfide mineralization is present in the gabbros. Pyrrhotite (monoclinic) and chalocpyrite with minor pyrite are the most common phases. Pentlandite and millerite were observed in two samples. The best mineralization (2 - 3% sulfides) was seen in felsic rich gabbros which are very badly sericitized and/or sauceri- tized. Figure 35 shows an example of the best mineraliza- tion. Thompsonite and epidote veinlets about .1 mm wide were only rarely noted in a few gabbro samples.

Figure 35. Pyrrhotite (left) and chalcopyrite mineralization in sauceritized anorthosite (4329). 63

unit 1 A total of 28 pyroxenite samples from unit 1 were

Examined in thin section (Appendix I). The majority of the samples come from a detailed sampling of this unit at 50 ft. intervals on lines 156N and 160N. Random grab samples were collected from the other unit 1 occurrences. One sample also comes from the 2 - 4" wide pyroxenite layers in gabbro on line 24N - 31 + 46E. In general all of these samples were found to be very similar. The typical pyroxenite consists of adcumulus clinopyroxene with a 1 - 3 mm grain size (up to 11 mm in the coarser samples). The clinopyroxene was optically identified as augite with a 2V of 40° - 45° and a (+) sign. The pyroxenites are variably uralitized to a fine grained (.05 - .2 mm) assemblage of hornblende or actinolite (Figure 36). This alteration begins at grain margins and follows cleavages often leaving small rectangular islands of fresh pyroxene. In moderately uralitized samples the amphibole crystals often show an orientation related to the original pyroxene. In highly altered samples, however, there is no indication of an original pyroxene and the b4

Figure 36 Partially uralitized augite with intercumulus opaques (magnetite) (T-60).

uralite crystals are randomly oriented. Both of these textures are similar to amphibole morphologies in the gabbros. The unit 1 pyroxenites, unlike the other rock types in the eastern lobe of the Bell River Complex, usually contain sulfide mineralization. An average of 1% disseminated sulfides is usually present, but locally up to 10% sulfides are observed. These sul- fides mainly show a magmatic/intercumulus relationship to the pyroxene. However, small (< .1 mm) chalcopyrite 65

veinlets cutting pyroxene and small rods (.02 mm wide) of pyrrhotite within uralitized pyroxene are rarely observed. Monoclinic pyrrhotite is the major sulfide in the pyroxenites. It is occasionally altered to marcasite and often contains exsolution flames of pentlandite. Typical pyrrhotite grains are .05 - .2 mm in diameter with rare intercumulus areas up to 2 mm. Chalcopyrite is often present (Tr - 1%) and is usually associated with the pyrrhotite (Figure 37). Discrete grains of pent-

Figure 37 Pyrrhotite, containing exsolution flames of pentlandite, with chal- copyrite (4326). ill

66

dite,associated with pyrrhotite, were only observed two sections. The unit 1 pyroxenites typically contain 1 - 2% ntercumulus magnetite, but amounts up to about 10% are not uncommon. A trace amount of ilmenite is occasionally associated with the magnetite. The ilmenite usually occurs as discrete grains, but two sections contain both ilmenite grains and exsolution lamellae in the magnetite. The grain size of the magnetite is usually .1 - .5 mm; some intercumulus grains are up to 2 mm. One sample from unit 1 is unique and deserves individual mention. Sample T58 was collected from unit 1 on line 128N. It contains large (up to 6 mm) orkocrysts of an orthopyroxene that was optically identified as hypersthene (2V ti 60° and a (-) sign). This orthopyroxene typically shows irregular exsolu- tion blebs of clinopyroxene (Figure 38). In some grains two groups of exsolution lamellae are evident. A narrow group (< .01 mm wide) is parallel to 100 and a broader set (.01 - .02 mm wide) is nearly parallel to 101 of the host hypersthene. According to Poldervaart and Hess (1951) this type of exsolution is typical of Figure 38 Adcumulus augite with poikilitic inverted pigeonite (T-58)

Figure 39 Closeup of figure 38. Augite with two sets of exsolution lamellae and one large oikocryst of inverted pigeonite. 68

inverted pigeonites. This pigeonite appears to have originally occurred as large oikocyrsts in this sample since groups of indi- vidual orthopyroxene grains now have exsolution blebs with similar orientations (Figure 39). The cumulus clinopyroxene in sample T58 is also unique because it contains visible orthopyroxene ex- solution lamellae. Most grains have a fine set (< .01 mm) parallel to 100, but a few grains also have a coarser (.02 mm) set parallel to 001 (Figure 39). These exsolutions indicate that the original composi- tion was more iron rich than Wo41En44Fs15 (Poldervaart and Hess, 1951). Sample T58 shows an extremely variable degree of uralitization. Parts of the slide are fresh and others completely uralitized. In the intermediate areas the clinopyroxene remains unchanged, but the orthopyroxene exsolutions have been completely uralitized. The resulting texture is very similar to the majority of the unit 1 samples and indicates that they could have had similar exsolutions. Two other grab samples (4321 and 4322) were collected from the same area as T58. They do not show 69

y evidence of pigeonite or exsolution lamellae in e clinopyroxene. These two samples, however, are badly uralitized.

Unit 2a A total of 15 samples from units 2a were examined by polished thin section (Appendix I). All samples come from the body north of the grid (Figure 12). Eleven of the samples were collected at 25 ft. intervals across this unit and the remaining four samples were collected at 50 ft. intervals along the eastern margin of the unit. Dunite, in varying stages of alteration, is the most common rock type in this unit. A few samples are very fresh and appear to be representative of the entire unit. These samples consist mainly of cumulus olivine with intercumulus magnetite (8 - 35%) and ilmenite (1 - 5%). Therefore, unit 2a is more correctly called a magnetite-ilmenite dunite. The olivine in these samples occurs as 1 - 5 mm rounded to subhedral grains that are often completely surrounded by magnetite + ilmenite (Figure 40). Heinrich (1956) calls this a sideronitic texture. 'Figure 40 Cumulus olivine with intercumulus magnetite + ilmenite. Note ser-- ventine and chlorite alteration at olivine grain margins (25-4).

Figure 41 Ilnenite grains (light tan) and exsolutions in magnetite (25-10) (reflected light). 71

The magnetite and ilmenite are always intimately associated. The ilmenite mainly occurs as anhedral ;rains .1 - .5 mm in diameter at magnetite grain boundaries. It also occurs as exsolution lamellae .05 - ,5 mm wide along the (111) direction of magnetite. In both cases the ilmenite appears to have exsolved from the magnetite. Ilmenite grains and exsolutions often occur together in the same sample (Figure 41). Only five of the samples taken across unit 2a are relatively fresh and these occur near the center of the unit (Figure 42). The olivine alteration in this area is mainly serpentinization. The serpentine cuts the olivine along random fractures and occurs around grain boundaries. Some chlorite is often present and is concentrated around the olivine grain margins. A minor amount of iddingsite is also present. The samples near the margins of the unit are more intensely altered and only one sample (25-1) contains a trace of olivine. In these altered samples the olivine crystals are now a fine grained (.1 - .5 mm) matt of talc + tremolite + chlorite. Similar talc rich margins are reported on Alpine peridotites (Jahns, 1967). The symetry of the alteration in the unit indicates

Mndol Variation Across Unit 2a k figure 42 100 ~no

Chlorite

80 Talc 80 Tremollte

Tremolite Chlorite Chlorite 60 J 60 [J

40 40

Magnetite 20 20

Magnetite

1 1 1 1 1 t o .1- M N 0 a 4D q~ ~ é o ti a PI- o ~ i h WS r1 ~ h V) r) ~ N N N in N j N N N ' N I 1 50 350 300 250 200 150 100 E. W. contact contact feet 73

solutions entered from both contacts. The initial reakdown of olivine to serpentine was taken further to breakdown of the serpentine to talc according to reactions:

3Mg2SiO4 + H2O + Si02 ---4 2Mg3Si205 (OH) 4 of (F0 component) serpentine

2Mg3Si205(OH)4 + 3CO2 --4 Mg3Si4010(OH)2 + 3MgCO3 + 3H20 serpentine talc

Although carbonates were not recognized in the observed sections, a carbonate rich zone could have been missed by the employed sample spacing. Several of the samples collected from unit 2a contain some clinopyroxene. Cumulus clinopyroxene is present in four samples. Sample 25-6 contains about 35% cumulus clinopyroxene in addition to olivine and oxides and is therefore a magnetite-ilmenite peridotite. Cumulus pyroxene is seen in 1/2" wide clinopyroxenite layers in samples 25-5 and 25-9. Sample 25-8 only contains uralitized pyroxene with intercumulus magnetite + ilmenite and is a true pyroxenite. Partially uralitized clinopyroxene occurs as up to 4 mm intercumulus areas in sample 25-4. Because the pyroxene is intercumulus, this sample is still correctly 74

called a dunite. As seen in Figure 43, the pyroxene in this sample has an intercumulus relationship with both olivine and magnetite. This relationship suggests that the intercumulus oxides in unit 2a could represent a cumulate phase which underwent 4adcumulate growth.

Figure 43 Intercumulus uralitized clino- pyroxene with cumulus olivine and magnetite + ilmenite (25-4).

Lamprophyre Dykes Nine samples of lamprophyre dyke material were examined in thin section (Appendix I). These samples 75

have a xenomorphic granular texture. The grain size is typically 0.1 - 0.3 mm; coarser varieties are up to 0.7 mm. Figure 44 shows a typical section.

Figure 44 Lamprophyre dyke (T-16)

Because of the fine grain size each sample was point counted. Table 3 summarizes the mineralogy. 76

Table 3 mean % range % hornblende 44 16-77 plagioclase 32 17-47 quartz 16 0-54 biotite 4 0-13 opaques 1.5 0-5

The hornblende in these samples appears to be primary. It is strongly pleochroic in shades of green and occasionally ô = bluish green. The plagioclase is often fresh or slightly sericitized, but several samples are badly sericitized. In two of the quartz poor samples, the plagioclase was found to be labra- dorite (see Chapter II). Sample T16 contains about 10% quartz and the plagioclase is more acidic (andesine). The opaque minerals are mainly ilmenite, but minor amounts of pyrite, pyrrhotite and chalcopy- rite are present. Almandine garnet poikiblasts 5 mm in diameter were only observed in two samples (T82, 4289) from unit 5 (Figure 11). The biotite appears to be primary. The biotite and hornblende in about half of the sections have a pronounced orientation. In the field this was recognized as a schistocity parallel to the 77

trusive contacts. Sample (T54) was taken of one of these contact zones. In thin section the plagioclase in the gabbro shows evidence of cataclastic activity and the hornblende shows an orientation parallel to the dyke contact. The mafic minerals in the dyke are also parallel to the contact. These observations are consistent with the field relations (Chapter 3) which indicate intrusion of some lamprophyre dykes into fault zones. Claveau (1951) classifies the lamprophyre dykes as hornblende kersantites (Johannsen, 1937). The results of this study confirm this classification.

Granitic Intrusions

Ten representative samples of the granitic intru- sions were examined in thin section (Appendix I). Four samples were collected from the large intru- sion east of the eastern lobe of the complex. Three of these samples are fine to medium grained granites with 14 - 34% plagioclase, 30 - 44% quartz, and 20 - 41% microcline. One sample is a fine to medium grained hornblende syenite with 68-78% microcline, 10 - 20% plagioclase and about 7% hornblende. 78

No samples were collected of the main Olga quartz diorite, but most of the granitic dykes within the com- plwx are similar to reported compositions. These dykes rw fine to medium grained biotite or biotite-hornblende quartz diorite. They contain 30 - 53% plagioclase, 36 - 59% quartz, 5 - 9% biotite and 1 - 6% hornblende. One dyke sample is similar to the granites described above.

Diabase Two samples (T61, T62) of fine grained diabase were collected in the eastern lobe of the complex. Sample T62 was collected on line 188N where patches of diabase remain on a vertical north facing cliff of complex gabbro. Sample T61 comes from a small exposure about 1.2 miles west of BLO 116N. Both samples are very similar. They have a remnant diabasic texture with 2 - 9 mm laths of completely sericitized plagioclase p.henocrysts in a .05 - .15 mm mass of hornblende or actinolite and serpentine. A point count of T61 gave the following results: plagioclase 56.0% hornblende + actinolite 25.8% serpentine 8.7% 79

opaques (magnetic) 6.6% biotite 3.0%

One medium to coarse grained gabbro sample (T59) from BLO-187N, is also thought to be diabase. This sample has a nice ophitic texture with laths of badly sericitized plagioclase enclosed by fresh clinopyroxene oikocrysts (Figure 45). Euhedral apatite and anhedral olvine and biotite are also present. The olivine has an optically determined composition of Fo67.

Fic7ure 45 Medium grained diabase with ser- icitized plagioclase laths, augite oikocryst (blue), olivine (top right), biotite, and apatite (lower left) (T-59). 80

visual estimate of the mineral percentages in the is as follows: plagioclase 78% augite 10% opaque (magnetic) 5% olivine 3% apatite 3% biotite 1% The alteration style, texture,and apatite content of sample T59 are unlike any other complex gabbro sample. Similar descriptions of diabase dyke material by Auger (1942) and Freeman and Black (1944) indicate that this sample is diabase. Samples T61, T62 and T59 appear to come from one diabase dyke which cuts through the eastern lobe of the complex with a N70°E strike. This dyke shows up nicely on the regional aeromagnetic map (Figure 19) as a linear anomaly which includes the diabase outcrops described by Freeman and Black (1944).

Western Lobe - Petrography Fifteen samples were collected from the western lobe of the Bell River Complex to make a comparison with the eastern lobe. In addition, three Wabassee volcanics 81

les were collected north of the complex (Appendix I). The main difference noted between the western and astern lobe gabbros is in the style of alteration. unlike the eastern lobe samples there is no metamorphic plagioclase, only one amphibole morphology (an oriented grain replacement of pyroxene during uralitization), a pervasive chloritization, a general sauceritization of the plagioclase, and an alteration of the oxide phases to sphene. Several samples from the western lobe were also different mineralogically or texturally from those in the east. Sample 16-1 was collected at Chenal Rapids approximately 4,700 ft. from the northern contact (Figure 65, Appendix I). It is a norite with about 71% cumulus hypersthene, 20% cumulus plagioclase, 5% intercumulus plagioclase, 3% intercumulus augite, and 1% chlorite. Figures 46 and 47 show the textural relationships. The hypersthene (2V ti 45°, (-) sign) is largely uralitized, but a few cores still remain. No samples from the eastern lobe were seen with inter- cumulus plagioclase or cumulus orthopyroxene.

Two gabbro samples from the western lobe contain 82

Figure 46 Cumulus plagioclase and ural- itized hypersthene within a large augite oikocryst (16-1).

Figure 47 Intercumulus plagioclase and opaques with cumulus uralitized hyrersthene (16-1). 83

quartz. Sample 13-1 is an anorthosite from Chenal lta$ids. It has a mesocumulate texture with about 7% intercumulus quartz and a trace of apatite. Sample 19-2 is a gabbro collected about 3,000 ft. downstream from mignon Rapids where a quartz gabbro is exposed for 2,000 ft. along the southern shore of the river. The thin section was cut from an anorthositic part of the sample with a xenomorphic texture and about 20% quartz. Both of these samples come from the marginal zone of the complex which was the top of the Bell River Complex before folding. Therefore is is not surprising to see some rocks from this zone with quartz and apatite. Two samples were collected from a pyroxenite at Cold Spring Rapids. Unlike the unit 1 pyroxenites in the eastern lobe,these samples appear to have originally had both cumulus and intercumulus orthopyroxene (now uralitized or altered to talc + chlorite). Sample 16-3 was collected near the center of the 1200 ft. thick subsidiary gabbro intrusion just north of the Bell Channel deposit (Figure 65, Appendix I). It is a fine to medium grained pyroxenitic gabbro with a xenomorphic texture. A point count gave the following mineralogy: 84

hornblende 47.4% plagioclase 40.6% opaques 4.9% epidote 3.8% chlorite 2.7% quartz 1.0% Aside from its finer grain size it is similar to samples from the margin zone of the complex. The three volcanic samples were not investigated in detail because of their very fine grain size and alteration. 85

MINERAL CHEMISTRY AND METAMORPHISM

The first section of this chapter includes a discussion of the mineral chemistry of primary plagio- clase, metamorphic plagioclase, clinopyroxene, olivine, amphibole, sulfides and oxides. The second part incorporates the mineral chemistry and petrography in a discussion of Lhe metamorphism in the eastern lobe of the Bell River Complex.

Mineral Chemistry Chemical compositions of plagioclase, pyroxene, olivine, amphibole, sulfides and oxides were obtained using the energy dispersive system on the elctron microprobe within the Geology Department. The details of the procedure and the individual results for each mineral are included in Appendix II. The majority of the probe work was carried out to investigate any cryptic variations within the cumu- lus minerals in order to assist in top determina- tions within the eastern lobe of the complex. As mentioned in Chapter II, the overall structure in this area is not as well understood as in the western lobe. 86

''''â ioclase Plagioclase feldspar is the only cumulus phase { resent throughout the investigated part of the Bell River complex. It is therefore the most useful mineral to define any cryptic variations within the complex. Of twenty seven rock samples collected along 1ixe 204N, twenty contained plagioclase feldspar that was considered fresh enough to analyse using the micro- probe. In addition, the plagioclase in five samples collected near line 204N was also analysed. The primary plagioclase in these samples is often slightly to moderately sericitized. The slides usually contain about 3% metamorphic plagioclase (up to 20%) and more rarely about 3% epidote (up to 20%). More details on the mineralogy of these samples is included in Appendix I. In general about 20 spots were analysed on seven different primary plagioclase grains in each sample. The atomic proportions for each sample are summarized in Table 4. The plagioclase compositions across line 204N are plotted in Figure 48. As seen in Figure 48 the primary plagioclase is mainly bytownite with several samples falling in the lower labradorite field. Although these samples con- Table 4. Primary Plagioclase Feldspar Compositions (atomic proportions based on 8 oxygen).

T27 n-30 T28 n-23 T29 n-23 150 n-18 T53 n-22 4330 n-22 z Sz +R z S: +R z Sz +R : Sa +R a Sa +R Sz +R St 2.266 .009 .005 2.275 .013 .007 2.271 .018 .010 Si 2.266 .014 .010 2.222 .010 .006 2.298 .019 .012 Al 1.720 .009 .005 ~ 1.709 .015 .009 1.708 .018 .011 Al 1.144 .014 .009 1.773 .010 .006 1.693 .022 .013 Ca .763 .011 .006 .751 .016 .010 .763 .018 .011 Ca .124 .014 .009 .792 .011 .006 .724 .019 .012 Na .246 .012 .006 .265 .014 .009 .262 .018 .011 Na .251 .022 .015 .187 .010 .006 .254 .019 .011 lAb 24.5 26.1 25.6 lAb 25.7 (29.2) 19.1 (21.3) 26.0 (30.1)

130 n-18 T31 n-19 T33 n-22 26-1 n-27 26-2 n-21 26-4 n-21 a Sx +8 a Sz 4{! 1 8s +R : Sa +8 2 Si +R = Si +R Si 2.216 .012 .008 2.268 .009 .006 2.283 .028 .017 Si 2.236 .009 .005 2.296 .012 .008 2.348 .010 .006 Al 1.700 .018 .012 1.709 .011 .007 1.690 .035 .021 A1 1.759 .008 .004 1.673 .068 .043 1.642 .011 .007 Ca .764 .035 .024 .765 .008 .005 .751 .026 .016 Ca .802 .013 .007 .737 .015 .009 .677 .012 .008 Na .262 .025 .017 .263 .010 .007 .272 .027 .016 Na .176 .014 .007 .278 .013 .008 .3I9 .019 .012 lAb 25.5 25.6 26.6 lAb 18.0 21.4 32.7 00 v T35 n-20 736 n-18 T37 n-20 26-5 n-20 15-1 n-15 13-2 n-13 z Sz +R x 8x +R x Sa +R : Sx +R z 3a +P. Ÿ Sx +R St 2.272 .014 .009 2.306 .011 .008 2.270 .035 .022 Si 2.390 .022 .014 2.422 .028 .022 2.329 .016 .014 Al 1.106 .016 .010 1.673 .014 .010 1.111 .035 .022 Al 1.611 .022 .014 1.561 .031 .024 1.646 .014 .012 Ca .762 .013 .008 .123 .011 .012 .762 .038 .024 Ca .628 .02) .015 .601 .027 .021 .700 .020 .017 Na .264 .013 .008 .302 .018 .012 .258 .039 .025 Na .349 .023 .015 .426 .037 .028 .345 .022 .019 lAb 25.7 29.5 25.3 lAb 35.7 41.5 33.0

T38 n-21 T39 n-18 T40 n-19 16-1 n-14 16-1 n-3 T-7 n-17 x Sa +8 x Sa +R x Sa +R z Sz +R x Sz +R z Sa +8 Si 2.278 .011 .006 2.271 .022 .015 2.273 .010 .007 St 2.330 .011 .009 2.338 .015 .057 2.339 .022 .016 Al 1.720 .012 .008 1.723 .0)1 .021 1.722 .010 .006 Al 1.651 .012 .010 1.649 .013 .050 1.657 .020 .014 Ca .735 .014 .009 .752 .015 .010 .743 .011 .007 Ci .723 .020 .016 .701 .018 .069 .681 .027 .019 Na .240 .013 .008 .225 .012 .008 .236 .010 .007 Na .281 .015 .012 .303 .001 .004 .294 .026 .018 lAb 24.6 (27.4) 23.0 (25.6) 24.1 (26.9) lAb 28.0 30.2 30.I

T42 n-15 T43 n-32 T44 n-30 T-8 n-4 779 n-18 T54 n-11 a Sx +R x Sx +R z Sx +8 z Sz +R z Sa +R x Sx +R SI 2.265 .013 .010 2.182 .024 .012 2.149 .017 .009 S1 2.346 .014 .041 2.460 .064 .044 2.408 .068 .065 Al 1.754 .014 .011 1.807 .025 .012 1.841 .019 .010 Al 1.644 .011 .032 1.529 .068 .046 1.583 .069 .066 Ca .129 .011 .009 .833 .026 .013 .864 .020 .010 Ca .678 .019 .056 .559 .068 .046 .606 .011 .068 Na .215 .017 .013 .177 .030 .014 .146 .024 .012 Na .307 .017 .050 .414 .068 .046 .367 .070 .067 lAb 22.8 (25.9) 17.5 14.5 lAb 31.2 42.5 37.7

145 n-17 147 n-21 T48 n-20 T-16 n-17 x Sx +R x Sx +8 x Sx +8 z Sa +R n - number of spots x - sample mean SI 2.226 .017 .012 2.331 .010 .006 2.320 .011 .001 2.678 .018 .012 St Sx - sample standard deviation Al 1.773 .016 .0)2 1.676 .01) .007 1.666 .0)2 .008 Al 1.327 .016 .011 +R - ranee for population mean at the 99. certainty level Ca .780 .019 .014 .662 .011 .001 .671 .011 .007 Ca .326 .015 .011 Na .205 .020 .015 .320 .015 .009 .320 .014 .009 Na .641 .021 .015 lAb In parenthesis Is a corrected value; see Appendix IIA. lab 20.R (23.61 32.6 (37.0) 32.3 (36.7) lAb 66.3

4 0 — Plagioclase Compositions Along Line 204N 40 Figure 48

35 35

30 30

I

â 25 i I II I I il I l i. 25

s Ssmpls collected near thls lino +rllh rslellr• sirslllrspMt 20 p•eltlon shown 20 Visual Y.In sill• D•ersa of esrie111=e11on ~ E•spidele 1•Irssh L P•msteTorphh plaploeloss s=sllqht , nwrnod ors ls 13 I5

f ) .~

â P, û ê .7. ~ ^ ^ ^

0 7 ni » 6 1.1 K M 6 •' „ p IL- d W W ! W t ~i W â r, a.- E, yf d W t] 6 IJ n ~ G O d" O n Y n~ j In O M R1 _ ..- .. N _ L n .7, i ,Ij.d `q 71 ; O N ô r tl Fr; ~ O P O F t In 41 d .~ in M rl 17)In N N N - N $ N f1-NF F F T42( 3 Yf^ F F F F 1- F F- F F 1' 1- I0 10 1 UNlŸ4 t J, ' UNIT i NIT J 4 l_ I I I J 1 I I,UM1T~ I I 1 1 1 W 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 E feet X 100 89

in quite variable amounts of epidote and metamorphic

plagioclase (see Figure 48) these constituents don't appear to have significantly affected the primary plagioclase compositions. Within unit 4 (felsic gabbro) at the western end of line 204N, the plagioclase is about Ably. The Na content quickly increases and peaks at about Ab37 within unit 2. This is the mafic rich unit that contains significant magnetite and ilmenite mineralization (Chapter III). Only one sample was analysed from unit 4 east of unit 2, but the Na content is still relatively high (Ab29). The Na content then drops to about Ab25 and remains fairly constant throughout unit 3 (gabbro). These results indicate that the stratigraphic tops in this area are to the east, since the more Ca rich plagioclase is present at the western end of line 204N. The cause of the rapid increase in the Na content of the plagioclase within unit 2 is not entirely clear. A comparison with other large igneous complexes, such as the Bushveld and Skaergaard, shows that magnetite precipitation occurs near the tops of these intrusions when the plagioclase compositions are in the andesine range. The magnetite is accompanied by cumulate apatite and iron rich olivine. The Bell River magma was precip- 90

}tiny bytownite, and unlike those intrusions the plagio- ~E, ise shows a major increase in the sodium content within the magnetite unit. A possible explanation for the observed cryptic var-

iation is the fractional crystalization of a rap- idly decreasing volume of magma followed by a new influx of magma near the unit 4/ unit 3 boundary. A problem with this idea is that the observed clinopyroxene com- positions are more consistent with normal differentiation (see page 99 ). Considering the limited pyroxene data and the anomalous nature of the pyroxene in unit 2a (see page 104), the plagioclase data are probably more reliable.

In addition to the plagioclase analyses along L160N, several other samples are included in Table 4. Samples T7 and T8 come from the southern part of the grid near the eastern end of line 28N. They have similar compositions (about Ab30) which is only slightly more sodic than the samples from the eastern end of line 204N (Figure 48). These results are consistent with a higher stratigraphic position and indicate that no major movement has occurred along the inferred northeast trending faults in the grid area (Figures 11 and 12).

Samples 16-1, 15-1 and 13-2 come from the western 41

of the complex. They were collected in the vicinity

of Chenal Rapids and come from a zone approximately 44,000 ft. from the northern contact of the complex (Figure 65, Appendix I). Sample 15-1 comes from a vagnetite rich zone 150-200 ft. thick in the area. If Sharpe's (1968) geology is correct, sample 16-1 is about 1,000 ft. stratigraphically below the magnetite rich unit and sample 13-2 about 300 ft. above it.

The more sodic rich nature of 13-2 (Ab33.0) compared to 16-1 (Ab28.0) is consistent with their stratigraphic positions. The significantly more sodic nature of the plagioclase in 15-1 (Ab41`5) is similar to the results found within unit 2 in the eastern lobe.

Sample 16-1 also contains intercumulus plagioclase (Figure 47). Three spots on one grain were analysed and a composition of Ab30.2 was obtained. This is slightly more sodic than the cumulus plagioclase and is consistent with a later crystallization as an inter- cumulus phase. The plagioclase in three samples of lamprophyre dyke material was also analysed on the microprobe (Table 4). The results are highly variable and range from labradorite in samples T79 and T54 to andesine in T16. 92

tamc,r hic Plagioclase As stated in Chapter V, metamorphic plagioclase a common constituent of the gabbros in the eastern

obe of the Bell River Complex. A representative number of samples were analysed on the microprobe and the results are summarized in Table 5. A large range in

composition from Ab7.6 to Ab50.9 (anorthoite to andesine) is present in these samples. Metamorphic plagioclase is often moderately to strongly optically zoned. In order to investigate this zoning in more detail, microprobe traverses were carried out across several of the larger zoned crystals in two samples (Figure 49). These grains show variable results. Nearly half of the crystals show no chemical zoning. The other half have a weak to strong reversed zonation. The largest observed change is from an Ab57.1 core to Ab46.1 rim. One grain is normally zoned with an Ab55.1 core and Ab59 8 rim.

Pyroxene Unit 1 is the only unit in the grid area that contains significant quantitites of cumulus pyroxene. In order to investigate any cryptic varia- tions, eight samples were collected across this unit 93

Table 5. Metamorphic plagioclase compositions (atomic proportions based on 8 oxygen).

T-9 n=3 T-31 n=6 T-33 n=2 Sx +R x Sx +R x Sx +R Si 2.241 .075 .428 2.112 .022 .036 2.105 .064 Al 1.761 .072 .414 1.869 .019 .032 1.876 .064 Ca .781 .080 .459 .919 .042 .069 .931 .062 Na .180 .077 .440 .076 .024 .040 .078 .072 %Ab 18.7 7.6 7.7 T37 n=2 T39 n=27 T50 n=24 x Sx +R x Sx +R x Sx +R Si 2.183 .073 2.534 .066 .036 2.519 .043 .025 Al 1.804 .066 1.457 .061 .033 1.472 .047 .027 Ca .847 .083 .490 .078 .042 .501 .041 .024 Na .158 .074 .508 .074 .039 .508 .046 .027 %Ab 15.7 50.9 50.3

4340 n=3 T-7 n=10 T-1 n=5 x Sx +R x Sx +R x Sx +R Si 2.178 .031 .180 2.452 .068 .070 2.204 .028 .058 Al 1.819 .031 .179 1.539 .070 .072 1.781 .024 .049 Ca .838 .031 .179 .562 .060 .062 .848 .031 .064 Na .140 .032 .183 .453 .056 .058 .147 .021 .043 %Na 14.3 44.6 14.8 T43 n=6 Sx +R Si 2.205 .061 .100 Al 1.809 .036 .060 Ca .879 .033 .055 Na .116 .031 .051 %Na 11.7

n = number of spots = sample mean Sx = sample standard deviation +R = range for population mean at the 99% certainty level Metamorphic Plagioclase Zoning Figure 149 60

‘60

.\

.. . • 50 ~ r ..~ Q 50 ~0

40 5 6 7 8 9 10 2 3 4 40 -2 -4 -3 -2 -1 0 1 mu) X I0 Distance from centre of grain 95

line 160N at 50 ft. intervals. All but one of these samples (27-2) contain some fresh pyroxene which

WAS analysed on the microprobe. In general about 20 spots were analysed on 5 to 7 grains in each sample. The results are summarized in Table 6. Figure 50 is a plot of the relative percentages

of the molecular proportions of Fe, Mg and Ca in the pyroxenes on line 160N. The results are very similar and show no variation across the unit. Only grab samples were collected from the other unit 1 occurrences, but if the results for line 160N are typical, these samples should be representative of each location. In addition, two samples were collected from unit 2a that contain some fresh pyroxene. Table 6 summarizes the microprobe results for the pyroxenes in these grab samples. The clino- pyroxene compositions are plotted in Figure 51 on +2 +3} a portion of the Ca, Mg, Fe 4. Fe Mn triangular diagram. Most of the samples in Figure 51 come from the northern half of the grid area where better exposures allow a clearer geologic picture. Samples 25-4 and 25-6 are from the magnetite-ilmenite dunite unit

Table 6 Pyroxene compositions (atomic proportions based on 6 oxygen)

27-1 n-24 27-) n-20 27-4 n-23 259 n - 10 4321 n-14 4286 n-15

Sx +R x Sx +R : Sx +R x Sx +R x Sx +R x Sx +R SI 1.976 .011 .006 1.959 .011 .007 1.974 .011 .007 SI 1.915 .032 .033 1.980 .009 .007 1.980 .015 012 Ti .005 .004 .003 .003 .005 .003 Ti .040 .012 .012 .001 .002 .001 .002 .005 .004 Al .014 .003 .002 .018 .004 .002 .014 .002 .001 Al .082 .035 .036 .048 .008 .006 .041 .008 .006 Fe .263 .010 .005 .263 .010 .006 .257 .010 .005 Fe .381 .031 .032 .312 .017 .013 .311 .025 .019 Mn .006 .004 .002 .006 .005 .003 .003 .004 .002 Mn .004 .002 .002 .007 .001 .001 .007 .001 .001 Mg .763 .016 .009 .765 .010 .007 .766 .011 .006 Mg .693 .027 .028 .68I .017 .013 .684 .014 .011 Ca .992 .024 .014 .984 .021 .013 1.000 .024 .014 Ca .874 .005 .005 .966 .020 .016 .972 .032 .025 "je 13.03 .56 .32 13.07 .51 .32 12.70 .52 .30 ZFe 19.56 1.46 1.50 15.93 .84 .68 15.81 1.24 .96 2Mg 37,81 .71 .41 38.02 .49 .31 37.86 .62 .36 ZMg 35.57 1.37 1.41 34.79 .78 .63 34.77 .78 .60 ZCa 49.16 .96 .55 48.91 .67 .42 49.43 .92 .55 ZCa 44.87 .40 .41 49.29 1.01 .82 49.42 1.41 1.09

27-5 n-19 27-6 n-19 27-7 n-21 4288 n-14 4322 n-11 258 opx n-11

x Sx +R x Si +8 x Sx +R x Sx +R x Sx +R x Sx +R SI 1.981 .012 .008 1.990 .007 .005 1.983 .010 .006 Si 1.976 .008 .007 1.985 .011 .010 1.974 .010 .009 21 .003 .005 .003 .002 .003 .002 Ti .001 .002 .001 .002 .003 .002 .001 .002 .002 Al .013 .003 .002 .007 .001 .001 .008 .003 .001 Al .047 .003 .002 .045 .007 .007 .041 .002 .002 Fe .251 .012 .008 .256 .001 .005 .252 .011 .007 Fe .286 .007 .006 .299 .008 .008 .927 .012 .011 Mn .007 .00) .002 .005 .004 .003 .006 .003 .002 Mn .006 .001 .001 .006 .001 .001 .010 .001 .001 Mg .772 .012 .006 .761 .011 .008 .774 .015 .010 Mg .719 .014 .011 .687 .026 .025 1.023 .022 .021 Ca .989 .026 .017 .986 .017 .011 .976 .029 .018 Ca .964 .013 .010 .967 .017 .016 .028 .006 .006 1Fe 12,48 .66 .43 12.78 .38 .24 12.59 .55 .35 ZFe 14.53 .30 .24 15.31 .42 .40 46.87 .78 .75 171g 38.37 .65 .42 37.99 .52 .33 38.66 .98 .61 1Mg 36.52 .66 .54 35.18 1.09 1.04 51.72 .83 .79 1Ca 49,16 1.06 .71 49.23 .68 .44 48.75 1.03 .65 1Ca 48.96 .55 .44 49.51 1.03 .98 1.42 .30 .29 cpx exeat opx exsol 27-8 n-19 25-4 n-8 25-6 n-II T58 n-2 258 cpx n-12 258 n-2 x Sx +R x Sx +R x Sc +R Y Sx +R x Sx +R x Sx +R Si 1.979 .006 .004 1.978 .009 .011 1.933 .018 .018 Si 1.974 .001 1.970 .009 .008 1.983 .006 TI .003 .004 .002 .011 .005 .005 Ti .010 .002 .011 .001 .001 AI .009 .001 .001 .034 .013 .011 .099 .028 .026 Al .056 .001 .059 .003 .002 .037 .004 Fe .262 .008 .005 .152 .025 .0)1 .152 .018 .017 Fe .357 .024 .376 .028 .025 .953 .032 Mn .006 .004 .003 Mn .005 .001 .005 .001 .001 .010 .001 Mg .757 .016 .011 .845 .029 .036 .857 .028 .027 Mg .685 .001 .698 .019 .017 .984 .006 Ca .98I .019 .013 .998 .009 .011 .955 .029 .028 Ca .904 .021 .871 .020 .018 .015 .009 1Fe 11.09 .42 .28 7.62 1.29 1.60 7.71 .92 .88 ZFe 18.35 1.22 19.33 1.46 1.31 48.33 1.22 1Mg 37.83 .81 .54 42.36 1.29 1.60 43.63 1.48 1.41 1Mg 35.20 .10 35.89 .85 .76 49.91 .74 1Ca 49.08 .86 .57 50.02 .49 .61 48.64 1.23 1.18 ZCa 46.45 1.12 44.78 .94 .84 1.75 .47

Y - sample mean Sx - sample standard deviation 48 - range for population mean at the 992 certainty level n - 1 of spots {all clinopyroxene unless noted) opx - orthopyroxene Compositions—Unit 1 L160N

Clinopyroxene Figure 50 50

49

50 48

~ 49 Zr° 48 39

38

39 37

38 14 37 13

14 12

~°7 13 ~ 0 46E 12 45E 44E 43E A cumulate

• intercumulate

40 VvVVvVVVVvvv 40 41 C) 41 es o 4 ~ 4 ~4 141 Figure 51 Clinonyro.xene analyses plotted on a portion of the Ca, Ng, (Fe +Fs +tn) diagram. Nomenclature after Poldervaart and Hess (1951). 99

) just to the north of the grid (Figure 12). The

nncpyroxene in sample 25-4 is intercumulus and lar in composition to the cumulus pyroxene in 25-6. :fore sample 25-4 is a heteradcumulate (Wager and 1967). Sample 27-5 is from the previously

mentioned unit 1 on line 160N. Samples 4322 and 4321 come from unit 1 near the eastern end of lines 116N and 124N respectively (Figure 12) and as expected are similar in composition. These five samples show a definite pattern of iron enrichment from west to east across the grid. This observation supports the idea that the stratigraphic tops of these rocks is to the east. Three other clinopyroxene samples are also plotted in Figure 51. Samples 4286 and 4288 come from unit 1 on lines 140N and 156N respectively (Figure 11). They are very similar in composition to 4321 and 4322 indicating that the southern pyroxenite continues north into the east-central part of the grid. The T58 clinopyroxene analysis shown in Figure 51 is from the unusually fresh sample described in Chapter V. In the marginally uralitized parts of this sample the orthopyroxene exsolution lamellae have 100

en preferentially altered with a resulting texture Very similar to most unit 1 pyroxenites. The

similar composition of the pyroxene in sample T58 with the two other samples from the same unit (4321

and 4322) tends to support the idea that these samples originally had similar exsolutions, particu- larly if the lower Ca content of sample T58 is due to inclusion of some very fine orthopyroxene

lamellae (Ca.03Mg,98Fe.95Mn.01Si1.98A1.0406). The intercumulus inverted pigeonite in sample T58 was also analysed and the results are included in Table 6. The host orthopyroxene has a composi- tion of Ca_ 03 and the Mg1.02FE.93Mn 01Si1.97A1.04C6 exsolved clinopyroxene Ca.90 Mg_68Fe.36Si1.97A1.06 Ti ,01C6. In general the samples in Figure 51 show a differentiation trend similar to alkali basalt magmas such as the Black Jack teschenite sill (Wilkinson, 1957). However, clinopyroxene is the only pyroxene phase to crystalize from these alkali magmas (Deer et al., 1963). Both cumulus and intercumulus orthopyroxene are present in several samples from the western lobe of the Bell River Complex and inter- cumulus pigeonite is present in sample T58 from the east. Therefore, it seems unlikely that the complex is an alkali magma. The cause of the Ca rich nature lol

the pyroxenes, however, is not clear.

Olivine Cumulus olivine was only observed within the

eastern lobe of the Bell River complex within unit

2a (Figure 12). Eleven samples were collected across this unit north of line 208N, but only six

contain fresh olivine which was analysed on the micro-

probe. About twenty spots per sample were analysed

on five to seven grains per sample. The atomic

proportions for the samples are shown in Table 7 and

the forsterite contents are plotted in Figure 52.

Excluding sample 25-1, the results indicate

that there is little variation across this unit.

Sample 25-1 is considered less reliable, because only

a few very ragged olivine grains are present in the

section. It is thought that the results represent

some talc contamination. Two analyses are shown for

sample 25-3. The majority of the grains average about

Fo6 , but one grain is much higher at Fo64. This

grain shows no indication of alteration, so the

difference appears to represent an original variation. Samples 25-4 and 25-6 also contain clinopyroxene which was analysed on the microprobe (see previous section) The work of Medaris (1969) indicates that an orthopyroxene 102

Table 7. Olivine compositions (atomic proportions based on 4 oxygen).

25-1 n=11 25-3 n=18 25-3 n=4

Sx +R x Sx +R x Sx +R Si .988 .012 .011 .981 .002 .001 .979 .002 .007 Fe .602 .023 .022 .761 .008 .006 .716 .002 .005 Mg 1.389 .012 .011 1.239 .011 .007 1.288 .006 .018 Mn .013 .002 .002 .011 .001 .001 .014 .001 .003 %Fo 69.76 .90 .86 61.96 .45 .31 64.28 .16 .46

25-4 n=27 25-6 n=25 25-7 n=25

x$x +R x Sx +R x Sx +R Si .986 .006 .003 .987 .006 .003 .985 .005 .003 Fe .733 .009 .005 .740 .014 .008 .687 .016 .009 Mg 1.285 .013 .007 1.277 .017 .010 1.335 .017 .009 Mn .009 .002 .001 .008 .001 .001 .009 .002 .001 %Fo 63.66 .46 .25 63.30 .69 .39 66.04 .77 .43

T57 n=20

x Sx +R Si .982 .004 .003 Fe .734 .009 .006 Mg 1.264 .007 .004 Mn .012 .001 .001 %Fo 63.27 .36 .23

n = /P of spots = sample mean Sx = sample standard deviation +R = range for the population mean at the 99% certainty level Olivi ne Compositions Across Unit 2A Figure 52

70 70

65 o 65 -.20 I I i

~, 1 1 ~ if A n n N N N 60 1 1 I t t 1 60 I t t t t I 1 t t t I I t t N t t I 1 1 I t ►► ~1 0 30 25 20 15 10 5 E. contact feet X10 W. contact 68 is in equilibrium with olivine of Fo osition of En 62 Bartholome (1962) shows that the Fe/Mg ratio in

n coexisting calcium rich and calciumpoor pyroxenes is lightly lower in the calcium rich pyroxene. Therefore,

tp1e clinopyroxenes in these two samples appears to be 'anomalously magnesium rich for the observed olivine composition. The cause of this magnesium rich nature is not clear, but it could indicate a nonequilibrium condition. The composition for the olivine in unit Fo63-64 2a is very similar to values reported by Allard (1976)

for a similar unit in the Dore Lake complex. The iron rich nature of this olivine is also similar to olivine near the top of large layered intrusions (Wager, 1968). The average MnO contents of the olivine in unit 2a ranges from .27 to .45%. These values are similar to other olivines with this composition (Simkin and Smith, 1970). The NiO content is below the detection limit (.1 wt %) for the method used. Low NiO values are expected in olivines of this composition (Simkin and Smith, 1970). 105

Na systematic attempt was made to analyse the boles in the Bell River complex rocks. A few

m,'es were analysed to verify the optical determin-

t'ons and several amphiboles were analysed while

ÿernpting to do the pyroxenes.

The microprobe results are summarized in Table

8 and plotted in Figure 53. Most of the samples, as expected, fall in the tremolite-actinolite or hornblende series. One lamprophyre dyke sample

(4289-B) is a cummingtonite.

Table 8. Amphibole compositions (atomic proportions based on 24 oxygen).

T-8 n=2 4341 n=3 27-1 27-6 n=2 T-9 n=8 4352 n=4 _ _ one _ _ x Sx x Sx spot x Sx x Sx x Sx Si 7.306 .009 7.601 .012 7.832 7.912 .113 7.535 .063 6.998 .081 Al 1.566 .048 1.155 .022 .780 .708 .119 1.190 .067 1.994 .134 Ti .032 .002 .020 .003 .052 .010 .067 .004 Fe 2.171 .010 1.854 .024 1.432 1.506 .082 1.811 .047 2.203 .050 Mg 2.641 .093 3.03? .010 3.620 3.430 .082 3.088 .050 2.447 .102 Mn .014 .006 .032 .004 .032 .014 .018 .020 .004 .026 .003 Ca 2.052 .022 2.033 .013 2.080 2.160 .028 2.039 .019 2.103 .009 Na .018 .025 .189 .031 K .034 .002 .044 .030

T-8, 4341 = Hbl + Qtz in gabbros 27-1, 27-6 = tremolite T-9, 4352 = random, large euhedral to subhedral amphiboles in gabbros

4289 n=2 42F98 n=2 T54 n=4 x Sx x Sx x Sx Si 6.656 .110 8.130 .011 6.970 .108 Al 2.784 .199 .251 .050 2.182 .134 4289, T54 = fine grained lamprophyre dykes Ti .044 .010 .006 .008 .075 .028 Fe 2.379 .059 3.169 .038 2.028 .056 Mg 1.976 .211 3.911 .088 2.431 .113 n = number of spots Mn .013 .006 074 .008 .018 .006 z = sample mean Ca 1.801 .076 .092 .081 2.006 .020 Sx = sample standard deviation Na .268 .020 .121 .032 K .011 .015 .017 .004 106

—► Ca+nlâ+K 2.5 30 2.0 8.0 • A 27-6 Riehtcrite Ternolitt. Actinolite Na2Ca(Mg,Fe) SieO22(OH)2 £27- 5 lfefreIRmblite)OHh Fels Siadn

- A 4341 A T9 Si Actinolite group

A i8 r Probable miscibility gap

7.0 A 4332 ♦ T54 Edcnite (Ferraedenitc) NaCa2(Mg,Fc)5 Sir A1022(OH)2 Hornblendes

A4269

60 Tschermakite Pargasite Ferro-tschermakite) (Hastingsitc) Ca2(Mg,Fe}e AbSi6A12022(OH)2 NaCa2fMg,Fe)4 AISi6A12 022 10H)2 Fig.53 Calcic amphiboles. The ' compositions are plotted in the trapezoid tremolitc-tschermakite-pargasite-edenite. These names represent Mg-end members. The names of Fe-end members are given in brackets below the corresponding Mg-end members. (Miyashiro , 1973

Sulfides and Oxides The sulfide and oxide phases in the Bell River Complex samples were not analysed in detail on the microprobe. Selected samples were analysed to verify the optical determinations. The sulfide analyses are summarized in Table 9. In general the results are nearly stoichiometric except for the cobalt contents. The Co contents of pyrite and pentlandite are similar to other pentlandite-pyrite-pyrrhotite Table 9. Sulfide Compositions.

Pyrite Chalcopyrite z x element 4340 n-5 4341 n-6 4352 n-4 4343 n-2 4279 n-2 element <340 n-2 4341 n-3 4352 n-2 4343 n-6 154 n-3 x Sx x Sx x Sx x Sx x Sa x Sx x Sx x Sx x Sx +c Sx Fe 45.29 1.17 45.21 .95 45.48 .49 44.79 1.97 46.37 .14 Fe ' 30.46 .30 30.19 .16 31.25 1.00 30.26 .25 30.72 .14 Co 1.93 1.22 1.34 .54 1.32 .65 1.87 1.22 1.60 .16 Co .43 .08 .44 .09 .60 .16 .52 .06 .55 .06 S 53.84 .22 53.37 .87 53.63 .19 53.22 .38 53.55 .33 Cu 34.27 .25 34.21 .35 32.98 2.44 34.50 .31 34.70 .12 Sum 101.06 99.92 100.43 99.88 101.52 5 35.06 .22 36.14 1.14 36.60 1.56 35.33 .53 35.91 .16 Total 100.22 100.98 101.43- 100.61 101.88 F-' atomic proportions O atomic proportions J Fe .966 .026 .974 .013 .974 .013 .966 .035 .994 .009 Co .039 .025 .027 .011 .026 .014 .038 .025 .032 .004 Fe .998 .004 .960 .032 .980 .011 .984 .018 .983 .009 S 2 2 2 2 2 Co .014 .002 .013 .002 .018 .004 .016 .002 .016 .002 Cu .987 .001 .956 .034 .912 .106 .986 .023 .976 .001 S 2 2 2 2 2

Pyrrhot ite Pentlandite Millerite Y element 4340 n-10 434) n-6 1-16 n-7 434) n-2 4352 n-3 T x Sx x Sx x 5x x Sx x Sx element T-16 n-2 Fe 59.80 .43 60.14 .11 60.23 .31 30.39 .45 1.30 .27 - x Sx Co 1.02 .09 1.00 .06 1.16 .07 1.13 .08 51 .08 .08 .02 .02 36.03 .28 65.37 .97 Fe 30.83 .06 ti 39.69 .35 39.98 .23 40.52 .17 33.18 .07 35.96 .72 Co .47 .11 Sum 100.59 101.14 101.01 100.73 102.63 Cu 34.51 .51 S 36.37 .33 atomic proportions Total 102.18

Fe .865 .008 .864 .004 .853 .005 4.207 .071 .021 .004 atomic proportions Co .014 .001 .014 .001 .015 .001 .149 .011 Si .001 .001 4.744 .025 .984 .022 Fe .974 .007 S 1 1 1 Co .014 .003 Cu .958 .025 S 2

Table 10. Oxide Compositions (atomic proportion).

ilmenite T-16 n=5 T-7 n=4 T-8 n=2 4289 n=5 T59 n=5 x Sx x Sx x Sx x Sx x Sx Ti .973 .003 .980 .021 .977 .004 .969 .007 .997 .003 Cr .005 .001 Fe 1.032 .008 1.017 .045 1.013 .008 1.015 .009 .985 .006 ✓ .002 .001 .003 .002 .002 .001 .011 .003 .002 .000 Mn .017 .001 .015 .003 .030 .001 .020 .006 .016 .002 O 3 3 3 3 3

magnetite

T59 Host n=2 T-8 n=6

7C Sx -x. Sx Ti .576 .025 0 FeII. .705 .015 1.000 .001 Fe }1.410 .030 2.001 ✓ .006 Mn .022 .001 O 4 4 109

emblages (Harris et al., 1972). The cobalt values the pyrrhotite and chalcopyrite, however, are higher

n the maximum values of .85% and .2% respectively reported by Levinson (1980). The cause of these high values is not known.

The Ni contents of pyrrhotite and pentlandite

are average (Levinson, 1980; Harris et al., 1972). The mean atomic percent metals in the three pyrrhotite samples is 46.8 (4340), 46.8 (4343) and 46.5 (T-16). These values fall in the monoclinic field as expected (Yund and Hall, 1969). The magnetite and ilmenite analyses are summarized in Table 10. They are not anomalous.

Western Lobe Metamorphism Previous workers in the Matagami area have noted a regional greenschist metamorphism (Freeman,1939; Sharpe, 1968; Beland 11953). This metamorphism is characterized by alteration of the mafic minerals of the volcanics to uralite, chlorite, epidote and magnetite. The plagioclase feldspars are often clouded with secondary minerals or replaced by saussurite. Within the Bell River Complex, Freeman (1939) notes that pyroxene is replaced by either 110

rpentine + subordinate hornblende + calcite or gregate of hornblende + chlorite + calcite + quartz. ag The plagioclase is altered to varying degrees to a matt of epidote + calcite + quartz + acid plagioclase. In other areas it is fresh except for replacement by chlorite along cracks. Leucoxene often replaces titan- iferous magnetite. The 15 samples from the western lobe of the complex that were examined for this project verify Freeman's observations of low grade alteration. The presence of contact metamorphism around granitic intrusions north of Matagami has been noted by Sharpe (1968). This metamorphism is generally characterized by blackened and coarsened volcanics and on the Garon Lake Mines property by a cordierite- anthophyllite hornfels.

Eastern Lobe Metamorphism

The rocks within the eastern lobe of the Bell River Complex have been subjected to a different meta- morphic history from those in the west. This meta- morphism has resulted in a typical gabbro mineral assemblage characterized by moderate to strongly 111

eochroic (blueish) amphibole and a fresh to slightly ericitized or sauceritized primary bytownite- ebradorite. Minor phases include metamorphic plagio- Ik lase+chlorite+biotite+almandine (rare). The meta- orphie plagioclase in this paragenesis is the most ► diagnostic of the metamorphic conditions. The intensity of the alteration within the eastern lobe is highly variable. The observed sections often contain fresh igneous mineralogy, but even within the scale of a thin section the alteration can become very intense. This variability is probably due to the non uniform access of water throughout these rocks. This access was mainly controlled by tectonic brecciation exemplified by the deformation textures in primary plagioclase (see Chapter V). The metamorphic plagioclase in the eastern lobe of the complex ranges in composition from An49.1 to An 92.4 (see previous section). This calcium rich nature is indicative of high temperature metamorphic conditions (Lyons, 1955; Miyashiro, 1973; Winkler, 1976). Unfortunately, a reliable scale relating the plagioclase composition to temperature does not presently exist. Nevertheless, if the boundary between 212

wepidote-amphibolite and amphibolite faices is (Miyashiro, 1973), the calcium rich en'at An30 atüre of this plagioclase points to amphibolite grade iitamorphism. Miyashiro, 1973, notes the presence of amphiboles

lm metabasites. Actinolite is usually present from

upper prehnite-pumpellyite to lower amphibolite facies and hornblende is present from upper greenschist to upper

-amphibolite facies. The presence of both actinolite and

hornblende in the complex gabbros is therefore consistent

with amphibolite grade metamorphism. Chlorite is present in metabasites under low

pressure environments from greenschist into the

lower amphibolite fades (Miyashiro, 1973). Its

general absence from the complex rocks supports

higher grade metamorphic conditions.

The stability range for biotite in metabasites

is from lower greenschist to lower granulite facies

(Miyashiro, 1973). Therefore, its rare presence does

not help define the metamorphic conditions.

The erratic formation of almandine in the 113

ros and lamprophyre dykes,despite favorable whole chemistry, is consistent with lower pressure ibolite metamorphism. Miyashiro (1973) ieves that reducing conditions may be one of the factors controlling almandine formation. He notes that the oxidation state in metabasites is

highlyhl variable so formation will be erratic. Epidote under low pressure regional metamorphic conditions is present from greenschist to lower amphibolite conditions. Figure 54 is a plot com- paring the relative amounts of epidote and meta- morphic plagioclase within the gabbro samples.

25 ,

20 -• 18-4,

10-

4- ~

2-. •

~ ► iITIT 4 6 8 10 t2 14 16 18 20 25 %Metamorphic Plagioclase Figure 54 Plot of % metamorphic plagioclase against % epidote in gabbros. 114

ere is a negati ve correlation which is consistent ith the high temperature metamorphic conditions for the secondary plagioclase. postulated The rarity of sphene as an alteration product of ilmenite is also consistent with higher grade metamorphism in this area. The cause of the local high grade amphibolite metamorphism in the eastern lobe of the complex is thought to be due to contact metamorphism from the later granitic intrusions. As mentioned in Chapter II these intrusions surround the eastern lobe on all but the southern margin. Within the grid area small granitic and dioritic dykes were also common. Some additional insight into the metamorphic history of the eastern lobe is provided by the meta- morphic plagioclase. It is always fresher than the primary plagioclase, despite its often more calcium rich nature. This relationship indicates that the amphibolite grade metamorphism was superimposed upon a preexisting low grade deuteric or greenschist meta- morphism in which the primary plagioclase was often sericitized or sauceritized. The reversed zonation that many of the metamorphic plagioclase grains 115

bit could indicate a progressive increase in tamorphic grade with a quicker drop in temperature

that did not permit homogenization. The metamorphic plagioclase often foims within the cracks in primary plagioclase and lacks any deformational textures. This relationship indicates that the metamorphic plagioclase formed after the complex was folded into its present orientation. This sequence is consistent with contact metamorphism from the post folding granitic intrusions. 116

TER VII PETROCHEMISTRY

The first part of this chapter discusses the

results of whole rock analyses on selected rock samples from the Matagami area. Part two discusses the rare earth element characteristics of some of these samples. Part three discusses the Cu, Ni, Pt and Pd contents of the rock units within the grid area of the eastern lobe of the Bell River Complex.

Whole Rock Analyses Twenty three rock samples were analysed for major elements using the XRF in the Geology Department. The details of the procedure and errors are included in Appendix IIIA. Eleven representative rock samples from the eastern lobe of the Bell River Complex were analysed. From the western part of the area, three Wabassee volcanic samples (28-1, 23-1 and 23-2), a subsidiary gabbro intrusion sample (16-3), and a marginal zone sample (19-2) were analysed (see Chapter V for more details on these samples). Table 11 lists the whole rock analyses together with the rock types and CIPW norms for each sample. Table. 11. Whole Rock Analyses

136 145 138 142 147 T35 T53 T4) bAn An aC JIG fC G G pyaC 5102 50.11 48.46 49.50 48.53 47.75 46.79 46.35 43.61 TiO 0.15 0.10 0.16 0.23 0.98 0.14 0.16 0.05 2 A1203 25.77 28.92 26.04 21.04 24.89 21.71 22.54 21.66 Fe 203 1.13 0.70 0.70 1.92 3.00 1.63 1.96 2.25 fe0 2.50 2.02 2.52 4.01 4.30 5.48 5.52 7.11 Mn0 0.10 0.06 0.09 0.13 0.11 0.14 0.12 0.13 Mg0 3.71 2.84 3.74 7.01 2.94 7.67 7.49 10.14 CaO 13.13 14.75 14.03 14.33 13.34 12.45 12.29 10.50 Ns20 2.78 2.32 2.22 1.70 2.81 2.13 1.94 1.22 K 20 0.34 0.12 0.10 0.13 0.08 0.22 0.20 0.09 P 705 0.08 0.11 0.06 0.05 0.06 0.05 0.08 0.03

Lose 1.45 1.04 .88 1.68 1,17 1.88 2.06 3.38 100.17 P TOTAL 101.25 101.44 100.04 100.76 101.45 100.29 100.71 (✓ C.I.P.W. Norma Weight Percentages -.1 Quartz 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00 Corundum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 Orthoclase 2.01 0.71 0.60 0.78 0.47 1.32 1.20 0.55 Albite 23.57 19.55 18.94 14.52 23.71 18.31 16.64 10.67 Anorthite 56.94 67.67 61.30 49.85 54.91 49.82 52,91 53.61 Diopaide 6.27 3.47 6.84 17.27 8.57 10.19 6.75 0.00 Hyperathene 7.12 3.08 10.08 12.10 2.84 2.40 5.74 13.46 Olivine 1.96 3.87 0.00 2.12 3.12 15.17 13.38 17.61 Magnetite 1.64 1.01 1.02 2.81 4.34 2.40 2.88 3.37 llmenite 0.29 0.19 0.31 0.44 1.86 0.27 0.31 0.10 Apatite 0.19 0.26 0.14 0.12 0.19 0.12 0.19 0.07

Normative TAb 29.3 22.4 23.6 22.6 30.2 26.9 23.9 16.6 probe TAb 29.5 20.8 24.6 22.8 32.6 25.7 19.1 17.5 Table. 11. Con't

26-4 158 27-14 27-17 T57 25-6 T80 181 pyxO cpc cpc cpc du Pd Lamp Lamp S i02 44.20 46.89 48.01 49.34 24.70 23.81 56.53 51.40 Tî02 1.44 0.58 I.07 0.89 3.31 4.75 0.82 0.66 A1203 20.29 1.93 2.68 2.65 1.63 2.67 15.73 13.91 Fe203 4.89 3.62 3.86 2.96 23.17 22.35 2.37 2.58 FeO 8.59 16.47 10.87 10.54 19.58 20.10 4.30 5.80 ltn0 0.14 0.38 0.27 0.27 0.22 0.27 0.12 0.19 MgO 5.61 12.14 12.98 13.13 18.37 15.84 5.62 10.00 Ca0 12.01 12.72 17.06 17.44 0.45 4.76 7.17 9.10 Na20 2.26 0.23 0.26 0.28 0.01 0.02 4.37 3.36 K20 0.15 0.04 0.04 0.05 0.04 0.05 0.57 0.33 P205 0.07 0.07 0.13 0.10 0.02 0.07 0.25 0.44 Loss 1.52 0.00 1.57 1.58 5.64 2.94 2.18 2.64 i-' TOTAL 101.17 96.91 98.80 99.23 97.14 97.63 100.03 100.41 h~ OO C.I.P.W. Norms Weight Percentages Quartz 0.00 0.62 0.55 0.91 0.00 0,00 6.50 0.00 Corundum 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 Orthoclase 0.89 0.25 0.24 0.30 0.26 0.31 3.44 1.99 Albite 19.19 2.05 2.26 2.43 0.09 0.18 37.78 29.07 Anorthite 44.93 4.33 6.20 5.97 2.30 7.39 22.09 22.39 Oiopside 11.77 50.74 64.67 66.31 0.00 13.62 10.09 16.67 Hypersthene 0.45 35.16 17.91 17.72 27.70 3.17 14.38 19.24 Olivine 12.75 0.00 0.00 0.00 25.15 31.32 0.00 4.46 Magnetite 7.11 5.53 5.76 4.39 36.71 34.22 3.51 3.83 Ilmenite 2.74 1.16 2.09 1.73 6.87 9.53 1.59 1.28 Apatite 0.17 0.17 0.32 0.24 0.05 0.18 0.61 1.07

Normative %Ab 29.9 32.1 26.7 28.9 63.1. 56.5 probe %Ab 32.7

i Table 11. Con't

T82 116 16-3 23-2 23-1 28-1 19-2 Lamp Lamp pyaG vole vole vole QtsG 510 57.98 46.90 49,09 41.98 49.57 51.43 62.26 2 1102 1.93 3.21 1.65 1.42 1.46 1.98 .98 A1203 13.28 12.06 13.53 13.82 13.75 13.60 14.I0 Fe 203 3.94 3.92 3.97 3.19 3.88 2,95 3.52 Fe0 11.38 13,76 11.59 10.60 9.87 12.74 4.26 Nn0 0.23 0.29 0.23 0.23 0.21 0.30 0.08 Ng0 2.83 4.47 6,04 6.29 5.32 4.62 1.98 Ca0 5.41 9.01 7.83 10.88 9.38 8.30 5.88 Na20 2,33 2.31 3.45 1.81 2.51 3.55 3.66 K20 0.07 0,35 0.24 0.11 0.24 0.22 0.17 P 205 0.08 1.78 0.29 0.18 0.20 0.24 0.30 Loss .91 2.00 3.16 3.64 3,48 1.44 2.87 TOTAL 100.49 100.06 101.07 100.21 99.87 101.37 100.17 C.I.P.W. Norms Weight Percentages Quartz 22.00 5.92 0,00 3.05 5.15 1.76 25.95 Orthoclase 0.42 2.11 1.45 1.04 1.47 1.30 1.03 Albite 19,81 19.91 29.81 15.86 22.03 30.06 31.87 Anorthlte 25.69 21.91 21.11 30.11 26.50 20.53 22.11 Dlopside 0.89 9.90 13.89 20.28 16.88 16.05 4.94 Hypersthene 21.58 23.96 22.38 21.63 18.11 21.69 6.24 Olivine 0.00 0.00 1.57 0.00 0.00 0.00 0.00 Magnetite 5.74 5.79 5.88 4.79 5.84 4.28 5.25 Ilmenite 3.68 6.21 3.20 2.79 2.88 3.76 1.88 Apatite 0.19 4.30 0.70 0.44 0.49 0,57 .73

Normative /kb 43.5 47.6 58.5 34.5 45.4 59.4 59.0 probe TAb 66.3

Note: Fe 203/Fe0 ratio set to 0.22 for 158 because sample roasted, otherwise the measured values were used.

Gabbro abbreviations included in Table 2: Lamp - Lamprophyre dyke; volt - volcanic; du - dunite; Pd - peridottte 120

lagioclase compositions determined on the micro- and from the norm also included. Appendix I ains details on the modal composition of these pies. As expected, there is a good correlation between modal composition and the chemical composition of tte samples. There is also good agreement between .the normative and microprobe plagioclase compositions. Wager and Brown (1968) note that whole rock chemical analyses from a layered series of rocks have limited value in showing changes in the oxides associated with a fractionated series of rocks. This situation is due to the wide variations in the type and proportions of the cumulus minerals and the variable amounts of trapped intercumulus liquid." To minimize these variations, Wager and Brown (1968) suggest that average rocks from a sequence can be used. The trends of these samples will closely parallel the trends of magma change from calculated liquids when plotted on MgO:FeO:(Na2O + K2O) diagrams. The Bell River Complex and lamprophyre dyke samples are shown on a MgO:FeO:(Na2O + K2O) diagram in Figure 55. The gabbro samples that are the closest to an average for the complex (felsic gabbro Fe0

Skoergoord Rocks (Hess,196 0)

OAverage Bell River samples ID Lomprophyre dykes

Tye 25-I

T57

27-14 57-17

Garobel Hill- Glenn Fyne Complex (N ocklonds,19 41)

No20tK20 Mg0 Figure 55 Bell River Complex gabbros and lamprophyre dyke samples plotted on an MgO:Fe0:(Na20+K20) diagram.

122

FeO + Fe2O3 + TiO2

❑ 23-1 023-2 O 28-I V16-3

High-Iron Tholeiitic Basalt

\ Rock sample colour (approximate) o ~ ~0 \ •\~e O / Black ...... ,.,...... ...... oNa!!... ~p •. "41 T// ~ Dark green-grey \ /Magnesium ..\..0 \

7 123

an rthositic gabbro) are shown in blue. Because of limited amount of data, no trends are evident in

gabbros. The quartz gabbro sample (19-2) plots the closest the alkali corner of any sample in Figure 55. This consistent with its high stratigraphic position in the complex. The large variability of the lamprophyre nA dyke samples is consistent with their variable mineral- ogy. As expected, the pyroxenites,dunite and perido- tite plot far from the "average" gabbros. The volcanic and subsidiary gabbro intrusion samples are plotted in Figure 56 on the Jensen Cation Plot (Jensen, 1976). All four samples are very similar and plot within the high iron tholeiitic field.

Rare Earth Elements Fifteen of the samples that were analysed for major elements were also analysed for rare earth elements (REE). The three Wabassee volcanic samples were analysed to investigate their relationship to the subsidiary gabbro intrusions and to the main part of the Bell River Complex. Sample 19-2 (quartz gabbro) was analysed to see if it could represent a grano- phyre for the complex. In addition, characteristic 124

les from the eastern lobe of the complex were alysed to see if REE trends similar to other ayered intrusions (Kuo and Crocket, 1979) could be le ecognized. The samples were analysed by neutron activation analysis. The details of the procedure and errors are included in Appendix IIIB. Table 12 includes the results discussed in this section and Figure 57 is a plot of these results normalized to chondrite values from Haskin et al. (1968).

Wabassee Volcanics and Subsidiary Gabbro Intrusion Samples

In Figure 57A the three volcanic samples exhibit very similar flat patterns (La/Yb.^ 1.2) with absolute REE abundances about 20x chondrite and negative Eu anomalies. This pattern is similar to other Archean tholeiites such as those from Duparquet, Quebec; Lawlers, Western Australia; Que-Que, Rhodesia; and Minnesota, U.S.A. (Condie and Baranger, 1974; Sun and Nesbitt, 1978). Sample 16-3, from the subsidiary gabbro intrusion, has a very similar pattern to the volcanics.

Sharpe (1968) considers the sill like gabbro 125

Tobie 12. REE contenta (ppm)

Semple No. La Ce Nd Sm Eu Tb Yb Lu Eu/Eu* La/Yb ¢YOlraniCs ;:23-1 6.1 15.5 11.7 3.73. 1.01 .? 3.1 .5 .79 1.2 21-2 5.9 13.9 10. 3.41 .90 .6 2.7 .5 .78 1.3 28-1 7.7 20.6 11.8 4.53 1.30 .8 3.9 .6 .84 1.2 Subsidiary Intrusion 1(-3 6.6 16.3 14.3 3.93 1.02 .8 3.5 .5 .74 1.2 Bell River Complex 19-2(QtzG)12.7 30.2 17.6 4.53 1.32 .7 3.1 .4 .90 2.5 T45(An) .7 .16 .24 T42(a,) .6 .44 .29 .2 .8 .1 .5 T47(f1) .6 .28 .24 .2 .5 .1 T35(0) .26 .24 .2 .1 T43(pyxG) 1.0 .08 .19 2?-17(cpc) .4 1.43 .45 .5 1.2 .2 .76 .2 T5f(cpc) 1,17 .35 .5 1.9 .3 .69 T57(Du) .2 .04 .1 1amprophyre Dykes T16 26.7 71.4 46.2 12.22 2.89 1.4 5.1 .7 .82 3.2 T82 .3 .05 .50 .1

Ru/Eu* is the Eu content divided by the Eu content interpolated between Sm and Tb from the chondrite normalized plot.

La/Yb is the ratio of the chondrite normalized concentrations of IA and Yb. 126

30 -- 30

20 - 20

I0 IO 100 100 ~ TI6

50 - 50

19-2

27-17 - 10

- 5

T5B

T42

T47 T45

T4S

10 sow

- .5

1 I 1 I I 1 1 I 1 I 1 i I 1 1 ,1 La Ce Nd Sm Eu Tb Yb Lu Figure S7 Chondrite normalized REE plot of: A. Wabass ee volcanic and subsidiary gabbro intrusion samples. B. Bell R iver Complex samples. 127

intrusions in the Matagami area to be subsidiary intrusions of the main Bell River Complex. He also believes that the mafic Wabassee volcanics are co- magmatic with the complex. Since a sample from the chill zone of the complex is not available, the possible comagmatic nature of the volcanics and the complex cannot be verified. However, the REE data support a model where the complex acted as the source magma chamber for the mafic volcanics and subsidiary intrusions.

The negative Eu anomalies in the volcanics and subsidiary intrusion samples is consistent with the fractional crystallization of plagioclase which concentrates Eu relative to the other REE (Schnetzler and Philpotts, 1970). The maximum amount of plagioclase which could be removed from a basaltic melt with no Eu anomaly to yield the observed negative anomalies can be estimated from the equation:

Eu-DEu* 1 D (Eu/Eu*) = (1-X) (Kuo and Crocket, 1979)

Using DEu = .48 and DEu* = .04 for an Ab28 plagioclase content (Schnetzler and Philpotts, 1970), the following

results were obtained: 128

Sample Number % of melt crystallized as plagioclase

23-1 41

23-2 43

28-1 33

16-3 50

These values are not unreasonable considering the feldspathic nature of the exposed Bell River Complex and the possibility that the melts could have been removed from the magma chamber at any stage in its differentiation.

The nearly flat light REE patterns of these four samples is consistent with plagioclase and pyroxene fractional crystallization. Plagioclase tends to slightly lower the La/Sm ratio of the magma, but this can be counterbalanced by pyroxene crystalliza- tion. Sun and Nesbitt (1978) estimate that a 4:1 plagioclase to clinopyroxene ratio would be enough to reverse the effect and this ratio is close to that observed in the exposed part of the Bell River

Complex.

Assuming that the parental magma had a flat pattern, the Yb/Gd (< 1) ratio of the four samples in Figure 57A is consistent with the fractional 129

crystallization of orthopyroxene or calcium poor clinopyroxene (Sun and Nesbitt, 1978). If the Bell River Complex was a fractionation chamber for the samples, this data could indicate the existence of an ultramafic hidden zone since these minerals are very rare in the exposed parts of complex. Therefore the REE data don't rule out the possibility that the Bell River Complex acted as a fractionation chamber for the Wabassee volcanics and subsidiary gabbro intrusions. These results, however, can also be explained by a partial melting model in which some plagioclase is residual in the source area to explain the Eu anomaly. The Yb/Gd ratios that are <1 can be explained by residual orthopyroxene, calcium poor clinopyroxene, or garnet in the source area.

Bell River Complex Samples The REE data for most of the samples from the Bell River Complex are erratic (Figure 57B). This is due to the low absolute REE contents in most of these samples and the high detection limits for some elements. The complex sample with the highest absolute REE 130

content is sample 19-2. This quartz gabbro sample has a fractionated pattern with a La/Yb ratio of 2.5.

The high La/Yb ratio and absolute REE content, com- pared to the other complex samples, make it similar to granophyres in other layered intrusions (Kuo and

Crocket, 1979). However, using the method of Kuo and

Crocket (1978) described previously,only about 21% of an initial magma without an Eu anomaly would have had to crystallize as plagioclase to result in the observed Eu anomaly for this sample. This seems unlikely considering the large percentage of plagio- clase in the exposed part of the complex. Also, the high La/Sm ratio necessitates the crystallization of large amounts of pyroxene assuming a flat pattern for the parent melt. This could indicate a lower ultramafic zone for the complex, but a problem arises if the previously described volcanics samples also represent magmas periodically erupted from the Bell

River Complex magma chamber. These samples have much more negative Eu anomalies than 19-2 but they have less fractionated REE patterns. Therefore it seems unlikely that all of these samples have a similar source. Unfortunately, this problem cannot presently be resolved because the exact nature of sample 19-2 131

is in question. It could represent quartz diabase which is noted in the same area by Freeman and Black (1944). No contacts with typical complex rocks were observed to possibly clarify its nature and the REE pattern is not unlike other diabase samples reported by (Philpotts and Schnetzler, 1968; Kuo and Crocket, 1979). Of the remaining complex samples the two pyrox- enite samples (T58, 27-17) have the highest REE contents with about 7x chondrite. Although T58 contains a substantial amount of intercumulus inverted pigeonite, no significant differences in the two samples is noted. The negative Eu anomaly in both of these samples is consistent with previous crystalli- zation of plagioclase.

The gabbro samples form a fairly regular group with REE abundances between 1 and 4x chondrite. These abundances are similar to gabbros and norites from the Bushveld and Muskox intrusions (Kuo and Crocket, 1979). Sample T42 has the most regular pattern of the gabbro samples and as expected, has a prominant positive Eu anomaly. Sample T57 is a dunite sample. It generally has 132

the lowest REE content of any of the samples reflecting the small partition coefficients of olivine for REE.

Lamprophyre Dyke Samples Two lamprophyre dyke samples were analysed for REE, but only T-16 is shown in Figure 57B. Sample T82 (see Table 12) has very low and erratic REE values and wasn't included in Figure 57B. Sample T-16 has the highest REE content of any of the analysed samples with 20-80x chondrite. It also has the highest La/Yb ratio at 3.15. Since this sample contains 2% apatite, these values are not surprising. The very low values for T82 indicate a different history from T-16 and suggest the possibility of several stages of lamprophyre dyking in the area.

Cu, Ni, Pt, Pd Contents Selected rock samples from the eastern lobe of the Bell River Complex were analysed for Cu, Ni, Pt, and Pd as part of the exploration work for Canadian Occidental Petroleum, Ltd. In general, 580 rock chips of the various rock types and 92 rocks samples 133

of visibly mineralized material were analysed. Appendix IIIC contains more details on these samples. The samples were sent to Bondar-Clegg and Company, Ltd. where they were ground to -100 mesh. Cu and Ni were analysed by atomic absorption spectrometry after extraction with a hot solution of HC1-HNO3. Pt and Pd were analysed by a combined fire assay-atomic absorption technique. Appendix IIIC contains the analytical results along with a discussion of the precision. Background and anomalous values for these samples were established by grouping the results into fixed ranges and constructing histograms (Figure 58). The histograms were fitted with a bell shaped curve and the high values eliminated from further statistical treatment. Cumulative percentage graphs of the normal populations were constructed and background and anomalous values were selected from these plots at the 50% and 97% levels respectively. There were too few Pt and Pd analyses to use the above statistical method for some rock types. In these cases the arithmetic mean was estimated from the histograms if one interval contained the majority of the samples, or the mean was calculated

Figure 58. Cu, Ni., Pt, and Pd histograms for rock types in the eastern lobe of the Bell River Complex. (Arrows indicate the upper limits of normal populations used in statistical treatment)

Cu N1

10 10

1n a 41 saTpins 9)e9 5>53 11$11111 '• •• • I 10 •~ 80 100 2 36 46 e0 ppm ppm p7x0 20 (7 snmples 5 7> 2 54

b,1n 10 ° tl1l.l ..• 59 saToles l 3i63 •0 1 0 1'0 2 s PPm ppm 0 - II I~.. • _ _ 1• 32 - 4. 6 ppm ppm 20 20 20 H-' w "C, 11 2~139 10 3>569 (4 simples 3>69 10 ° .II LL. IIIILIiL._ 0 . 0 4) 0 FO 12 2 36 Lc ppm ppm ppm ppm 20 350

10I + 4,79 300

250 ° 2 4, ppm PPm 200 200 R11 rncks 610 samp1es150 150

50

o ie 3c 46 PVT" Fi Rune 58 con' t. 15 Pt Fd Pt Pd 20 10 S 10 10

pyxG An 10 14 samples 5 1)45 1Q samples

10 0 0 '0 " 0 0 10 20 3 ppb ppb ppb ppb 60

30 50

20 20 100 1 40

bAn 31 samples 10 10 30

o o cpc 50 20 10 10 101 samples ppb ppb 20 20 10 2)30

aG 10 10 0 24 samples 10 20 30 40 1. 2G 30 40 • ppb ppb ~ 0 0 10 20 10 ppb ppb 20 20 150

10 10 250 24 samples

0 0 200 100 10 20 30 40 10 20 30 ppb ppb 6e 30 all 150 rocks 774 samples 40 20 100 2)45 50 5>50 G 61 samples 20 2>20 10 2>45 5n

0 0 ri 1-1 2 3. . 10 2r 3 1 :0 ; 0 3G LW ppb ppb 1' p b pct. 136

assuming L5 was equal to 4 ppb. Table 13 contains the calculated results for each rock type.

There is a very good correlation between the Cu and Ni values and the mafic content of the rocks in Table 13. The higher values in the pyroxenite reflects its consistent sulfide mineralization (see

Chapter III). The low Ni values reflect the rarety of pentlandite and millerite and the low Ni content of the pyrrhotite in these rocks. The Pt and Pd results for all rock types are very low and erratic.

Figures 59 and 60 show the contoured Cu results for the rock chips and rock samples from the grid area. The Ni results show similar anomalous areas and a comparison with the geology in Figures 11 and

12 shows that the mafic rich units 1 and 2 tend to have con- sistently higher values. Both of these units contain magnetite and the most consistent sulfide mineraliza- tion within the eastern lobe of the Bell River Complex.

Von Gruenewaldt (1976) notes an association of sulfide mineralization in the Bushveld intrusion with the magnetite layers. He postulates that magnetite crystallization reduces the FeO content of the magma

to the point where sulfides can separate from the

mayiva. Table $3 Metal Content of Rock Types

Cu Nickel Rock No. of Range in Background Anomalous Range in Background Anomalous Type Samples Values (ppm) ppm ppm Values ppm ppm ppm cpc 130 3-6840 152 372 8-1100 57 192 pyeG 67 3-1120 40 136 9-208 29 69 G 169 3-2890 26 65 8-1670 20 48 fG 82 3-2350 10 24 8-261 21 45 oG 64 4-225 21 48 8-149 21 39 An 41 5-2730 20 42 10-881 16 26 bAn 59 N.D-1590 12 28 N.D-302 18 31 All rocks 612 N.D-6840 28 209 N.D-1100 9 94

Pt Pd Rock No. of Range in Background Anomalous Average Range In Background Anomalous Average Type Samples Values ppb ppb ppb ppb Values ppb ppb ppb ppb* cpc 101 N.D-40. - <15 N.D-475 3 13 pyxG 14 N.D-45 - - < 15 N.D-70 - 14

G 61 N.D-145 <15 N.D-70 4 15 fG 24 N.D-35 <15 N.D.-15 — 7 aG 24 N.D-20 <15 N.D-10 - 6

An 19 N.D-40 - <15 N.D-50 - - 11 bAn 31 N.D-10 - - -15 N.D-15 - - 7 All rocks 274 N.D-145 <15 1; -. N.D-475 4 14 -

*When average was calculated L5 was averaged as 4 ppb so the calculated average is a maximum value.

Detection Limit f)r Pt=15 ppb and for Pd=2 ppb.

138

.; -o ,/ \ ~

.l

///1111411••••

■ -••...•ï f.5.

v t I

,. I

1/. h A 1v1 S-, •

Y.~..—T — , ...a.. «.~

Y..—,

/*row •.t

■ - I

-!!ît f .• '• 1 ~ Y/./..r q t

I 1

\ • J ` / %'r.-Y- I 1 ~■--r M~• i:_

~

■ ~ _ w..~.r r,...rr. • ~

♦ I ~ \ ~ • C— _ ~. Y/I.uu.,tw - 1. wa▪ r K.fotyl/■ 1e.

././Y/ M•.C:rV. •'. Y.IM.. Y/... 1/00 M rM■

.•••... .» i .--. tYmre _V .— sou11er cwlrs - .,,.. ... 1! ....,....„, I I I • O - ROC K • ' . ... b.... b./wn . ■ —G fame 4.1 r—. rm—.r—...•/w [r ammor l IIIIIINI .1. — ~ .1••••.1••••=1. , ' tYlr1•~~7~ ~ /Yr— ~•

Figure 59 Contoured rock Cu results-southern half of claim area.

139

O 1,

AGM . 1

~w ■

~JwYIr .w. / ~a � tr1111.. .la IMF/. ~ • / •r ~ ar~ 1 1 Î ~1 1~ Ir l • 1 1 1 II f~

— a rr .

'1;

i—'

—.yes

~= L

• ûj,'•~ r • '~~--

,.... v... .q..,...... ^. Wa1W CWM / w. f.mim. .... .. .NW ../ ~...... -+.-.~ — O ROCK .~— .r i'ir. lwu.n +..F. .a. _..... L ilro a a— Awe~ ...._...r~. ~ .~.~.— ._ .,._ .~ ~ 2 ... ..":" ( m. limmm. Figure 60 Contoured rock Cu results-northern half of claim area. 140

The unit 1 pyroxenite was chip sampled in more detail at several locations within the grid area. Figure 61 shows the Cu/Cu+Ni ratios from these samples. The sample traverses are arranged in what is thought to be their relative strati- graphic position if tops face to the east. There appears to be a weak trend of increasing average Cu/Cu+Ni ratio of each pyroxenite with increasing stratigraphic height. Similar increases have been noted in sulfide assemblages in the Bushveld intru- sion by Liebenberg (1970) and Von Gruenwaldt (1976). This relationship is therefore consistent with other top determinations within this part of the Bell River Complex. 141

Cu/Cu+Ni Rotios Across Unit I Pyroxenites 1.0 I.0 L88N near 59E .9 9

.8 - ~ e I 1 • - .K 114.101 101 ..

1.0 1.0 L124N mar STE • .9 .9

.8 .8 .7 .7

.6 - . _ .6

.5 - v ... .5

.4 - 1 1 I I -ti .4 17/ 57.101 /11 . 441401 1.0 10 L56N now 18E ' z .9 ~.B4. _ .8 U 7 I

^ U.6 .6

.5 .5 .4 1 1 .4 111 55.501 1.0 10 LI561d near 42E • .9 .9

.8 . ' . .7 .7

.6 -1 i r - .6

.5 .5

.4 .4

.3 .3

.2 .2

.1 1 1 t I 401 411 • • t1 • 411

Figure 61 Cu/Cu+Ni for continuous chip. samples across unit 1 pyroxenites. 142

CHAPTER VIII SUMMARY AND CONCLUSIONS

Sequence of Events The Bell River Complex is a large layered intru- sion of Archean age that intruded the Lac Watson and Wabassee volcanics. The sequence underwent regional low grade metamorphism and was folded into a large east-southeast trending anticline whose axis is approximately coaxial with the complex. This folding caused longitudinal faulting and local brecciation in the Bell River Complex and volcanics. Lamprophyre dyke intrusion occurred during and after the folding and faulting. The folded sequence was then intruded by granitic plutons 2.5 - 2.6 b.y. ago. The intrusion of the Olga quartz diorite divided the Bell River Complex into two separate lobes. A pink granite pluton then intruded the eastern end of the complex. Diabase dykingj 2.1 b.y. ago, was the final intru- sive event in this area. The eastern lobe of the Bell River Complex was subjected to amphibolite grade contact metamorphism by the granitic plutonism. This metamorphism resulted in the widespread development of metamorphic plagioclase (albite-andesine) within the gabbros. The original igneous clinopyroxene was replaced by 143

amphibolte + quartz, oriented amphibole grains, or randomly oriented amphibole grains, depending upon the intensity of metamorphism. The present freshness of the metamorphic plagioclase indicates that very little low grade metamorphism occurred after the contact metamorphic event.

Eastern Lobe Structure The structure of the eastern lobe of the Bell River Complex is less clear than in the western lobe because of the granitic intrusions and poor volcanic exposures. The volcanics and sediments south of the eastern lobe appear to be more intensely folded (along east-northeast axes) than in the homocline to the west. Within the eastern lobe, the layered gabbros have north-northeast strikes and moderate to steep southeast dips. This orientation is noticeably different than the east-southeast strike in the western lobe. Top determinations in the gabbros of the eastern lobe of the complex include a crossbedding relationship and cryptic variations in the plagioclase, clinopyroxene, and unit 1 sulfides. All of these indicate that stratigraphic tops are to the southeast in the grid area. Therefore the available data indicate that the eastern lobe of 144

the complex is the eastward plunging nose of the Bell

River anticline.

Relation of Bell River Complex to Volcanics

The Bell River Complex has definitely intruded

the Lac Watson and the lower part of the Wabassee

volcanics. However, the sill like nature of the

subsidiary intrusions and their similarity to massive

volcanic flows indicate that the complex was a

differentiation chamber for some of the later Wabassee volcanics. The Wabassee volcanics and a

subsidiary gabbro intrusion have similar normalized

rare earth patterns which indicates similar source

areas. The rare earth patterns do not rule out the

Bell River Complex as the source magma chamber, but

the data could also reflect residual phases in a

mantle source.

Rock Types and Stratigraphy of the Bell River Complex

The exposed part of Bell River Complex is mainly

composed of medium to coarse grained gabbro with

60-80% plagioclase and 20-40% uralitized clino-

pyroxene. However, a complete range of gabbros from pyroxenite to anorthosite is present along with dunite and peridotite. 145

The western lobe of the complex has been divided into three zones: a well layered, magnetite rich marginal zone; a poorly layered, felsic rich core zone;

and subsidiary intrusions. Aeromagnetic data and

lithological similarities indicate that the southern

marginal zone of the complex is present in both the

eastern and western lobes. The major part of the

eastern lobe appears to correlate with the core zone

in the west.

The stratigraphic interval covered by the grid

area in the eastern Lobe of the complex can

not be defined precisely since a detailed stratigraphy

is not present in the western lobe. However, the

grid area appears to extend from the top of the

core zone through the lower part of marginal zone.

Figure 62 is a schematic stratigraphic column

through the grid area to the southeastern margin of

the complex. The bottom of the marginal zone is

taken at the base of unit 2. The upper part of the

column is speculative because the magnetite bearing

gabbros in the southeastern part of the grid appear

to be faulted against the other complex rocks. The

thickness shown for these upper magnetite bearing

gabbros is taken from the aeromagnetic map and 146 Plagioclase Clinopyroxene Olivine granite 14

12 3 with magnetite

10 highest point on grid

.~,.. .. ~ .~. ..ti _.. ... Ab 30 2 probable fault

8 0 3&4 0 X drr.t:. _,::,pr

ô 6 ~~~.,.-~~._ - - ..~..•. W0 w 49.3 En34.8 F515.9

A b 261

3&4

W0492 En38.4 F512.5

3814 Ab 25.9

145 29.2 Fo Ab36.7 63-64 W048.6 En43.6 F57.7

Ab23.6 4

Ab18,0 lowest point on grid

Figure 62 Schematic stratigraphic column for the marginal zone of the eastern lobe of the Bell n fiver Complex. (see Figure 11 for legend) 147

represents a minimum since the top of the sequence has been intruded by granites. Within the column in Figure 62, the only units that exhibit conspicuous layering are unit 2 at the bottom and unit 3 near the top. Both of these units contain magnetite + ilmenite mineralization. The olvine bearing facies of unit 2 represents the only known olivine in the Bell River Complex. Poorly layered gabbros that range from pyroxenitic gabbro through anorthosite make up the interval between the layered units in Figure 62. A minimum of two major pyroxenite units occurs within these poorly layered gabbros. This number is based upon the northern half of the grid and assumes, as the pyroxene compositions indicate, that unit 1 in the southern part of the grid is a faulted segment of the east-central zone. The pyroxenites contain uneconomic Cu-Ni sulfides and minor magnetite ilmenite mineralization. The sulfides do not carry Pt or Pd values. The cumulus mineral compositions are also included in Figure 62. The plagioclase generally varies from Ab17 at the top of the core zone to 148

Ab 30 in the upper magnetite bearing gabbro. The clinopyroxene varies from En43.6 Fs7.7 in Wo48.6 unit 2 to Wo49.3 En34.8 Fs15.9 in an upper unit 1 pyroxenite.

Comparison of the Bell River Complex with Other Layered Intrusions Several authors have noted similarities in rock type and structure between the Bell River and Dore Lake Complexes (Naldrett et al., 1970; Allard et al., 1972). The Dore Lake Complex is another large layered gabbro intrusion in the Abitibi orogenic belt near Chibougamau, Quebec (Figure 1). The present work on the Bell River Complex also indicates similarities in these two intrusions. Figure 63 includes a stratigraphic column for the Dore Lake Complex. Allard (1970) considers this complex to be the upper portion of a "Bushveld" type layered mafic intrusion. A comparison with the other intrusions in Figure 63 shows the similarities. The Bell River Complex, like the Dore Lake Complex, has an anorthositic lower zone and an 149

upper magnetite bearing zone. A more detailed

CULL IN ~ §CIiiSG4ARD STLLw'ATER BUSHVELD DORE LAKE — — ~.. ..-,, j .m.

,ii I e _` 7 r W ~I UPPER EC.P:ER _ 23 2 2S,Y ZONE 7 ÛNr'Lrt wrsi;Lrt ti ZONc -7 UPPER ~ 7-, BCnCER rJ SOC-G°=N.riF4YRE H O GROUP q UPPER ZONE w ° 4 Z .. H ZONE ~ 2 P MEMBER - 2 W UPPER - y Q 1.1 2 W } L (+ ~ UPP~R û ZONE - û I~~ ..,..2,„...... ,,,,r,_,.....A 2 MEMEER ~... BGF,ER rn I 4 _ 5E5 ES _ y a 1 ,.. ,,,,r. -.~ 2 M',DO'`- ` J ...... r . r ... ~ V ,A~-=: o ZONE SEP E: UPPERGAmr?C S- r O L wER ZONE r o Q MAIN ANvRTHOSIT_ ..J ~ ZONE EuCRITE I ANORTROSITE ZONE ZONE .- • SERIES 2 ZONE o N 10003 ~ r..1 3~ 10000 - - - - .--~. --°:...7"r7.''.-Y. 2 LOWER GASbRG ...,.,.. rr• .. Ô 2 ALLIVALITE O ZONE --., O CRrtICAL Q IN 2 2- SERIES NORITE ZONE ~ V ti W2 5000 ZONE - tv p 5000 -- - - - ~ W ~ O PER.DOTITE R W ULTRANAFIC BaSAL I- 0('' Q SER;ES E ZONE ~ ZONE ~ ~ Ea :.- 'SE ,. I ~ 2 - C -:~Zrjt C ~

Fig.63 Comparison between the Dore Loke Complex and other important layered complexés showing the basis for postulating a Lower Hidden Zone in the Dore Lake Complex (from Woger and Brown, 1967, and Allard, 1970). (Allard et al.; 1972

comparison indicates that the core and marginal zones

in the Bell River Complex are quite similar petro-

graphically to the anorthosite and layered zones

respectively in the Dore Lake Complex.

The anorthosite zone in the Dore Lake Complex is 150

about 10,000 ft. thick and contains poorly layered, often pegmatitic felsic gabbro (50-100% feldspar). One optically determined plagioclase composition of An80 is reported and the normative compositions range at the top of the from An95 at the bottom to An72 zone (Allard, 1976). Adcumulate textures are common. All of these characteristics are very similar to the core zone in the Bell River Complex. The layered zone in the Dore Lake Complex contains three pyroxenitic members with two inter-

vening felsic gabbro members. The pyroxenite members are finely interlayered pyroxenites and gabbros that contain magnetite + ilmenite mineraliza- tion. The felsic gabbro members are poorly layered and magnetite poor. The normative plagioclase compo- sitions in this zone vary from An73 at the bottom to An52 at the top. Several characteristics of the marginal zone in the Bell River Complex are similar to this layered zone. In a general sense, the repetition of pyroxenite with intervening, poorly layered gabbros is quite similar in both cases. Unit 2 in the eastern lobe of the Bell River Complex is nearly identical to the pyroxenitic members of the layered 151

zone. Unit 2a has the same olivine composition and nearly identical texture and original mineralogy as a dunitic facies of the layered zone in the Dore Lake Complex. The plagioclase compositions in the lower half of the marginal zone of the Bell River Complex are similar to the normative plagioclase composi- tions in the lower part of the layered zone. The presence of quartz and apatite bearing gabbros in the marginal zone of the Bell River Complex is also similar to the upper parts of this layered zone. Although the marginal and layered zones in these two intrusions are very similar, there are two main differences. The Dore Lake Complex does not appear to contain thick and homogeneous pyroxenites similar to unit 1 in the Bell River Complex. More importantly, however, the marginal zone appears to be much thicker than the layered zone in the Dore Lake Complex. This is evident from a comparison of the thickness in Figure 62 (ti 14,000 ft.) with that in Figure 63

(ti 3,000 ft.). Other thickness estimates for the marginal zone of the Bell River Complex are similar to the grid area. The northern marginal zone at the Bell River is about 5,000 ft. thick, but five miles to the east it increases to about 15,000 ft. Part of this increase is due to the intercalation of volcanic rocks and possibly tight folding, but on the homoclinal southern limb of the anticline the marginal zone is also about 15,000 ft. thick. The marginal zone of the Bell River Complex could include material similar to the sodagranophyre and upper border groups in the Dore Lake Complex since outcrop control is very poor in the upper marginal zone. However, even if this is true the total thickness of the layered, sodagranophyre and upper border zones is only about 7,000 ft. or one half the thickness of the marginal zone in the Bell River Complex. The similarities between the Bell River and Dore Lake Complexes indicate that the Bell River Complex is another "Bushveld" type intrusion. Therefore a lower ultramafic hidden zone should be suspected and this could indicate a chromite potential for the area. More importantly, however, the exposed thickness of the core zone is such that a Merensky Reef type Pt horizon could be exposed near the center of the Bell River anticline. Further exploration would seem to be warranted in that area. 153 REFERENCES

Allard, G.O., 1970, The Dore Lake Complex, Chibougamau, Quebec- A metamorphosed Bushveld type layered intrusion: Geol. Soc. of South Africa, Special Publ. 1, p. 477-491. 1976, Dore Lake Complex and its importance to Chibougamau geology and metallogeny: Quebec Dept. of Natural Resources, DP-368, 446 p. , Duquette, G., Latulippe, M., and van de Walle, M., 1972, Precambrian geology and mineral deposits of the Noranda-Val d'Or and Natagami-Chibougamau greenstone belts, Quebec: Field Guide to Excursions A41 and C41, XXIV International Geological Congress, Montreal, 100 p. Arnth, J.G., Arndt, N.T., and Naldrett, A.J., 1977, Genesis of Archean komatiites from Nunro Township, Ontario:

Trace-element evidence: Geology, v.5, p. 590-594. Barth, T.F.W., 1962, Theoretical petrology: John Willy and Sons, Inc., New York, 416 p.

Bartholome, P., 1962, Iron-magnesium ratio in associated pyroxenes and olivines. In Engel, A.E.J., et al. (Ed.) Petrologic Studies: a volume in honor of A. T. Budding- ton , Geol. Soc. of America, p. 1-20. Beland, R., 1953, Allard River area: Quebec Dept. Mines, Geol. Rept. 57, 30 p. Buddington, A.F., and Lingsley, D.H., 1964, Iron-titanium oxide minerals and synthetic equivalents: J. of Petrology,

V. 5, P. 310-357. 154

Cameron, E.I., and Desborough, G.A., 1969, Occurrence and characteristics of chromite deposits- eastern Bushveld Complex: Econ. Geol. Mon. 4, p. 23-40. Campbell, I.H., 1977, A study of macro-rhythic layering and cumulate processes in the Jimberlana intrusion, Western Austrailia. Part I: The upper layered series; J. Petrol- ogy, v. 18, p. 183-215. Claveau, J., 1951, Iserhoff River area: Quebec Dept. Nines, Geol. Rept. 49, 47 p. Condie, K.C., and Baragar, W.E.A., 1974, Rare-earth element distributions in volcanic rocks f^nm Archean green- stone belts: Contrib. Mineral. Petrol..,v. 45, p. 237- 246. Deer, W.A., Howie, A.A., and Zuseman, J.. 12, Rock form- irg minerals: Volume I •-ortho ar. r i ng • i.L1ca tes ; Long- mans, Green and Co. Ltd., London,' ..r... 21-23. • 1963, Rock forming minerals: Volume II- chain silicates; Longmans, Green and Co. Ltd., London. Freeman, B.C., 1938, Replacement shells around batholiths in the Waswanipi District, Quebec: J. Geol., v. 46, p. 681-690.. 1939, The Bell River Complex, northwestern Quebec: J. Geol., v. 47, p. 27-46. and Black, J.M.,, 1944, The Opaoka River area Abitibi territory: Quebec Dept. aines, Geol. Rept. 16, 20 p. Frey, F.A., Haskin, M.A., Poentz, J.A., and Haskin, L.A., 1968, Rare earth abundances in some basic rocks: J. Geophys. Research, y. 73, p. 6085-6098. 155

Goodwin, A.M. and Hiller, A.H., 1970, The Abitibi orogenic belt in Symposium on basins and geosynclines of the Canadian shield: Geol. Survey of Canada, Paper 70-40,

p. 1-30. Gorton, M.P., Rucklidge, J.C., and Rylaarsdam, T.C., 1979, Precise whole rock analyses by XRF, abstract in:The continental crust and its mineral deposits, Negociated Developement Grant; University of Toronto Geology Department. Hall, A.L.,1932, Bushveld igneous complex of the central Transvaal: Memoir No. 28,,;Geol. Survey of South Africa. Harris, D.C., and Nickel, E.H., 1972, Pentlandite compositions and associations in some mineral deposits: Can.. Min., v. 11, p. 861-878. Haskin, L.A., Wildeman, T.A., and Haskin, M.A., 196E, An accurate procedure for determination of the rare- earth elements by neutron activation: J. Radionnal. Chem., v.1,

P. 337-348. Hawley, J.E., 1965, Upside-down zoning at Frood, Sudbury, Ontario: Econ. Geol., v. 60, p. 529-575. Heinrich, E.'.~J., 1956, Microscopic petrology: McGraw-Hil' Book Co., Inc., New York, p. 73-92. 1965, Microscopic identification of minerals: McGraw-Hill Book Co., New York. Herz, N., 1951, Petrology of the Baltimore Gal, bro , Mary- land: Bulletin of the Geol. Society of America, v. 62, p. 979-1016. 156

Hess, H.H., 1960, Stillwater igneous complex, Montana: Geol. Society of America Memoir 80, 220 p. Hill, R., and Roeder, P., 1974, The crystallization of sninel from basaltic liguid as a function of oxygen fugacity: J. Geol., v. 82, p. 709-729. Hyndman, D.W., 1972, Petrology of igneous and metamorphic rocks: McGraw-Hill, Inc., New York. Irvine, T.N., 1970, Crystallization sequences in the Muskox intrusion and other layered intrusions-I. Olivine- pyroxene-plagioclase relations: Geol. Soc. of South Africa, Special Publ. 1, p. 441-476. 1975, Crystallization sequences in the Muskox intrusion and other layered intrusions-II. Orign of chromitite layers and similar deposits of other mag- matic ores: Geochim. et Cosmochim. Acta., v.39, P. 991-1020. and Smith, C.H., 1969, Primary oxide minerals in the layered series of the Muskox intrusion: Econ. Geol. Mon. 4, p. 76-94. Jackson, E.D., 1970, The cyclic unit in layered intrusions- A comparison of repetitive stratigraphy in the ultrama- fic parts of the Stillwater, Aiuskox, Great Dyke, and Bushveld complexes: Geol. Soc. of South Africa, Special Publ. 1, p. 391-424. and Strelow, F.W.E., 1975, The rare-earth content of six international geological reference materials of South African orign: Chem. Geol., v. 15, p. 303-307. 157

Jahn, B., Shih, C., and Furthy, V. Rama, 1974, Trace element geochemistry of Archean volcanic rocks: Geochim, et Cosmochim. Acta., v. 38, p. 611-627. Jahns, R.H., 1967, Serpentinites of the Roxbury district, Vermont, in:Ultramafic and related rocks, ed. P.J. Wyllie; John Wylie and Sons Ltd., New York, p. 1 37-155.

Jenny, C.P., 1961, Geology and ore deposits of the !atagami area, Quebec: Econ. Geol., v. 56, p. 740-758. Jensen, L.S., 1976, A new cation plot for classifying sub- alkalic volcanic rocks: Ontario Div. Fines, MP 66, 22 p. Johannsen, A., 1931, A descriptive petrology of the igneous rocks, Volume I; The University of Chicago Press, Chicago, Ill., p. 11. 1937, A descriptive petrology of the igneous rocks, Volume III: The University of Chicago Press, Chicago, Ill., p. 195-245. Kruger, P., 1971, Priniciples of activation analysis: John Wiley and Sons Inc., New York, p. 369-374. Kuo, H.Y., and Crocket, J.H., 1979, Rare earth elements in the Sudbury Nickel Irruptive: Comparison with layered

gabbros and implications for Nickel Irruptive petro- genesis; Econ. Geol., v. 74, p. 590-605. Larsen, E.S., Jr., 1948, Batholith and associated rocks of Corona, Elsinore, and San Luis Rey quadrangles Southern California: The Geol. Soc. of America, memoir 29, p. 41-53. Levinson, A.A., 1980, Introduction to exnlnration geochem- istry: Applied Publishing Lt.l. , Wilrrette, Ill. Liebenberg, L., 1970, The sulphides in the layered sequence of the Bushveld igneous complex: Geol. Soc. South Africa Spec. Pub. 1, p. 108-207. Longley, W.',J., 1943, Kitchigama area: Quebec Bureau Mines,

Geol. Report 12, 33 p. Lowdon, J.A., Stockwell, C.H., Tipper, H.., and Wanless, r.H., 1963, Age determinations and geological studies: Geol. Survey Canada, Paper 62-17, p. 98-99. Lyons, J.B., 1955, Geology of the Hanover quadrangle, New

Hampshire-Vermont: Geol. Soc. of America Bull., v. 6.6, p. 105-146. MacLean, W.H., and Shimazaki, H., 1976, The partition of Co, Ni, Cu, and Zn between sulfide and silicate liquids: Econ. Geol., v. 71, p. 1049-1057. Mainwaring, P.R., and Naldrett, A.J., 1977, Country rock assimilation and genesis of Cu-Ni sulfides in the iJater Hen intrusion, Duluth Complet, Minnesota: Econ. Geol., v. 72, p. 1269-1284. McBirney, A.R., Noyes, R.rr.„ 1979, Crystallization and layering of the Skaergaard intrusion: J. Petrol., v. 20, p. 487-554. ++ Mendaris, L.G.Jr., 1969, Partitioning of Fe and _,g++ between coexisting sythetic olivine and orthopyroxene: American Journal of Science, v. 276, p. 945-968. 159 hiyashiro, A., 1968, Metamorphism of mafic rocks, in: Basalts,: The Foldevaart treatise on rocks of basaltic composition; eds. H.H. He# s and A. Foldevaart, v. 2, Irtterscience, a division of Wiley, New York, p. 799-834. 1973, Metamorphism and metamorphic belts: George Allen and Unwin Ltd., London, 492 p. Naldrett, A.J., Bray, J.G., Gasparrini, E.L., Fodolsky, T., and Rucklidge, J.C., 1970, Cryptic variations and the petrology of the Sudbury Nickel Irruptive: Econ. Geol., v.65, p. 122-155. and Gasparrini, E.L., 1970, Archean nickel sùlphide deposits in Canada: Their classification, geological setting and genesis with some suggestions as to exploration; Geol. Soc. Australia, Spec. Publ. 3, p. 201-226. and Cabri, L.J., 1976, Ultramafic and related mafic rocks: Their classification and genesis with special reference to the concetration of nickel sul- fides and platinum group elements; Econ. Geol., v. 71, p. 1131-1158. Nickolds, S., 1941, The Garabel Hill-Glen Fyne igneous complex: Geol. Soc. London Quart, Journal, v. 96, p. 451-511. Norrish, K., and Hutton, J.T., 1969, An accurate X-ray spectrographic method for the analysis of a wide range of geological samples: Geochim. et Cosmochim. Acta, v. 33, p. 431-453. 160

Paster, F., Schauwecker, D.S., and Haskin, L.A., 1974, The behavier of some trace elements during solidification of the Skaergaard layered series: Geochim. et Cosmochim.

Acta, v. 38, p. 1549-1577. Philpotts, J.A., and Schnetzler, C.C., 1968, Genesis of con- tinental diabases and oceanic tholeiites considered in light of rare-earth and barium abundances and par- tition coefficients, in:Orign and. distribution of the elements, ed., Ahrers, L.H.; Oxford, Pergamon Press, P. 939-947. Poldervaart, A.,'and Hess, H.H., 1951, Pyroxenes in the crystallization of basaltic magma: J. Petrol., v. 53, p. 472-4A9. and Taubeneck, W.H., 1960, Layered intrusions, in:Report of the Twenty-First Session Norden of the International Geological Congress, Section 13, p. 23q-246.

Rajamani, V., and Naldrett, A.J., 1978, Partitioning of Fe, Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits: Econ. Geol., v. 73, p. 82-93. Ramberg, H., 1944, Petrological significance of some subso-- idus phase transitions in mixed crystals: Norsk. Geol.

Tidsskr., v. 24, p. 42-73. Roeder, P.L., Campbell, I.H., and Jamieson, H.^.., 1979, re-evaluation of the olivine-spinel geothermometer: Contrib. Mineral. Petrol., v. 68, p. 325-334. 161

Schnetzler, C.C. and Philpotts, J.A., 1970, Partition coef- ficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts-II: Geo- chim. et Cosmochim. Acta, v. 34, p. 331-340. Sharpe, J.I., 1965, Field relations of Matagami sulfide masses bearing on their disposition in time and space: Trans. Can. Inst. Min„ Met., v. 68, P. 265-278. 1968, Geology and sulfide deposits of the N.atag- ami area: Quebec Dept.. Natural Resources, Geol. Report 137. Simkin, T. and Smith, J.V., 1970, Minor element distribu- tion in olivine: J. Geol., v. 78, p. 304-325. Smith, D.G.W., 1975, An approach to fully quantitative enérgy dispersive electron probe microanalysis: Proc. Microbeam Anal. Soc. Conf., Los Vegas, Paper #21. Spry, A., 1969, Metamorphic textures: Pergamon Press,

Oxford, p. 90-95.. Stratham, P.E., 1976, PESTRIPS- a computer programme for peak stripping and reducing energy dispersive X-ray spectra: Dept. of Mineralogy and Petrology, Cambridge University, U.K. Sun, S.S., and Nesbitt, A.W., 1978, Petrogenesis of Archean ultrabasic and basic volcanics: Evidence from rare earth elements; Contrib. Mineral. Petrol., v. 65, p. 301-325. Sutton, J., and Watson, J., 1951, Varying trends in the metamorphism of dolerites: Geol. Nag., v. 88, p. 25-35. Taylor, S.R., and Gorton, t.P., 1977, Geochemical applica- tions of spark source mass spectrography-III Element sensitivity, precision, and accuracy: Geochim. et Cosmochim. Acta, v.41, p. 1375-1380. Thayer, T.P., 1960, Some critical differences between alpine type and stratiform peridotite-gabbro complexes, in: Report of the Twenty-First Session Norden of the In- ternational Geological Congress, Section 13, p. 247-259. Ulmer, G.C., 1969, Experimental investigations of chromite spinels: Econ. Geol. Mon. 4, p. 114-130. Vermaak, C.F., 1976, The ?erensky Reef- Thoughts on its environment and genesis: Econ. Geol., v. 71, P. 1270- 1298. Von- Gruenwaldt, G., 1973, The main and upper zones of the Bushveld Complex in the Roossenekal area, Eastern Transvaal: Transactions of the Geol. Soc. of South Africa, v. 76, p. 207-227. 1976, Sulfides in the upper zone of the eastern Bushveld Complex:. Econ. Geol., v. 71, p. 1324-1336. Wager, L.A., 1968, Layering in mafic and ultramafic plutons in Basalts, the Poldervaart treatise on rocks of basalt- ic composition; eds. H.H. Hess and A. Poldevaart, v.2, Interscience, a division of Wiley, New York, p. 573-622. and Brown, G.M., 1968, Layered igneous rocks: Oliver and Boyd, London, 588 p. Vincent, E.A., and Smales, A.A., 1957, Sulphides in the Skaergaard intrusion, East Greenland: Econ, Geol., v. 52, p. 855-895• 163

'„anless, R.K., Stevens, F..D., Lachance, G.H., and Delabio, R.N., 1970, Age determinations and geological studies: Geol. Surv. Can., Paper 69-2A, p. 67. 1974, Age determinations and geological studies: Geol. Surv. Can., Paper 74-2, p. 45. 1978, Age determinations and geological studies: Geol. Surv. Can., Paper 77-2, p. 46-47. gilkinson, J.F.G., 1Q57, The clinopyroxenes of a differen- tiated teschenite sill near Gunnedah, New South Wales:

Geol. Mag., v. 94, p. 123. Willemese, J., 1969, The vanadiferous rnagnetitic iron ore of the Bushveld ingeous complex: Econ. Geol. Non. 4, p. 187-208. dinkier, H.G.F., 1976, Petrogenesis of meteriorphic rocks: Springer-Verlag, New York, p. 165-199. Wiseman, J.D.H., 1934, Central and South-west Highland epidiorites: Quarterly J..,Geol. Soc. London, v. 90,

p. 354-417. Yund, R.A., and Hall, H.T., 1969, Hexagonal and monoclinic nyrrhotites: Econ. Geol., v. 64, p. 420-423. 164

APPENDIX I

This Appendix contains the modal compositions of the rock samples from the Bell River Complex. It is divided into six sections as follows: East Lobe Gabbros IA East Lobe Pyroxenites IB East Lobe Dunites and Peridotites IC East Lobe Lamprophyre and Diabase ID Dykes East Lobe Granitic Rocks IE West Lobe Samples IF The following abbreviations are used throughout this Appendix: ACT = actinolite ALMD = almandine garnet BIOT = biotite CHL = chlorite CPX = clinopyroxene CPY = chalcopyrite CUM = cummingtonite EPID = epidote HBLl = amphibole + quartz HBL2 = oriented amphibole grains HBL3 = oriented amphibole fibers in bundles 165

with euhedral amphiboles HBL4 = random amphibole HBL5 = large euhedral amphibole HEM = hematite IDD = iddingsite IL = ilmenite

MAG = magnetite MCL = microcline

MPLAG = metamorphic plagioclase

OL = olivine OPAQ = opaques OPX = orthopyroxene PENT = pentlandite

PHLOG = phlogopite

PLAG = igneous plagioclase PO = pyrrhotite PY = pyrite QTZ = quartz SERF = serpentine

THOM = thomsonite TREM = tremolite URAL = uralite

In addition to the rock abbreviations in Table 2, 166

the following abbreviations are used throughout this

Appendix: DU = dunite PD = peridotite DIOR = diorite GR = granite

Figure 64 shows the locations of compass and pace traverses in the eastern lobe of the Bell River Complex. Samples collected on these traverseshave locations such as 706RAB170. This means the sample was collected on traverse 706R at A+1700 ft. on leg AB. Figure 65 shows the locations for the samples collected in the western

lobe of the complex.

167

r' —' ~ r ~ . ~~ ' . r''' / t 722 .1 R. ,% S17wC 30 722 722 732 j • IF / ...... ... RI RC _.,Li -_.. "et7 / • w1 2 o 1 ~ 722 RA Sal i p / 71S ri WC

S0, St. WS ~i 1r%7.

r- t .t3 wc /(a7 (3:~2 717 t1 • RD .J, 5 f > 1 , ( .23 : 71! WO .I,Wc 7D7Î WI) pa SRO / k . RC ~' 1j3c • 7o7RC ` r ~ 3b,c 4

707R• D 713RE I 7o3RC rr ~ l ; .3C~, ~/ /ari , 79 • 1 ' . 705118. 1• " t / 4. iô ;~~ t . \ 701IwC 3b, ~ 4 ~701111111 I d •r`~'M ; 7glse _ r 3c

3c los •. 1 %'~-- ~ ~ ~ 70511C R• ..

.•••:4:•••• .I 4 7s l.-~'1

o.

ROCK UNITS GENERAL GEOLOGY LEGEND L.. Allard leas.,..1011/.d..11lsj of the .4111 girlie and dip .a,lp..ge loitering totally lat.d EASTERN LOBE X50 •trise el wort teal ig..ca.l.yerieg pal Ilk gr.p..cb aad of th. ...roe Strike and dip on spite... I.yerl.p ..e.rt.i. BELL RIVER COMPLEX .Ip Strike .t iens... 'epode, certain, .rertclle wNk f the sM►N4) 2...11211 River C... $M kat dip .ne.rtsi. 3... Acid in tr.olv.. (3.)..arlt Merits -Ariz Strike sad dip of $..le.aeily (Welters' praised kernble.de '410 11,155 et vertical •..lc..clly o.s O 0.. 1 1.1 *penile 135) Vanua -- •.eleple eent.el Ioce1.4 .ppr..i.dely 4...Send, grev.l, clay Milo' gaga. S.olopw notait I.e.bd •ory .pproal.H•ty TOf C..pbe end Nce b...r.o li... RA

Figure 64. Geologic map of the eastern lobe of the Bell River Complex showing the pace and compass traverses.

168

Maa1 o~i ( ~..~ f~~/ .V ,••• 42.40~ / . ~~ ~o ~ j//_,/ 21-1 ~ A• -. 23-1~~ ~ ' •`}r:: ~ ~~ i ~~////~i~ '%/~~~i~!/.6 .Y►~ ; ••a..., i /%~ , /~

1 E. -4.1J ' ' . ~_2---- D .#- --...... G!..;: : r~~ :•'' ~ . _ .r. • s~ ;v- "-se. v4~• ti • r_ ~= . -~r~~~:--~+~ „ ...~` 26-1 ~~7~GAlDM l~[t; . . . • • . RADIOS( "A" 16-1- 1 .-:- 467,0„...g. i > r__ i ~Zy _~~.~G .."771e;• •".""L ~ . . • lELL,~- CNAMNEI `-~~R - 'ti

MA~GAM~ \13-1 —CMENAL • • • • 3-I t=t52,0 13-2 ~RAPIDS 16-2 • • •IADIDII i`rio.._ • •1 . . . • 16-I t

a. I

• •

' t .. r ~.

ŸATIASAMI IAiÉ; • • • .ti ~OICNAIiCLr. /+ • `A • n .)~., +~.. a... •~ ■ • E mily SEX a a.

~

.4...a. •..

MAC•.M..• WI•.....• • at. wscaw•••

ar s•.w • . a • I6-{ ■ ■ 5 MIC•1•.•1.•r 0•/.11.11 •MC•.M.a. • • • • x r h . `•_.C• •~.I 4.rr •.M . • x w~« • • ..r.. • •. •.•.•. a. w

Ir. r.....r»....,».....r.» V777, ..1144...... • ; ...». ..r.•»...... a w R ~....". . t a a w 16-1 a ..~. r.lr.r ••.•» •»•r tt x. 16-2 Il-3 COLD SPRING .I . a tt . a 0— RAPIDS w . ••.•r. .1••••• »••••.•• •.....• ~ Ir.•1.. r •i....+r• .»r ► L a . a a61. . 11-0 t a xa .. w. a ...... c~r... r..• r••..•. ...»...•»r..~.... a ... a la (r•r ~ .••. •. . ».. •w P»..• / .r•r. m ..».• .»... .•F I. w . •r... •..~ r.~. • • • •.m rr •••• .; r a a a tt MIGNON If • '1711, 111. RAPIDS f r • _ a a x a ■ tt• R ` . a _ - 1•.~.•.w.•1~w. ~`21 w. a a x a l Y 'i Y . . 19-I R n. ow. r. f Noel r»• , L1 .r.km•. 1.1 •.»' t . rr.ww.. f . r It-I M . . .' 'i_ ▪ a. wr ~ '---i!E a .

Figure 65. Location map for samples from the western lobe of the Bell River Complex. APPENDIX IA East Lobe Gabbros

Sample Rock No. of pointa Number Location Type PLAC HBL1 H131.2 HBO HBL4 HBLS M PLAG EPID OPAQ OTHER 1f pt. count

T-1 L28N-44+43E and 35'N pyxC 44 48 5 3 T-2 L28N-42+97E fG 68 27 2 1 2 CHL T-3 L288-41E and 52'N aG 18 7 8 5 2 THOM T-4 L28N-39 + 35E and 17'N pyxC 30 69 1 Tr Tr SPHN T-5 L288-36 + 60E C 57 35 3 Tr 5 CHL T-6 L2BN-35 + 29E fG 69 25 5 Tr 1 CHL T-7 12811-33 + 23E fC 75 23 Tr 1 1 CHL Tr THOM T-B 1288-31E aG 76 20 4 Tr Tr SPHN T-9 L28N-29 + 55E and 17'N pyxG 7 85 3 Tr Tr 5 CPR T.-10 1.28N-27E fG 74 15 5 Tr 5 Ti 1 SPHN T-11 128N-25E and 23'H G 57 5 35 2 1 Tr SPHN T-12 L28N-23 + 23E G 60 3 32 3 Tr 2 T-13 128N-20 + 77E and 38'N bAn 88 7 3 2 Tr T-14 L28N-18 + 59E and 14'N aG 83 11 4 1 1 Tr THOM T-15 1.288-17 + IlE and 23'S C 48 40 10 2 BLOT N 01 C 46 15 35 Tr 4 THOM T-17 L28N-15 + 29E and 17'N W T-18 1285-13 + 14E and 14'S bAn 40 20 20 20 Tr Tr BIOT T-19 128N-10 + 52E and 58'S IC 68 25 2 Tr 5 CHL T-20 L28N-9E An 97 3 Tr T-21 128N-6E and 32'S IC 60 20 15 5 Tr Tr QTZ Tr SPHN T-22 1288-3 + 74E bAn 92 4 1 2 Tr 1 CHL T-23 L28N-1 + 77E and 29'N An 90 10 Tr Tr T-24 L28N-0E aG 78 20 2 T-25 128N-3 + 41W and 95'S pyxC 32 20 40 1 7 Tr Tr CHL T-26 128N-8 + 04W and 35'S fC 79 20 Tr Tr 1 THOM 1894 T-27 L2044-76 + 05 E fC 57.2 14.9 9.3 18.1 0.5 SPHN T-28 12048-74 + 20E ~ fG 55 14 10 20 1 SPHN T-24 L2045-72 E aG 80 10 10 Tr Tr THOM, Tr CALCITE T-30 12041-70 + i5'E pyxC 12.7 19.5 62.3 0.3 2.5 B10T 1851 T-31 12048-68E and 35'N G 35 40 10 15 Tr T-32 12045-66 + 10 E pyxC 37.6 10 39.3 0.2 10.9 CHL, 2.0 QTZ 1961 T-33 12045-63 + 40 E and 25'S G 35 5 44 15 1 Ti CALCITE T-34 L2044-61 + 65 E and 20'N fG 70.5 5 20 2.8 1.6 0.1 1517 T-35 12044-60 + 15 E C 49 5 5 40 1 Tr CHL T-36 L2044-56 + 12 E and 15'N bAn 87 10 3 1 QTZ, Tr CHL T-37 L2044-49 + 60 E fG 54 5 20 20 T-38 L204N-47 + 60 E aG 81 1 5 10 3 Tr Sample Rock No. of pointa Number Location Type PLAG HBL1 HBL2 HBL3 HB14 HBLS M PLAG EPID OPAQ OTHER if pt. count

1-39 L204N-46 + 23 E and 17'N fG 69 20 10 1 BIOT T-40 L204N-44 + 10 E and 20'N fG 67 15 15 3 Tr T-41 L204N-41 + 85 and 25'S aG 74 20.5 5.5 Tr THOM 1442 T-42 L204N-40 + 20 E aG 70 19 7 3 1 T-43 L204N-11 + 90 E and 25'N pyxG 32.3 46.4 3.3 18.0 CHL 2109 T-44 L204N-13 + 90 E An 90.9 5.2 0.8 3.0 CHL 1810 T-45 L204N-16E and 20'S An 87 8 3 T-46 L204N-18 + 10 E aG 78.4 17.2 0.8 2.4 1.1 THON, 0.2 CHL 1551 T-47 L204N-24 + 10 E and 49'N fG 65 13 13 7 2 T-48 L204N-26E and 29'N pyxG 25.9 56.2 6.3 7.7 2.9 CHL, 1.0 BIOT 1850 T-49 L2048-28 + 17 E fG 50 25 20 Tr 5 CHL, Tr BIOT, Tr THOM T-50 L204N-30E aG 75 10 10 1 2 2 CHL, Tr B10T T-51 L204N-32E and 61'N bAn 83 2 10 5 CHL, Tr CALCITE 52 12048-34 + 30£ fG 66.3 24.9 1.6 7.2 0.1 SPHN 1600 T-53 L204N-37E and 40'N G 58 30 2 10 CHI, Tr 0TZ T-54 L152N-26 + 30E and 20'N G 40 50 10 (medium grained part of sample) T-64 L172N-21 + 70E and 30'N pyxG 40 50 10 T-83 LON-27E fG 70 20 3 2 5 THOM T-85 821RGH424 G 15 49 25 1 QTZ, 10 CPX T-86 L188N-19 + 70 E pyxG 10 BO 10 26-1 L200N-0 + 30E and 30'N fG 69 25 Tr 5 CHL 26-2 L196N-19E and 23'S An 94 1 1 3 1 CHL 26-4 L196N-24 + 70 E pyxG 20 76 1 2IL, 1 MAC, Tr PY 26-5 1196N-20 + 85 pyxG 15 15 63 31L, 4MAC 27-9 L1568-38 + 30E and 25'N pyxG 10 90 Tr CHL, Tr P0, Tr PY 4279 L04N-05 + 80w G 50 30 2HAC,Tr PY, 18 CHL 4294 TL47-67N bAn 98 Tr 1 PY, 1 P0, Tr CPY 4301 L96N-22 + 52E and 29'N fG 78 5 15 2 CHL, Tr CPY, Tr PT 4329 1184N-25 + 70 E An 98 1 P0, 1 CPY, Tr PY 4330 L188N-25 + 65 E fC 78 20 1 P0, 1 PY, Tr CPY 4340 L2008-46 + 85 E aG 63 5 25 5 CHL, 1 P0, 1 PY, Tr CPY 4341 821RCH396 1G 68 25 5 1 CHL, 1 PY, Tr CPT, Tr PO 4343 L204N-30 + 15 E aG 89 10 CHL, Tr (CPY, PY, P0, PENT) 4352 L08N-23 + 50 E and 20'N aG 88 10 2 PY, Ir (CPT, MILLERITE) APPENDIX IB

Pyroxenitea Samp le Number Location CPX URAL HAG IL PO CPT PENT PY OTHER 4286 1408-17E and 81'S 19 80 1 Tr 4288 L56N-17 + 46 E 18 80 Tr 2 Tr 4321 11168-57 + 10E and 20'S 20 75 4 1 4322 1124N-58 + 15 E 12 86 Tr 2 Tr Tr , 4328 L184N-48 + 85E and 15'S 49 50 1* Tr Tr 4331 L192N-75 + 42E and 271'S 90 5 5* Tr 155 L24N-31 + 46 E 98 2 Tr Tr (CHL) Sphene T56 L1B4N-27 + 50 E ACT OPAQ 18.4 (CHL) 1843 32.1 49.5 158 L128N-57 + 80 E 61 20 OPAQ 15 (OPE) 4 160 (TS) L56N-18 + 38 E 20 45 OPAQ 15 (AMID) 10 T63 (TS) L124N-25 + 90 c_ and 25'S 49 OPAQ 35 (PILOC), 15 (CIL) 1 27-1 L160N-42 + 60E and 20'S 10 86 1 2 1 Tr 27-2 1160N-42 + 85 E 80 5 5 9 1 Tr 27-3 L160N-43 + 45 E 78 20 Tr Tr 2 Tr Tr 27-4 L160N-44 + 10 E 47 50 Tr Tr Tr 3 27-5 L160N-44 + 60 E 20 76 4 Tr 27-6 116014-45 E 27 70 2 1 Tr 27-7 L160N-45 + 55 E 26 70 3 Tr 1 Tr Tr 27-8 116014-46 E 13 85 1 1* Tr 27-10 L156N-39 + 20 E and 20'S 98 2 Tr 27-11 11568-39 + 70E and 25'S 50 50 Tr HEM 27-12 11568-40 + 75E and 20'S 100 Tr 27-13 L156N-41 + 30 E 40 60 Tr Tr 27-14 L156N-41 + 80E and 25'N 39 60 Tr Tr Tr Tr OTHER 27-15 1156N-42 + 40 E 48 50 Tr Tr 2 Tr Tr 27-16 1156N-43 E 60 40 Tr Tr Tr 27-17 L1568-43 + 50 E and 15'N 59 40 Tr 1* 27-18 L156N-44 + 20 E and 15'S 48 60 2 Tr 25-8 225'u of CP81 80 15 2 2 CHL 25-14 230'S of CP81 52 35 10 3 CHL 26-3 119614-23 E 67 15 3 15 CHL

All samples are polished thin sections unless noted TS = Thin section * e altered to marcasite APPENDIX IC

Dunites end Peridotite■ pts. if Sample Rock Pt. count Number Location Type OL TALC TREK CUL SERP HAG IL CPX OTHER

25-1 25'W of CP81 HAC-IL-DU Tr 60 3 12 21 4 Tr (HEN) 25-2 50'W of CP81 HAG-IL-DU 87 10 3 25-3 90'W of CP81 MAG-IL-DU 80 Tr Tr 5 12 3 25-4 125'W of CP81 HAG-IL-DU 55 2 5 10 15 3 10 1 (HEM) 25-5 150'W of CP81 MAC-IL-PD 50 15 5 30 (URAL) 25-6 175'W of CP81 HAG-IL-PD 45 5 3 10 2 35 25-7 200'W of CP81 MAC-IL-DU 68 2 10 18 2 Tr (IDD) 25-9 275'W of CP81 HAG-IL-DU 88 10 2 25-10 349'W of CP81 MAC-IL-DU 12 75 10 3 (HEM) 25-11 50'S of CP81 HAG-IL-DU 82 10 7 1 25-12 130'S of CP81 HAC-IL-DU 60 35 5 25-13 180'S of CP81 HAG-IL-DU 83 15 2 T57 TS 250'W of CP81 HAG-IL-DU 20 3 57. 8 2 10 (IDD) T-65 TS TL47-154 + 30'N MAC-IL-DU 7.5 45.3 31.7 15.4 1934

CP81 is about 290'N of L208N-28 + 85'E

All samples are polished thin sections unless noted.

TS - Thin section APPENDIX ID

La.prophyre and Diabase Dykes

Sample Number Location HIM FLAC QTZ BLOT OPAQ OTHER I pts. if point count

T-16 (TS)(PS) L2RN-15 + 86E and 23'N 61.4 20.0 9.2 1.5 5.4 2.2 APT 1616 T-54 (TS)(PS) L152N-26 + 30E and 20'S 76.7 20.2 .5 2.6 1697 T74 (TS) LSON-11 + 7041 16.9 19.4 53.9 8.3 0.6 1708 T77 (TS) L64-21 + 70E and 20'S 18.9 47.3 29.2 3.9 0.5 0.3 EPID 1543 T78 (TS) L40N-7 + 70E 37.5 38.5 11.3 12.8 1638 T79 (TS)(PS) L72N-43E and 20'S 57.3 38.7 3.4* 0.6 2320 T80 (TS)(PS) L188N-31 + 40 E 37.0 49.9 7.0 3.9 0.8 2856 T81 (TS) L36N-15 W 55.4 35.3 3.3 5.5* 0.6 1595 T82 (TS) TL47-63 N 31.3 17.0 32.4 2.5 16.7 ALi) 1810 4289 (PS) L56N-33 + 68E and 20'S 20 5 3 (IL) 5 AIM, 62 CUM, 5 CHL

Dtabsse Dykes

T-61 (TS) 820RRC-512 25.8 56.0 3.0 6.6 8.7 SEXY 1592 T-62 (TS) L1B8N-28 + 40 E • sse as T-6I T-59 (TS)(PS) BL00-187N 78 5 10 CPX, 30 L, 3 APT, 1 RIOT

*altered to CHL TS Thin section PS - Polished thin 'section APPENDIX IE Granitic Rocks

Sample Grain Number Location Rock Type Size PLAG MCL QTZ RBL EPID BIOT OTHER I pts. if point count

T-66 705RBC156 HBL SYN cg 15 72 7 2 2 APT, 15 SPHN T-67 705RBC139 Gr fg 14.2 41.3 43.7 0.8 1621 T-68 705RAB558 Gr mg 34 35 30 1 PHL000PITE T-69 717RAB04 BIOT Gr mg 33 20 40 1 5 1 OPAQ T-70 718RA8106 BIOT-HBLQTZDIOR mg 50 36 3 1 10 Tr OPAQ T-71 BL00-17 + 40N BIOT QTZDIOR mg 53 40 5 2 MUSCOVITE T-72 L08N-4 + 50W F 25'N Cr fg-mg 15 46 35 3 1 MUSCOVITE N T-73 L88N-68 + 40E RIOT-HBLQTZDIOR fg 41.7 42.0 6.2 1.9 7.6 0.6 SPHN 1681 J T-75 717RAB 600 & 100'S BIOT-HBLQTZDIOR fg 38.1 26.9 12.9 4.5 16.6 0.8 SPHN 1655 T-76 L16N-9 + 89W BIOT-HBLQTZDIOR fg 29.8 59.1 1.2 0.2 9.3 0.5 OPAQ 1700 APPENDIC IF W. Lobs Samples

Sample Rock grain Number Location Type size PLAC CPX HBL CHL EPID QTZ OPAQ OTHER i pts. if point count 13-1 W. bank Chanel Rapids An mg-cg 89 1 3 7 Tr Tr APT 13-2 W. bank Chanel Rapids pyxG fg-mg 37.2 10.1 25.3 7.9 4.5 14.9 1573 15-1 1,7000'W-NW Chanel Rapids pyxG mg 30 30 6 2 25 7 OM 16-1 E. bank . Chanel Rapids norite mg 25 3 1 71 OPE 16-2 E. bank . Chenel Rapids An mg 95 Tr 5 Tr Tr CALCITE 16-3 700'M Bell Channel Deposit pyxG fg 40.6 47.4 2.7 3.3 1.0 4.9 1792 18-1 W. bank Cold Spring Rapids pyxG mg 1 70 14 5 10 OPE 18-2 W. bank Cold Spring Rapids cpc mg 43 7 50 OPE 18-3 E. side island Cold Spring Rapids pyxG fg 16.0 43.8 20.1 13.2 3.3 .6 1.8 CALCITE, 1.1 TALC 1624 18-4 4500'S.E. Bancroft Island C peg 50 50 Tr Tr SPUN 18-5 9000'S.E. Bancroft Island C mg 59 40 Tr 1 Tr CALCITE 19-1 W. side large island Mignon Rapids C cg 50 50 Tr 19-2 4000'S.W. of 19-1 QtzG cg 78 1 20 1 slide from more felsic area 19-3 E. bank Cold Spring Rapids G mg 48 48 1 3 Tr CALCITE

28-1 1.1 mi. E. Bell R. on route 109 basalt <.1 mm massive black colored flow in a series of interbedded cherts 23-1 S.E. shore Lac Matagami basalt <.1 mm dark greenish-gray colored incipient pillow flow with til5Z 1 mm plagioclase phenocrysts 23-2 S.E. shore Lac Matagami andesite <.1 am gray colored incipient pillow flow mapped by Sharpe (1968) as dacite 176

APPENDIX II

Electron Microprobe Procedures and Results

This appendix contains the procedures used to analyse the various mineral phases by the electron microprobe.

The results of these analyses are also included.

The majority of the microprobe work was done on an Applied Research Laboratories E. M. X. microprobe using the off-line data reduction program of Smith

(1975). Plagioclase, amphibole, sulfide, oxide, T57 and

25-3 olivine and T59 clinopyroxene analyses were all done on this instrument.

The standards used for these different mineral

phases are as follows:

Silicates CCNM0076 Albite for: Na, Al, Si CCNM0063 Wakefield diopside for: Ca, Mg CCNM0071 Hornfels sanidine for: K, Ba CCNM0102 Biotite for: Fe, Ti, Mn CCNM0010 Cobalt for: Co

Magnetite and Ilmenite CCNM0069 Hematite for: Fe CCNM0162 Rutile for: Tio V CCNM0102 Biotite for: Mn CCNM0010 Cobalt for: Co 177

Sulfides CCNM0081 FNS 107 for: Ni, Fe, S CCNM0010 Cobalt for: Co CCNM0080 Chalcopyrite for: Cu The CCNM number is the identification number used for standards in the University of Toronto reduction program. All minerals were analysed using a 15KV accelerating voltage, a beam current normalized to 3000 c.p.s. and 100 sec. counting times. Plagioclase analyses were carried out by scanning a 5 x 5 micron area to minimize alkali migration. Primary plagioclase analyses 26-1, 26-2, 26-4, 26-5, 15-1, 13-2, 16-1 and the metamorphic plagioclase analyses were also done on the A.R.L., but a 20 KV accelerating voltage was used in conjunction with the on-line reduction program PEST (Stratham, 1976). In this case the beam current was normalized to 3000 c.p.s. only on willemite. Sample T-27 was used as an internal standard to insure conformity with previous results. The majority of the olivine and pyroxene analyses were obtained using an ETEC AUTOPROBE and the PEST reduction program. A 20 KV accelerating voltage along with 100 sec. counting times were used. The beam current was normalized to 3000 c.p.s. only on the willemite standard. This instrument was preferred 178

over the A.R.L. for the pyroxene analyses because of the improved optics which made it possible to locate pyroxene spots in the uralitized samples. The order of the reults for the different minerals in this Appendix is shown below:

primary plagioclase IIA metamorphic plagioclase IIB pyroxene IIC olivine IID amphibole IIE sulfides IIF ilmenite and magnetite IIG 179

APPENDIX IIA

This appendix contains the individual analyses on primary plagioclase feldspar. The results are summarized in Table 4,Chapter VI. In order to minimize any compositional variations between sample runs, all runs have been normalized using sample T-27 as an internal. standard. Two of the early runs using the off line reduction program were found to need corrections as indicated in Table l4. The normalized results are plotted in Figure 48, Chapter VI. 180

Table 14

T-50 Original n=18 Check Run n=14 Other samples in x +h x s +R same run. Si 2.266 .01+s .010 2.275 .014 .011 sample old new Al 1.744 .014 .009 1.703 .015 .012 number value value Ca .724 .014 .009 .742 .017 .014 T-42 22.8 25.9 T-47 32.6 37.0 Na .251 .022 .015 .306 .023 .019 T-48 32.3 36.7 T-45 20.8 23.6 %Ab 25.7 29.2

4330(4&6) Original n=5 Check Run n=7 xs +R x s +R Si 2.300 .026 .058 2.300 .016 .025 Al 1.694 .027 .055 1.681 .018 .025 T-38 24.6 27.4 T-39 23.0 25.6 Ca .721 .031 .064 .723 .016 .022 T-40 24.1 26.9 T-53 19.1 21.3 Na .266 .025 .051 .311 .022 .031 %Ab 27.0 30.1

T-44(1&3) Original n=8 Check Run n=8 x s -+R x s +R Si 2.144 .08~ .010 2.151 .00~j .006 Al 1.847 .008 .010 1.828 .008 .010 T-43 no change Ca .872 .009 .011 .891 .006 .007 Na .135 .011 :014 .013 .018 .022 %Ab 13.4 12.7

x=sample mean sx=sample standard deviation +R=range for population mean at the 99% certainty level n=number of spots 1111911 FERCENF 1 2 3 4 5 6 7 e 9 19 WEIGHT FERCENf 21 22 23 24 25 26 27 28 29 30

5102 48 99 48 77 48.71 49.14 49.83 48 81 49.80 48.88 48. 86 49. 115 5102 48.87 49.90 49.39 49.21 49 71 49 53 49.75 49 94 49.93 50 14 81203 31 67 32 83 31 56 31 88 31 43 31. 48 31. 37 31 32 3L 70 31 39 10.203 31. 61 31. 91 31 59 32 83 31. 09 31 95 32 82 31. 68 31 88 32 01 FE0 0 03 O 04 0.09 8 02 0.07 e.86 0 87 FEO 8.06 0 85 8.01 8 81 8 88 0 01 CA) 13. 44 15.66 13.57 15.67 15.38 i5.3/ 13.28 15.89 15 37 13.21 CAO 15. 71 13. 49 15 61 15.95 15.73 15 59 15.59 13. 32 15 41 15.69 N120 283 278 249 255 288 289 284 271 286 271 HMO 2 51 2 82 2 82 2 56 272 275 268 285 291 2 69 080 8.02 591 98. 76 100 13 99. 41 99 86 108.08 99.84 189 04 99.70 108 22 109 74 SUM 98.95 99.19 98.33. 99. 33 98.58 98.40 98.50 98.08 98.85 98.50 RTOMIC FROFOP.TIONS 81L411C FP.9'OP.T1pIS SI 2 268 2 274 2 269 2 255 2 268 2 263 2 269 2 282 2 274 2 272 SI 2. 261 2 247 2. 261 2 259 2 271 2 266 2 271 2 273 2 259 2 273 AL 1 724 1 714 L 711 1. 729 L 713 L 722 L 721 L 796 L 711 1 719 FIL L 723 1. 740 1. 727 L 728 1. 715 1 718 1. 714 1. 717 1 727 -1. 714 FE 0.602 8.802 8 981 e.981 0 893 0 a01 FE 8. 091 0.041 0 003 e. 001 9. 093 1092 8. 003 CR 8 779 1 756 9. 769 0. 792 e. 769 9 764 e. 762 IMO 0. 752 e 762 CR 8 764 0. 773 8.775 9. 772 8. 759 e. 761 e.739 0 752 e.761 9.755 Ill 9. 221 8.249 1 251 e.227 0 244 8 243 9. 237 8 253 9. 259 9 254 NR 0 254 8. 241 9 224 8. 227 0. 252 6.268 0. 255 O. 246 6. 256 0. 254 0 8. 000 0. 000 1 000 0. 000 8. 000 8. 888 8. 099 8. 899 0 444 8 808 BR 1800 CR19.91 4.999 4.993 5.609 4.994 4.994 4 995 4.989 4 991 4 999 4 999 0 0 900 8 008 8.000 0.000 8.898 8.004 8.800 8.898 8 000 8.009 F-+ CA1591 5. 093 5. 003 4. 997 4.999 4. 997 5 095 4. 999 4. 999 5 093 1. 994 03 21 •FLAG• 127-75 26. 'FLAG* 127-9C N 22 'FM' 127-8A 27. •FLAG• 127-10A 9E109 PERCENT 11 12 13 14 15 16 17 18 19 2e 23 •FLgF,' 127-88 28. 'FLAC 127-10B 24. 'FLAG' 127-11C 29. 'FLAC 127-101 5182 49. 82 49 42 49. 47 49. 99 49. 43 49.14 49. 48 49.18 49.17 48. 60 25. •1180• 127-98 38. •PUG' 127-198 9.203 31 12 31 54 3L 73 31 75 31 74 310Z 3179 3145 3184 32 31 . FE0 0 85 0 28 0. 06 9. 07 8. 01 CT10 15 30 15 19 15 24 13.17 15.53 15.51 15.33 15.25 15 70 16 92 MVO 279 292 2% 292 287 273 282 291 266 253 5801 99. 59 99. 35 99. 43 99. 90 99. 68 99. 20 99. 61 98. 76 99. 36 99 49

ATOMIC 19.9OP1I0115

SI 2 VO 2 273 2 271 2 282 2 267 2.262 2 265 2.270 2.260 2 234 Al L 715 1 709 1. 718 1 709 1716 L 726 L 718 1. 714 1. 723 1. 751

FE 0 002 0 011 8.002 8 003 / 891 CR 0 759 8 749 8 749 8.742 0 764 8. 765 0.763 6 755 0 773 0 789 RR 0 251 0 260 8 263 8.238 0 255 8.244 0.231 8 264 8.237 8 228 0 8.000 8.099 8 089 8.000 8.000 8.009 8.000 8 009 8.809 8.809 8115t11 4. 997 5.992 5.091 4.992 5. 082 4. 996 5.080 5 804 4 995 5.093

L 'PLAT 127-I8 5TTR8 8 •FU1G' 127-38 13. 'FLAC 127-6R 2 'NM' 127-IB 9. 'F1AG' 127-38 16. 'PU10' 127-66 17. 'iUICi' 127-61 3. •Fü►Y 127-1C 18. 91111' 127-3C 4 'FM' 127-1D 11. '{1AG' 127-3D 18. TIM 127-7R 5 'FLAG' 127-28 12 11113' 127-5A 19. 'FUG' 127-78 6. 'FLAT' 127-28 13. 'FLAG' 127-58 20. 'FUG' 127-71 7. 'fUG' 127-2C 14. 'PIA' 127-5C

IEIGII PERCENT 51 56 57 58 59 60 REIGN! PERCENT 31 32 33 34 35 36 37 38 39 40 52 53 54 55 47.75 48.21 49.e1 49. 06 49 13 48. 72 48.13 48. 57 48.11 48 39 5102 49 98 48 63 48. 79 48.13 49. 01 49.06 48 28 48.68 48 36 48 98 5102 38.73 38 69 31 63 38.64 31 59 38. 95 31 55 38.56 38 35 38 97 41_203 31.17 31 11 30.84 3A.99 31. 06 38.63 32. 81 39.99 31.12 39. 42 01.203 1E0 A 84 8 88 1.83 1.86 1 84 FEU 8.e3 8 94 1.8S Clq 13. 06 14. 94 14. 68 11. 63 14. 81 14. 85 14. 96 14. 61 14. 94 15 91 coo 15. 29 15. 31 14.57 15.37 14.65 1/.85 14. 42 14. 99 14.95 14.31 81120 2 72 2 92 2 97 1 1/ 3. 11 3 02 1 88 2 94 3 89 2 87 11120 289 291 3.22 291 3.01 3.16 289 3.81 285 3.18 51.81 96. 26 X. 76 97. 21 97. 51 97. 63 97. 62 96 63 96. 71 97.16 97. 28 5111 99.33 98.02 97.42 97.68 97.77 97.79 97.63 97.68 97.28 96.89 810M1C PROPORTIONS ATOMIC PROPORTIONS 2 265 2 275 2 297 2 294 2 295 2 278 2 275 2.289 2 279 2 271 SI 2 275 2.268 2 295 2.268 2 285 2 292 2 253 2.273 2 269 2 393 SI AL 1718 1.707 L 692 1689 L 684 1 786 1782 1698 16% 1713 AL 1. 7% 1 718 1 792 1 786 1. 787 1 686 1 760 1 717 1 721 1 685 5 001 1 003 9.991 8. 882 e e92 FE 001 8.801 8.002 FE CA 1. 766 8.756 8. 733 8. 733 ' 8.741 1.744 1 738 8.738 1.754 0 755 tR 8.761 8.765 9 731 1.771 8 732 8.743 1. 72L 8. 751 8.751 1 721 /El 8.259 9.267 1 278 9.285 8.201 1.274 1 275 8.269 1 282 5.261 400 8. 261 8. 263 8. 292 1. 264 0 272 8- 286 8. 262 1. 273 8. 259 8. 2°8 1 008 8-999 8.000 8. MO 8 000 8.009 1909 9.909 8 88e 0 8. 000 8.080 8.098 8.098 8.009 8.008 8.000 8.800 8.999 8 808 0 8.809 CA151111 4.999 S.894 4.991 5.883 5.082 5.005 5.118 4.995 3.913 3. 892 CATSUP/ 5. 902 5. 908 5 010 5.118 /. 997 5. 087 4.997 5. 997 5. 000 4. 999 F-' co PERCENT 61 62 63 64 65 66 67 68 69 481G01 PERCENT 41 42 43 44 45 46 47 48 49 50 I€Iau 5102 47.52 /8.25 48.19 48.24 48.15 48 67 48.33 48.57 - 48 56 5102 48 73 48.15 48.82 48. 37 48 19 48 43 48.96 48. 79 48 72 48.53 91203 31 68 31 25 31 82 38.67 31 16 38. 64 31.83 38.56 38 58 01L203 SL 16 31 P7 31 78 31. 49 38.86 38.96 38. 77 31 12 31 05 31. 82 FE0 9. 12 9 81 104 183 9. 87 8. 84 9 Al 1E0 8. 05 8.19 1. 82 8 81 8.131 8.85 8 89 C90 16.06 13.61 15.34 15 19 15.37 15 36 14.87 14.88 1/.94 C110 15.24 11 22 14.69 15.39 15 04 15 24 14.63 14.86 15.25 15. 41 49120 2.45 2.71 2.71 266 293 294 288 3.137 3.11 084.b 264 263 272 288 294 283 3.16 3.88 299 282 5111 97. 72 97. 83 97. 06 96 77 97. 63 97. 63 96.19 97. 84 , 97.13 120 B. 33 5091 97.84 97.25 97.21 98.35 97.85 97.49 97.53 97.76 99.96 97.86 RIaIIC PROPORTIONS ATOMIC PROPORTIONS 51 2 228 2 256 2 269 2 276 2 256 2 279 2 294 2 285 2 284 RL 1 751 1 722 1 718 1.795 1 721 1 691 1 688 1 693 1 691 51 2 273 2 262 2 290 2 257 2 269 2 270 2 299 2 277 2 271 2 267 FL L 713 1 721 1 792 1 725 L 713 1 718 1 6% 1 712 1.706 1 788 FE 8 001 8 001 8 081 9.081 8.093 8.001 8.091 Di 9 805 0. 782 9 774 9 768 8.772 9 770 1.756 8 746 8 753 FE 0 802 8 897 8.001 8.001 B.088 9 902 8 983 IF 8 223 8.245 e.247 1 243 8.266 8.267 8.265 8 288 8.283 CA 8 762 8 766 8 734 8.767 8. 759 8.765 9 734 8.743 0 761 8.771 0 9 909 8 909 9 904 8.89e 8 800 8 090 8.008 8.008 8 009 111 8.239 8. 249 9.247 8.259 0.268 1.257 9.2A7 8.271 8 278 8.255 CAT911 5 009 5. 905 4. 999 4. 992 S. 016 5. 989 4. 997 S. 087 5. 012 K 8. 928 0 9.808 8.008 8,009 8.000 8.099 8 000 8.008 8 909 8 090 8. OM 51 'PLAT 028-120 5t TUG' 129-2C 65 •FLAG• 120.50 CR1501 4.989 4.997 4.992 5.089 5.809 5.893 5.006 5.802 5. 019 3.803 52 •FLAC 128-128 5911.580• 129-38 66 'MG' 729-69 129-38 67 'RIG' 129-68 45 •FLAG• 128-8R 5) 'PM" 128-139 60 •FLAG• 31 •FL01' 028-208 511118 38 'RAG' T28-48 61 Too. 129-t9 68 TM* 129-79 39 IRA" 128-513 46 'PIAG•128-98 54 •F1-03' 129-1A 32 'FLAG' 128-200 55 •FLAG• 129-18 62 •RRG• 129-48 69 •PLAG• 129-79 31'F19G' 128-2CC 40 'FLAG' 128-58 47 •1.96• 128-98 56 'MG' 129-29 63 'PUG' 129-S9 34 'RAG' 128-200 41 'RAG' 128-CR 48 'DAG' 128-99 57 •RAG• 129-28 64 Tow 129-59 35 'F1.0G• 128-3R 42 •RRG• 129-68 49 71.00 129-100 36 •F 1G• 128-38 43 •R81G' 129-79 50 •RAB• 129-198 37 'FLAG' 128-49 44 TOG' 128-78 1EIalT PERCENT 70 71 72 73 74 75 76 77 78 79 0EIFI4T PERCENT 90 91 92 93 94 95 96 97 98 99

5102 47 47 48 07 48 30 18.37 18 11 48 13 47 90 19 54 46.78 48 42 S102 18 33 48./8 48.18 47 84 18 32 48 47 48 11 /8.51 48 75 48 85 RL203 31 61 31 95 31 15 38 55 38 73 31. 02 30 84 38. 67 28.90 38.32 0(203 31 49 31. 16 30 48 31. 43 I8 98 38 63 38 71 39 87 38.99 31 01 FED 8,81 e. 04 8 05 0 14 8 86 8.07 8 08 8E0 8 14 0 08 8 06 0 09 A 19 1 16 0 04 8 04 1140 16 00 15 43 15.18 13 12 15. 19 15 24 15. 18 14. e9 17.23 14.64 MO 14.91 15 34 14.98 13.99 15 13 15.11 15 89 13 39 15 44 13 09 493220 1.41 2 84 2. 69 3.01 278 299 2 76 3.04 2 21 292 I4R20 2 53 2 59 2.97 2 34 2 76 2 8e 2 98 2.R2 3.83 2 96 911 97.48 97.38 97.36 97.11 96.96 97.37 96.74 97.22 95.29 96.29 K20 8. 43 5111 98,83 97.56 96.04 97.56 97.21 97.16 97.35 97.62 98 21 97 94 R10111C PROPORTIONS 81011C Rt0bRT10NS SI . 2 239 2 268 2.265 2 277 2 268 2.261 2 261 2 288 2 263 2 293 PL 1.730 1 715 1 722 1 695 1 789 . 1 717 1 717 1.698 L652 1 692 SI 2.262 2 268 2. 283 2 243 2 271 2 278 2 271 2. 271 2 278 2 277 FL 1 738 1 718 L 694 1 737 L 711 1 698 1 798 L 704 1 781 1 704 FE 0.081 1 002 1.002 8 085 0 012 e.003 0.883 CA A 895 8.777 0. 763 0 763 8.767 8.767 0. 768 1.7/9 8.893 1 712 FE 1 006 9.093 e.802 8 093 8 997 0 906 0 082 8 092 491 8.219 9 259 8.215 0.275 9 254 0. 26/ 8.253 t 277 8 207 0 269 CA 0.745 0 769 8.753 e 799 8 762 0 761 1 739 0 772 1 770 0 754 0 8 099 8 938 8 009 8 090 8 000 8.000 1 180 8. BOO 8.008 8 009 N4 e. 231 8.235 1 272 I 212 e 251 1 255 0.272 / 256 8 274 0 268 CAISUI 5.084 3.811 4 996 5.812 5 084 5.012 3.001 5 088 5.814 4.995 K 0 026 0 t 000 8.000 8.009 8 980 8 098 8 800 1.000 8 090 8 039 8 907 031931 5 100 4.990 5 015 1,994 4.999 S 309 5 e11 5.004 3 015 5 934 HEIGHT PERCENT R0 81 82 83 84 85 86 87 88 89 1,01 102 103 104 105 106 107 106 109 5102 48 31 48 79 18 49 48 2/ 48 83 48. 85 48 51 48. BL 48 BI 48. 64 1E10111 maw 100 1(293 38 66 38.72 30 58 38 77 39 55 38 59 38.64 30 73 31 88 38.86 49 21 1E0 0. 95 9.11 8 12 0 10 1 03 0.89 8.93 8.81 SI02 48 58 49.17 48.33 48.63 48 28 49 53 48.81 43 91 49 04 SL 10 CRO 15 87 14 86 13 82 15.06 15. 91 11.86 15. 08 13.14 15.14 14.99 4(203 31 46 31. 17 31. 18 31 36 31 67 31. 39 31.22 31. 39 31 21 19320 3.13 2 75 3. 04 3. AL 1. 06 3.14 3. 01 3.15 3. 03 2 99 FE0 0.12 188 112 8 83 / 93 8 18 9 18 8 AI 820 t 82 CFO 15.16 15.28 13.33 15.50 13 61 15 52 15 34 15.18 15 26 15 37 911 97. 45 97.21 97.15 97.17 97. 45 97 33 97.21 97.94 98.15 97./9 49420 2 86 2. 95 2. 93 2 71 Z 78 2 81 2 99 3.91 2 87 3 84 SUI 98.27 98.58 98.06 98.58 98.20 98.27 98. 26 99 08 98 47 99 81 ATOMIC F8r7FORTI715 ATONIC PROtiRTIC1F SI 2 277 2.288 2 277 2 278 2 288 2 291 2 280 2 279 2 273 2 278 AL 1. 6% 1.698 L 6% 1 796 1 687 1 686 1 697 1 691 L 783 1 71I 51 2. 259 i 279 2. 263 2 253 2 217 2. 258 2 269 2.261 2 274 2 275 fl 1 725 1 713 L 711 1.775 1 737 1 721 1 711 L 711 1 786 1 699 FE B. 092 0.094 B.095 t 004 0 081 0 003 8. 1102 8 091 CO 0 759 8. 746 8 737 0 759 8 731 8 747 t 755 9 759 8 755 8.752 FE 8. eel 0. 883 8. 805 8 081 8 031 8.807 0 804 0 891 I9i 0 285 8.259 8.277 A.275 8.278 0.286 1 274 0 285 8.274 9.271 CR 8 765 8 753 8.706 8 774 0. 779 8 774 e 764 8.767 8 758 8 762 0 081 419 8. 258 0 263 8 263 1 243 0 243 8 254 1.268 . 9272 0 258 8 273 8 003 0 9 079 8 000 8 000 8.8043 8 970 8 000 8 000 8.098 8 900 8. 008 0 8 000 8 888 8 009 9 009 8 089 8 7198 9 903 8 030 8 993 C9191 5.917 4. 987 3.012 5,914 5 087 5.088 5.887 S. 817 3.010 5.803 CA191.11 5.007 5.892 5.812 3.883 3.096 5.097 5 894 5 91 5 891 5 011 104 'MFG* 111-78 70 •11 129-80 77 'PLA1G• 139-10 84 'PIF13• 130-4A 90 'PLRO. 138-78 97 '11 AG' 131-213 71 'FLAG' 129-8C 78 'FLAG' 138-18 85•FLFG• 138-48 91 'FLAG' 130-70 98 '1UG• T71-4R 105•PIPG' 131-01 72 '1CFG• 129-90 79 'FOG' 138-28 86 'rim' 130-58 92 'F110' 938-88 99 -rum 131-48 106 'FLAG' 131-98 71 TUG' 129-98 80 'FUG' 138-28 87 "AM 138-58 93 •PoG• 138-88 100 'PUiG• 131-6A 107 •RAG• 831-98 108'81J9? 131-98 74 'FLAG' 129-101 81 'PL910' 030-38 88 'RIG' 139-60 94 •PLFG• 130-8C } 01 'FLAG' 031-68 75 'FM' 129-108 82 'FLAW 138-38 89 Tun' 138-68 95 'Purr 131-1A 1 02 •PIAG' 131-6C 109 'FLAB' T31-9C 76 •PLIG• 129-100 83 "FLAG' 131-30 96'PLFG• 131-18 103 'PLAG' 131-78 191011 PERM 121 122 123 1214 125 126 127 128 129 130 REIrNF FETCENT 110 111 1 112 113 114 115 116 117 118 119 5102 51 43 58.86 49.96 50.06 48.86 48.79 48.87 49 95 49.06 5102 49. 24 48. 59 48 61 49. 87 48. 59 48. 11 49. 24 48. 98 48. 71 49. 29 49.12 0.203 38 19 10203 31 30 31 17 31.15 30 97 3A.84 30.80 31.25 38.31 31 54 31 63 38. 63 3184 3183 3199 3183 3148 3L 34 28. 45 31 34 FE0 8. 07 3. 07 8 85 8. 04 8. 67 8 06 8. 09 8. 63 8 82 8. 08 FE0 8. 87 8.99 8.07 0.03 8.18 8 08 1 31 0 07 CA3 13. 71 14.34 15.88 14.99 15.74 14 37 CRO 15. 2? 15 47 13. 56 15. 87 15 39 15. 42 15.15 11 43 15 43 15 45 15.92 15.29 15. 23 15.33 10120 3.10 286 101 106 275 201 287 216 277 299 14120 3.90 165 3.37 3.17 2% 264 2% 181 233 318 t(20 880 8 87 SU1 99. 08 98.16 98. 39 98. 21 98 23 97. 48 98. 68 98. 24 98 46 99. 44 120 9 37 SLM 99. 31 99. 55 99. 54 99. 32 99. 45 99. 24 98. 95 98. 68 96 01 99 77 ATONIC FROF8RTI0115 RTONIC FP.IF'IPTIONS SI 2 273 2 264 2 262 ' 2201 2 267 2.268 2 279 2 283 2 268 2 266 2 354 293 2 268 2 266 2 341 2 283 11. 1 783 1 712 1 788 1 697 1 696 1 704 1 703 L 668 1.725 L 714 . SI 2 327 2 2 299 2 247 2 249 RL L 620 1.652 L 679 1688 L 734 L 729 1. 713 L 713 1 681 1 692 FE 8.003 8.003 0.082 0.082 8.826 0 092 8.083 0.025 8.081 8.883 FE 8. 893 8. 004 8. 083 B. 082 8 004 5.883 9 952 . 8 083 CR 8.756 0.772 8.776 0 751 8.769 8. 776 0. 751 O. 772 8.767 8.761 CR 8.672 1 783 8.741 8. 738 e.776 8.786 e.756 B.757 8 733 8 732 101 8.278 8.259 8.272 8.276 0.249 0.256 1 258 8.258 8.249 0.266 NR 8. 353 1.124 0. 308 9.283 5. 255 9. 236 0.265 8. 279 8 234 8 282 BA 8. 891 0 8 090 8 800 8 000 8.000 8 090 8.080 8.898 8.888 8.888 8 800 K 8 923 CRT51,41 5 913 5 009 3. 819 5 007 5 008 5.987 4. 996 5 816 3. 001 5 010 0 8. 088 8.890 8.099 8.808 9 890 0 090 8.898 8 000 8 390 8.998 6919111 5. BOB 5 808 5 017 5. 002 5.912 5. 803 5 007 5. 811 4. 986 5 811 1EIGNT FfP.CEN* 120 IEIOIt PE21EN1 131 132 133 134 135 136 137 138 139 14 0 5102 4? 16 • 18203 3155 49.89 48 28 49. 48 49.34 49.69 49.26 49.29 48 8? 1E0 5102 49.33 48.91 38 87 31 49 31 14 31 49 18.21 31 45 32 91 CR0 15.42 11.203 31 39 29.38 31 26 FE0 1. 43 8. 06 8. 85 8 03 1.19 8. 10 5 79 0 87 14120 2 92 8.136 14.61 13 70 15.26 15 39 13.88 15 52 15 77 931 95.816 CRO 15.48 14.55 15.14 14120 3. 06 2 94 3.16 116 101 191 2 80 2 92 2 92 2 70 120 5.01 RTONIC FROFOF,TIOI6 SU1 99.33 97.22 99.51 96.98 99.71 98. 82 99.47 98.26 99.18 99.48 SI 2 267 ATOMIC F9.0FORTI96 RI L 715 SI Z271 2 389 2 288 2 273 2 278 2 280 2 280 2 297 '2.278 2 248 FE AL 1 793 1 635 1 699 L 713 1 792 L 697 1 753 L 663 1 789 1 736 CA 0. 762 Ml 8.262 FE 8 002 0 856 8.002 8 092 8.991 8.003 8.004 9 831 8 083 0 8.090 CB 8 763 0.736 0 744 8 737 8.772 0 756 e 757 8 753 8.766 8 777 CRT931 5.006 1e1 1.273 9.279 O. 291 5 289 9.267 8.270 1 249 5 264 e.261 9 241 K 8 001 1 1 0 •PIRA" 131-100 117 "FLAT 133-28 ' 0 8.008 8.000 8.808 8 P819 8 809 8 000 8.800 8.080 8 800 8 800 1 11 "FLAA• 131-108 118 •FERA• 133-30 691911 5. 013 5 997 5 096 5.814 5.812 5,083 4.993 3.1105 5 093 5 904 1 1 2 *FLAG' 131-120 119 •Ft.M' 133-38 117 •PLm" 131-129 120 'rim* 113-3C 121 "FL06• 133-50 128 TOG" 133-98 135 •FtAA• 133-L38 1 1 4 "rim" 133-10 1 22 •F193" 133-5B 129 •%383. 133-190 136 'Fur 135-111 1 15 •1LRG 133-18 123TOO" 133-6R 130 'FLAT" 13:.-198 137 •PIRG• 833-18 116 •FtRO. 133-2A 124 "F1.93• 133-68 131 •FtIor 133-10C 138 •FtA3• 135-2A 1 Z 5 •PLeA" 133-EA 132 "PIRG- 133-110 139 •F1AG• 135-2B 1267t0s" 133-88 133 '11.9.1* 133-118 1 0 •FtRG• 135-30 127 "PLFr• 133-9R 134 'F1J0 133-138 163 164 165 166 167 1 68 169 170 1(fa1T FEFCEm 141 142 143 144 145 146 147 148 149 150 1(11941 PERMIT 161 162

5102 48 68 49 64 49. 50 49. 58 49. 38 49. 99 49. 57 49. 69 19 69 58. 15 5102 59.22 58. 48 58 31 50.92 59.77 50 92 59 49 49.98 58.37 58.53 111.203 32 01 3142 I138 3176 3197 3167 3155 3158 3162 31. 69 îL:03 31.16 38 95 31.82 39.69 31 91 30.59 31 89 31. 48 IL 19 31. 20 FE0 8. 99 8. 94 0 83 8. 83 9. 01 816 8. 84 8 81 FE0 5.89 0.85 1.04 991 1.02 1 97 14 77 14 06 CAO 16. 01 15. 62 15. 43 15. 31 15. 95 14. 97 15. 42 15. 58 15 62 15 36 CAO 14.99 ' 14.13 14.67 14.41 14.33 14.39 14.61 15.29 11120 272 1/4 29i 299 297 109 199 219 132 114 11320 252 3.36 3.72 3.59 3.78 3.80 3.39 3 24 1.29 3 37 6~10 8. 81 981 99.98 99.69 99.55 99.62 99.79 99.73 99.15 99.98 99.61 99 91 K20 9. 04 931 99.42 99.81 99.27 99.66 108.17 99.71 99.64 99.82 18119 109.25 ATOMIC PREFAB IRS

NORM FPOP68111115 51 2 295 2 387 2 387 2 327 2 318 2 327 2 311 2 284 23/4 2 394 AL 1678 1.678 1666 1653 1.663 1648 1669 1_6% 1681 1677 SI 2 241 2 274 2 277 2 271 2 255 2.285 2 273 2 275 2 266 2.283 9 801 1 991 1 993 AL L 737 1 697 1. 782 1 715 L 721 1 717 L 795 1. 709 L 713 1. 6% FE 0 093 1.092 0 092 CA / 734 t 728 1 721 9 706 9.781 8.795 0 717 1 744 0 724 0 726 IN 9 331 8 335 e 337 0.391 1 287 0 291 9 298 FE 0. 903 9 902 9. 991 0.691 8. 000 O. 806 /. 001 8 990 1.312 0.298 9 318 8.098 8 099 8.000 8.000 8.999 8 090 8 999 CA 0. 799 8.767 8.761 9.752 0.799 8.734 0.759 8.764 9.765 1.749 0 8 000 8.890 8.000 5. 017 5. 017 5. 002 5. 011 5 090 5 905 111 9 243 0 270 8. 259 8 266 9. 254 0. 266 8.279 1. 217 1. 294 8. 277 011911 5.122 5 896 5. 825 5. 994 E11 8. 000 K 8 892 172 175 176 177 178 179 180 0 8 990 8. 990 8. 099 8 990 8. 000 8. 009 8 000 8. 909 1. 0109 8. 909 1(11911 PERCENT 171 173 174 C819.41 5. 811 5 912 5. 091 5 804 5.110 4. 995 5 011 5. 802 5 029 5 806 5102 49.77 58.33 49 % 19.16 48. 99 49.35 51. 90 4.1 24 52 52 49 74 11.293 31 42 31 92 I1 e4 31 74 31 97 31 91 31. 12 31 77 29.99 31 fa 1 95 9 08 / 83 uElfllT FFF.CENT 151 152 153 154 155 156 157 158 159 160 FE0 8.83 0.03 8 e4 8 04 CAG 15.98 14.76 11.99 15.99 15.86 15 46 14.33 15.76 L3.23 15 81 11120 119 3.25 3.25 277 262 281 3.73 280 137 2 cb 5102 59 32 49. 71 49. 87 49. 36 49. 41 59. 78 59. 32 5e. 71 47. 36 58. 55 911 99. 41 99.39 99.28 99. 64 99. 43 99. 56 99. 89 99. 62 108 19 109 32 11...^03 31 47 3164 3146 3142 3186 3108 3L 33 3121 21. 78 3/. 95 FE0 9 94 8. 03 0 19 8. 96 0 05 0. 82 1. 05 1 05 8.12 ATOMIC 011000911006 C00 15 19 15.49 15.59 15 40 15.79 14. 71 13 77 14.93 14.37 14.78 11428 3 19 3. 01 3. 93 2 95 2 85 124 158 127 2 97 135 2 284 2 387 2 296 2 257 2 251 2 263 2 325 2 260 2 386 2 266 890 0.86 • 51 1 708 1 676 1 681 1. 717 1 732 1 725 L 656 1 718 1 681 1 712 F20 9. N FL 5131 110.21 99.88 99.48 99.11 99.97 99.78 99.86 18917 9154 99.75 FE 9.001 B ee1 9.092 8 ee2 e. eat 0.803 8 001 0. 738 9.725 1 738 117% 9 781 1 760 1 799 /.775 9 643 1 772 ATOMIC F100OP1105 CA 181 0 214 8 289 9.298 8 247 / 234 1 259 8.339 I 249 1 384 / 253 0 8,808 8.808 8 000 8 090 8.000 8 009 8 000 8.000 8 099 0 OM SI 2 291 2.273 2 261 2 274 2.269 2 313 2 319 2 307 2 311 2 311 CAISIM 5 007 4.998 5.907 5.087 4 998 4 999 5 811 5 095 5.011 5 094 41L i699 1. 796 1. 719 1 706 1 719 1 672 1. 695 1 674 L 655 1 667

136-39 168 'FUG' 136-741 175 '11.10V 137-18 FE 9 992 0 901 8.087 1.092 8,892 0 011 8.002 8.002 0.905 161 *MAT "'ter 136-48 169 •111G' 136-78 1 ••11AG 137-s~A CA 0 741 0 759 8. 770 8 760 8.774 0.719 0 677 8.728 0 751 8.724 162 '11AG' 136-48 170'11AG' 136-8A 76 'FUG• 137-28 111 0 281 8. 267 8. 271 8. 213 8. 253 9. 287 e 319 8. 289 9. 281 9. 297 163 177 'PIA' 137-3A 89 8.901 16 "FUG' 136-5A 171 "FLAG' 136-38 178 737-38 K 1. e02 165TOG' 136-58 172 '1118G' 136-941 179 '11m' 669i% 136-6A 173*FUG' 136-96 180 •11189'11189' 437 -91 0 8 490 8 000 8 8418 8.909 8.009 8 000 8 080 8.803 8 880 8 090 1 66 41G• 136-68 17417 'FLG' 137-1A 691903 5 004 5.096 5.019 5.094 5.097 4.993 5.003 5.008 5.881 5.003 167'11

14 mart- 135-3e 148 •PLIG• 135-7A 155 'FLAG' 735-199 I47•FtIG' 135-48 1119 •119V' 135-78 156 'FUG• 136-18 14)•FIA',' 135-48 150 'FLAG' 135-0A 157 MA' 136-113 14 ~•1trG• 135-50 151 'F1AG' 135- >: 158 'FLAG' 736-7A 1 fi 5'FLr,' 135-58 1 52 'FLAG' I35-9R 159 'FUG' 136-29 1 h GFIA, 135-01 15 "PIA' 135-90 160 'PUG' 136-39 14TFIAi' 135-69 154 'PLA3' 115- tee wan PERCE1TL81 182 18j - 184 • 185 186 . 187 188 189 190 111911 lintel 194 195 196 197 198 199 200 201 202 203

5102 49 59 49.36 49.12 49.36 48.39 49.12 49.56 49.13 49.09 48.91 5182 49 96 49. 84 49 63 48. 46 49. 38 48 43 48 49 49 23 48 31 49 93 9.203 31.93 31 76 31. 75 31 96 32 53 31 66 31 61 12 85 31 91 31. 88 01.703 31.25 31.14 31 48 31 29 3U.86 31 15 30.65 39 68 38 55 28 58 FED 102 8.05 8.9E 9.98 1.82 1182 1 16 0 17 0110 15.62 15.82 15.72 13.62 16.51 15.61 13.49 95.84 15 60 15 76 CP7.93 8 92 0120 2 73 298 272 274 238 290 289 282 160 161 FEU 0 95 0 56 Sal 99.88 99.97 99.53 99.67 9/ 72 99. 29 9164 9183 99.29 99.09 Vm ' 0 01 0 9E e 03 SC293 091 0.11 0.e5 894 894 e17 81a11C FROFOBT101S 1003 0.04 0 94 0.04 1 05 0 e5 8 11 E?n 8.09 8 07 0 05 SI 2265 2259 2261 2261 2222 2.265 2272 225/ 2258 2256 C003 15. 04 14. 67 15 03 14 37 14. 52 14. 66 U. 97 14 56 14 36 13 99 9E 1 722 1 713 1 718 1 726 1 761 1.710 1 708 1 731 1 730 1 720 11120 263 273 244 273 256 264 297 277 265 292 9411 97. 96 97.64 97. 61 96. 94 96. 29 97. 08 96. 22 97 40 95 90 96 79 FE 1. 081 0 092 0. e81 1. eel 1091 CA 0. 766 0. 776 1. 773 O. 767 1. 012 1. 771 t 761 1. 778 1769 1. 779 1114.41112 F0!F8F,11a1S 11 0. 242 1. 265 1. 242 . 1. 243 0.204 1259 1. 257 1 2314 1239 1. 233 0 8. 000 It 000 0.090 0.080 1.090 1. tee 1 eee 8.000 teal 1Re' SI 2 278 2 287 2 269 2 276 2 283 2 275 2 293 2 266 2 292 2. I139 0915111 4. 995 5. 015 4. 997 4. 997 4. 999 UM 5 001 1 809 1. 9% 4. 9% IL 1 714 1 712 1 731 1 732 1 719 1 723 1 718 1 698 1 709 1 694

TI 1 016 0 e06 111911 PERCENT 191 192 193 CA 0 001 ~ 01 FE 0 4412 0 822 5102 48.85 48.95 59. 95 5102 V 1 Pee 6 000 9 091 11.203 31 93 31 61 38 98 f1203 SC 9.001 0 805 e 893 0 002 0 932 0 003 0E0 9.84 0 82 FE0 IM /. 012 1. 081 8 0002 0 692 0 682 0 064 cIq 16. 84 15. 63 14 45 CM EO 8 603 0.003 1 1302 10120 235 2 85 3.43 6128 C1 8 750 1 733 8.752 8 723 1.735 0 737 e. 783 e.733 8 727 9 704 SUf 99. 40 99. 85 99 75 911 114 9 237 8 247 9.220 0 249 1 235 8 248 e.272 0 252 9 243 0 266 0 8 190 8.009 8 800 8.009 8.0999 8 009 8.099 8.009 0 099 8 861 81001C FF.O1ro8T1a15 C119.M 4 982 4.988 4 974 4.982 4.974 4 990 4. 986 4.993 4 974 4 978

SI 2 248 2. 259 2. 324 SI 1941LR3' 431-19 SUM OF11 198 ' 1.FG' 138-39 202'FE90' 139-99 FL 1732 17213 1.661 AL 1951196' 139-18 199 'PING' 138-38 203AW T38-98 196.11R'î 132-i8 200 'FUG' 138-41 FE 0.091 0 001 FE 197'FLHri 138-7.8 201 'F1117' 139-48 CA 0 791 8. 774 0. 717 CA NA 0. 228 e.255 e.36I #1 0 8 009 8.000 8.000 0 CATSUI 4.999 5.007 4.9% CA151M • 1181'FtAG' 137-69 184 'PE90' 137-78 18911AG• 137-1011 18210G' 137-68 185 'PIA' 137-61 19WPM' 137-1118 183 *PUG" 137-711 186 'POW 137-88 191'PU8 137-11A 187 'WIG' 137-91 192 •PEAO' 137-118 188 'FtAO. 137-98 193'x' 037-51 F616111 FFFCEIIF 204 205 206 207 208 209 210 211 212 213 tlEtr111 FEFy.EIt< 214 215 216 217 218 219 • 220 221 222 223

7IO2 47 ?0 47 27 48 78 48 91 48. 52 49 50 1:.63 47.84 48.33 48. 49 5102 49 74 49 61 48 31 49. 8I 48 95 49.99 19 25 48 31 48 68 49 57 017)3 31.33 31.18 31.16 3137 31.29 3107 31.68 3183 3139 3121 01.293 3130 38 94 3183 3106 31.15 3128 I131 31.89 3107 3133 FE9 0.92 9.81 8.25 FE9 0 03 /. 01 1 03 0 02 0 91 5213 0 02 9. 98 9 97 1. 85 1. 97 8. 86 •,n, ?S /. 01 0 07 rroq 9. (13 183 8. 02 5r'293 9 03 /.19 8 06 /. 02 9 86 E99 8 01 MP) 0. 92 0.03 8.05 0 96 8.05 9 97 r1), ) 92 8. 87 /. 02 C00 8. 83 E90 15 07 H 67 14. 91 14. 45 14. 73 14 71 14.15 14.62 14. 70 14. 97 611) /. 93 9. 13 8 05 t1q ti) 7 2 56 2 54 2 63 2 68 2. 56 2 67 2.33 2 69 2 53 ETMI 14. 61 14. 60 14. 72 14. 53 14. 67 14. 74 14. 75 15. 58 14 72 14 79 2:41 771F S. 6? 96. 71 97. 44 97. 54 97. 22 96. 99 96 39 96. 09 97.11 97.26 I1q,.`0 2 67 2 58 2 57 2. 55 2 63 2 74 2 90 2 4/ 2 54 97. 33 5511 97. 41 96. 76 96. 76 9E. 97 97. 61 97 78 98 42 98 91 97. 08 019015 FFC4'cF.lil?t15 810/111 F99F9011198 5I 2 259 2 233 2. 289 2. 291 2. 273 2 278 2 295 2. 260 2. 267 2 272 2 273 Al 1. 741 1 730 1. 717 1725 1728 1. 721 1717 1. 734 1736 i 724 51 2 279 2.297 2 275 2.219 2 284 2 281 2 291 2.259 2.282 1 728 Fl 1724 1. 710 1 722 1. 717 1 711 1. 717 1. 710 1745 1 717 FE 0 091 1 001 8 818 8 991 0. 001 9 091 Sr 0 vol 1. 003 8. 993 1 992 8. 903 9. 802 FE 8. 001 8. 009 H MI e 901 9.001 1 Ni Y 8.000 9 092 CO 8 991 9 002 c0 9.880 Sr 0 001 0.004 1 102 v 9 802 9 903 pu 9 091 9.903 8.901 MI 9.991 0 991 1 092 I 002 cA 9 761 0 740 8. 747 9 722 0 748 9.749 /.715 8. 743 0 719 9.752 CO 9.001 va 0 21,- 0 234 0 231 8.238 0. 243 1 233 8. 244 1. 232 9. 23? 9. 238 n) 8 091 9. 004 8. 092 9 735 8. 732 9.rî3 9 739 9 741 1) 7 910 8.000 8 999 9.900 8.199 8.009 8.900 8.098 8.908 8.098 CA 8 732 B 736 0 743 9.738 9 734 9. 231 9 227 se`-!RI 4. 979 4. 973 4. 376 /. 973 4. 984 4. 973 /. 973 4,979 4.991 4.989 III 0 212 9. 235 9 235 9. 232 9. 240 8 247 8 811 1. 216 9 000 8 009 n 8. 99l 8 091 B. D90 B E100 B 900 8 009 8. 903 8 090 1 973 1 975 204 ,F1 As* rg.r.rT 208^FLAG^ 139-76 212 'FIA' 738 98 rAt91M 4.9%9 1. 973 1900 4. %7 1. 97 4.992 4.991 1.985 205 •rla;' t3~_-:8 209•FtAG' 139-BA 21j •PLAG' 138-100 ~• 148-48 205 FL(r;" 123-78 210•FtFIG' i39 88 214 'fLAG• r?3 199 218 'nAG• r10 c^B 222 • ~~3 'RAG' 149-50 207 -no'," 13$ E' 211•Ftlq' 138-90 215 'FLRï 140-10 219 ••~~+' 149-30 216 'FtAi 149-18 220 •1~G • 140-38 217 'F14;' T4a-2A 221 •FtAG' 140-4A 235 236 237 238 239 240 241 242 243 1IEI9111 FEF1111224 225 226 227' 228 229 230 231 232 233 - 1EI281 'mon 234

47 79 5102 41 s 42.55 48.43 48.16 • 49.69 48.53 48.57 48 78 48 79 48.25 6102 46 62 47.33 46.79 46 55 46 73 47 33 47.29 47 33 47 78 31 58 32. 90 32 13 32 32 31 SB 32 22 R1101 . 31 30 3197 31. 23 38. % 38. 88 3158 3152 3128 3158 3128 0127I 32 07 3191 3185 3212 73 8.81 C6203 • 0 02 C62 B 19 I. Pt 8 10 O. 02 FE9 9. 03 0 83 B. E6 FE0 0. 05 9. e3 0. 08 8. 87 1295 I. 09 t205 0. 02 0.07 8.08 8 04 0. 29 0 86 0 05 5'N 33 8. Pt 8. 02 B. 02 8. 02 0.12 I. 83 :C203 9 83 0.01 9 13 0. 28 9. 07 8. 07 0. 82 107 MW 0. 0:: 0. 01 186 O. 05 O. 06 8 04 182 8. 02 ng 0 07 9. 04 Cm 104 CPO 8. 02 8.05 0.05 nn a P' 9.03 1410 0.05 I.07 8.05 9 10 0.81 0 05 (011 14 13 14 47 14.85 14.94 14. 72 17.88 15.11 14. 71 14. 88 15.18 C0? 0_ Ot IIP:n ; 61 {~a2~ +) 252 245 2.71 2 59 2.68 2 72 2.64 2.56 30~ 15. 66 15. 65 15. 49 15 13 15 88 13. 80 16. 91 15 71 15 54 S 11 97 3? .'!. 51 97.09 96.53 97. 09 97. 79 97. 82 97.64 90. 80 97.20 C89 15. 65 • !I9,10 2 Il i 99 283 191 216 2 16 L 89 i 99 217 2 10 96.63 96.18 97.39 97.23 97.% 97.68 97 77 928011. 6694.>411015 Sill 90.75 96.97 %.72

SI 2 272 2 215 2 272 2 273 2.285 2 263 2. 264 2.277 2 269 2 264 9101116 ffUFOFT1015 ' 69. 1 726 1. 723 1727 1722 1. 788 i 736 1732 i 716 1727 i 738 2.214 2 293 2.222 2. 222 2.222 2.219 2. 236 2 211 51 2. 2P6 2. 229 coN IL 1.769 i 771 1. 7;6 1. 792 1. 779 1. 771 i 779 1.778 1.759 1 773 (P I. 901 ‘373 TE 8. 971 8. 091 8 882 8. 099 y I 093 CR 1002 0. tel 8 003 B. 904 0. 009 0. 804 0 081 r,•• 0 090 9 801 9071 0.881 0. 8835 8. 091 FE 8. 003 9 001 0002 8. 092 8 031 Nt 0 902 0 009 8. 002 0. 002 8. 992 0. 992 0. 801 1081 V I 801 B 005 9.811 0 003 O. gel 8 802 CO 8.801 SC 0.003 282 B 093 0.081 9.003 B 093 8 991 9 933 n9 0 ~_ tt1 0 001 8. 001 1.8 ? C44 0;29 9. 746 9. 755 0. 740 8 749 8. 755 8. 736 8. 741 0 739 ' C9 III 8. 932 8.092 !M 9 217 0 223 0.229 8.224 8 248 8.234 8.235 8. 247 B 240 8.233 9.002 9.993 1902 0.004 8.909 0.082 ^ 8 0008.000 8.009 8.000 8.000 8.099 8.J09 8.090 8.009 8.088 Cn 7.11 8.939 ;0131.1! 40ï2 4.9è6 4. 978 4.977 4. 385 4.985 4.987 4.985 4.981 4.987 C8 8.794 9 799 0.734 0 736 0 771 9. 799 8. 735 0.891 B.788 0 77 221 8194 0182 8.186 0.13 8. 199 8197 8.172 8.110 0197 8.123 224 "11.03^ 1d0-S9 228 1180' 140-78 232 'Re' 140-98 0 8.030 8. 9)0 8.009 8 000 8.009 B. POO 8.900 8. 999 8 P80 8. 009 225"1t03" 140-6y 229 'F1A3' 149-89 233 1L80' 149-9C (1461141 4 333 4. 975 4. 984 4. 978 4 904 4. 989 4. 973 4. 982 4,982 4 975 226 "F_11 740-60 230 •FLA6' 149-18 227 'Pin' T40-78 231 'PM' 140-98 242 234 -Uri" 153-18 238 'MG' 153-29 • ftBG' 153-48 235 •1t03" 151.-113 239 'rue* 153-28 243 •FtBG• 153-48 236 TUl3' 151-11 24 0 •FLF4' 253-39 237 -flow 253-10 241 •f1A3. 153-3B

260 261 262 26j 'cela KFti:Eur244 245 246 247 248 249 250 251 252 253 IlEl941 Fé4?:EII1254 255 256 257 258 259 47.75 47 41 48.61 /8 59 18 97 49 18 5102 47.45 47. 2? 47. 34 47.21 /9 54 47. 53 47.67 47.84 48.04 47.50 5102 47.90 49.93 49.37 49.11 3L 56 39 96 31 64 11 82 31 53 11.203 :2 74 :2 1.5 32 12 31.69 32 09 12 81 32 18 32 15 32 19 12 44 F1233 32 57 32 51 30 96 28 4? 3L 85 1102 O. 01 1102 A09 FE0 0 95 EF203 9 03 9235 0. 93 1.02 8.82 0 01 8 91 FEO 9.94 0.01 0 35 8.97 e.e1 0.91 SC".01 9. 16 9.95 0.94 1.A7 9.02 1 12 0205 8 03 9.97 8 04 8.02 8.82 Mn 9 87 9. 94 9 01 /.04 8. 05 7r:_+33 0. 94 0 01 0 02 9 14 e. 02 9.18 E00 O. B6 e. et 9 06 0 05 I 03 1. 82 I. 97 8. 85 1113 810 1.01 e 83 !m 8.01 (lg 8. 96 1. el 9 82 @. b I e1 (1,3 e. 04 0. 92 I 83 nn 0 06 (96 15 ?1 15.'9 15. 45 15.82 15 66 15.87 16.05 15 58 15.82 16.06 CM 16. 95 16.27 '15 40 11.13 14. 99 14. 29 14. 79 15. 44- 15. 42 14 74 09.)1 2 O: 1?' 2 92 189 2 28 2 BS 2.10 2 25 215 2 A7 ne4.b 197 2 e6 2.26 2 61 262 259 260 246 242 272 s4i5I ;7.84 97 53 97.44 96 91 98.97 97.59 97.92 97.00 98.26 90.27 Y'20 L 02 9. 58 S':11 98 71 98.33 96 69 95. 57 98 48 97. 44 97. 79 98 /2 99.65 99 22 11(4!1: FFrx411C4G

2 233 2 212 0101110 Ffl.40Fr101G il 2 217 2 217 2 226 2 228 2 240 2. 227 2 226 2. 233 1 789 0.l 1 781 1 776 1 793 1. 702 1.746 1. 769 I. 766 1.769 1 761 51 2 213 2 207 2. 262 2 348 2 282 2. 26 2.265 2.253 2 261 2 276 41l 1 779 L 784 1723 L 685 L 719 1706 ' 1738 1. 741 1733 1 723 • Tt 8 903 CF 8. 0001 0.809 II 8. 099 FE 9 ?!2 0 I":~9 0. 014 0. 803 8. 090 FE . e. 1992 V 9 90: 0 092 8 001 e 991 I. 08t 8. 094 Y 8. 111 8. 8013 8. 001 I 001 9 091 9 092 Il. 001 0. 096 8. e01 'C 0. 092 e. 803 9. BBl 9 095 e. eB3 8 802 SC 9. 006 I 002 e. 001 III e. ee2 9. 092 9. 091 e. 001 ni 8 093 9 901 e.098 0.981 9.002 r0 0~ CO 0. 002 e 091 r11 0 001 8. 091 8. 001 0 891 NI 8.090 8 091 (1 0 77 9 79' 9.778 8 309 8 775 0 797 O. 893 e.775 8.788 (11 0 002 8. 009 O. 881 8. 082 I e00 !til 0 184 0 131 0 184 0.164 e.204 9 187 e.190 9.203 8.194 9.187 ZN 0 : :},n :? nqp .8. 0eT 8. 000 8. 000 9 009 8.000 8. 000 8. 000 0 Ne 0 ee2 A. ï33 e 716 B. 738 1. T67 B. 763 0 732 4.981 4.988 CA 9. 797 8.812 O. 779 B 738 (9171.44 4.:23 4. 999 /. 972 4.971 4.979 1. 981 4.905 /.983 M9 9.177 8 186 8.297 e 242 9 235 8 227 1 235 8.222 e.217 0 245 1 8 063 9 039 244 -tuer 157-51 248 1100' 153-70 252 'FUI' 153-8C 8 090 8.930 9. 009 8.090 8.999 8.009 9 909 253 11.03' 153-980 0 8. 990 8 090 8.009 245 '•1t97 (5:-!9 249 •Ftlr• 153-78 4 991 0917.11 / 9`'A. 4.931 + 1.975 4 999 4 975 4.977 / 981 4.996 4. 977 246 ^FtFn;' T`•:-(fl 250 '111.3' 153-9A 247 'Fur',' 15:-6e 251. 'FtNO' 153-98 254 -Fur,' 157-91 258'F198' 139-20 262 'FLN' 139-58 255 lien- 153-9C 239 'FIN' 139-31 263 'PLFr 139-61 256 -Fie' 1;9-18 260'F1181' 139-38 257 mer 139-21 261'Ft1G• 13'-50

twit 024T.Errt 272 273 274 275 276 277 278 279 280 281 11EIrJIT FEFCE111264 26$ 266 267 268 269 270 271 9192 49 73 48 37 50 65 51 00 50 18 49 74 58 3 59 16 98 59 49 22 48.81 49 19 48 2d 9102 43 91 43 9l 49. 59 48 /5 48.23 I1 CO 31 33 11. 49 31 20 31 27 31 22 32 38 31 68 0.212 31 42 31 07 31.12 PUT 31 56 31. 81 IL.63 31 59 31 17 SL 25 31 12 e M 1E9 8 97 8 01 9.92 8 91 1102 0. 25 9 82 8. 85 e. 07 8.83 9C203 8. 87 r,F ?. 8.83 8. 82 8 92 8. 88 8. 01 C90 FEO 0 16 9. 84 8.92 8. 01 8. 05 0 83 9. 82 A. 87 (t"3 0 01 g; 2n7 0 93 0. 04 O. 81 9. M 8. 06 14 30 15 83 C09 15 14 15.8? 14 27 14.32 14.61 L4.87 14.46 14 35 r,m 2 87 I. 08 110 3.14 2 52 e. !1 1 M 0120 2 SS 2 39 3 13 3 12 2 92 nn B Bi 8 82 99. 06 99. 28 99 95 9'11 77. 74 96 99 9?.16 99. 46 99 87 99. 83 99. 61 119 A.18 14. 79 14. 96 15. 36 r Po) 14 ?3 15. 35 15.19 14. 93 15. 03 2.55 2 38 91901C F9)1'9PiMK 11127 2:8 2 46 2. 29 2 45 2 65 2 38 96. 51 96. 97 97. 78 9+:11 97 48 98. 67 97. 73 97. 37 97. 37 2.384 2 316 2 250 51 2 269 2 273 2 320 2.329 2 393 2 280 2 316 1.693 1 684 L 748 Pt 1.724 1.729 1 630 1 E/8 1 698 1 707 1 678 01t411! FP7F0F1I0!I'S 9 981 0 001 9 931 2.266 2 267 2 252 FE 9.003 0 001 SI 2.24,:; 2. 264 2. 264 2. 267 2 263 0 001 8 092 A. 993 1726 ~ L 743 9C 0 071 9l 1 742 1 732 i. 739 1 736 i 724 1. 738 A 881 . 9 891 C9 8 091 F-' CC, 8 0900 8 809 0 892 9.881 8 091 Lp 73 9 706 9.781 0. 775 0 f l 4 , CR 9. 755 B. M9 0. 708 8 799 0,720 9.733 8.787 r~ 8 OK 0 279 0 223 IFR 0 233 A. 218 8.278 8E1. 277 8 252 8 256 888.2728. 8 283 8.901 8.003 8.090 8 e99 8 e99 FE 0 914 8.002 3 9~9 3. 9938 t~9 pN B. OBd 8. 099 099 8. 999 8. 903 0. 903 9e`nY 'C 0 971 8. 092 9. 890 0. 002 ~- . oo. ~ o:e 4. ura 4 975 4 973 4 995 4.979 4.988 4.981 4 999 C1 0.005 8 8801 0.089 9.091 . 4339-4C 'RV139-1913 27671913. 4339-338 280 1178 8.003 272 al 4330-38 281 WIG' 4338-M 0.754 8. 768 273 Tor 139-198 277'9- • 0.760 8.759 0 748 8.759 8.749 CO 0.752 274"TLR;" 4330-I11 278 'PLAT' 4330-48 8.241 8.218 8. 232 0.215 F11 9. 207 0 221 0. 207 8 222 4339-48 8.008 8 099 '1t03• 4370-18 279 'nag' n R 909 8 P97 8.000 8.088 8.099' 8.889 275 4.972 1. 985 4.992 COT'30t1 4 715 /. 979 4. 969 4.975 4.994

268"Ftm' T39-69 $ 64 -ri ,*3' T:' fA 65 -FLiyi" T"'- 269'FtA.; 137-28 266 nor 139-78 •270'PLR0' 139-9A WO' 139-98 2~7 TOG" 139-78 271 1EI711 eE10ElY0 282 283 284 285 286 287 288 289 290 291 11E►981 BEP1E111 292 293 294 295

5102 50 7? 4964 49. 51 49. 37 50./1 59 7e 50.19 49.15 58. 4/ 58. 36 5102 4? 99 49. 91 50. 55 50.19 01.297 31. 29 30. 01 31. 82 29. 75 3160 31. 43 3163 31. 79 31. 23 3188 P1203 IL 45 31 78 3113 3123 T192 0 01 0. 91 8. el 0302 CeS): 9 05 0. 92 0.03 0 04 e. 06 CP2113 003 F50 2 24 9. 01 151 0. 07 9. e5 4101 9. 02 9. 08 fil 0. 04 9 04 3330 0.20 Mn.- 5C293 9. 93 0134 103 104 113 1 M :CM3 9. 92 9. A4 9.03 e.11 C5n 0. 02 1101 MO) 1110 9. 93 Cr') Clc? 9.15 913 9. 06 9 P7 1.1e (in 9 21 9. 99 0 07 9. 93 rF^9 14 55 14 70 15. 31 14 28 14. 60 •14. 71 14. 90 15.92 14.61 15.10 C00 14. 37 15. 09 14. 26 14. 76 0929 3 0 2 22 2 57 2. 86 2 96 2. 94 278 2 63 2 81 2,74 1820 272 2 68 2% 29i Fil ''9 ?, .>3. .11 99. I5 97. 81 99. 77 99. 90 99. 66 98, 53 99.17 100. 28 1.20 SVP ?9.30 9154 99.93 99.18 9U4!!r Fv,c!c1UaY1 gTCMIC 11(4'0R1106 51 2 :13 2 239 2.272 2 313 2. 299 2 308 2 Le0 2.272 2 312 2 209 Pl 1 61 1 65 1.721 1.641 1 699 L 687 i 704 i 727 1 687 1783 51 2 299 2 263 2 314 2 299 1.1 Pl 1 792 i 711 1683 1692 1>, 1I 9 infl 9090 0 900 N 5P 9 9K 0 9)1 0. 091 8.002 0. 002 11 ri 0!h : 0. 909 9. 959 0 903 9.082 0. 001 0. 891 . 1083 U. 1991 IM 0 014 FE 9.082 9. 082 F5 0 991 0. 892 9.901 0.801 9. 091 9. ON 113 C0 1001 9. 808 5t 8 991 9.993 9.881 1004 III 9. 081 MI C O 9. C94 1994 B. 002 9.093 9. 003 CO (0 0;15 0. 7:9 0 753 8. 717 8 714 8. 718 9. 734 8. 744 9. 718 9 739 03 0 997 ' 9 09I 8. 001 1091 110 0 4 9 217 0.22? 0 259 9.252 e.259 8.246 9.235 9.258 9.241 3.0 9.736 8.735 8 791 9. 726 0 8. 054 9 9n99 3 099 8. 999 0 000 8. 098 8. 089 8. 008 8. 809 0. 888 IM1 9. 242 9 218 9. 264 0. 259 1:91341 4 934 4. ?.?7 4.991 4. 994 4.981 4.976 4. 979 4.981 4.968 4. 979 r 9 3 900 8.009 8.009 8 O08 282 "Fie; 43.(-56 28611.93' 4310-118 290 1180' 4338-139 591931 4 979 4.976 4 970 4.981 283 1103' 4;:0-:al 2871193' 4330-11C 291 'FUg' 4339-138 2811 'Wei' 4::0.7:8 2881100' 1330-12P 292 'FUiO' 4330-15P 285 'FU00' 4_:9-119 289'PL119' 4339-128 293F999' 4330-168 29 ',tir,' 4:10-179 295 'F195," 4310-1:8 IEIaIT FEr.cEnT 316 317 318 319 icon PERCENT 296 297 298 299 300 301 302 303 304 305 320 321 322 323 324 325

SI02 46 99 46 63 45.99 46 11 45 57 44.99 5102 46 94 45 65 45. 41 46.38 45.44 45 26 45.74 46.14 45.11 45 79 45. 13 43 48 45 03 44 64 9.203 3169 18.203 32 26 32 71 3175 32 05 32 71 32 88 32 57 32 84 32. 47 32 56 3122 31. 19 3182 3189 32 28 31 74 32 27 32 26 32 15 FE0 9 03 FE0 9. 53 8 83 9 89 0 88 8 94 0% CIG 16 25 17.07 17. 83 16.25 16.84 16.98 16.85 16.08 17.15 16.32 CRO 15. 70 15 44 15 n 15. 47 16. 86 16 49 16.22 16.39 16 48 16 44 14120 14020 2.17 168 143 2_85 168 171 182 161 147 183 2 35 2 37 2 46 2 52 1 93 1 58 1 92 1 72 1 79 L 7/ SUN 97.62 97.12 96.15 96.65 96.59 96.67 96.99 96.33 96.20 96.49 SUI 95. 86 95. 68 94. 99 95. 21 95. 46 95 34 95. 09 95. 90 95 53 94. 93

ATOMIC 169FOR1ION5 AtONIC FROFORTT0N5

SI 2 203 2.169 2.175 2 1% 2 159 2 151 2.166 2 195 2.155 2 175 SI 2 203 2 229 2 217 2 220 2.199 2 165 217e 2 175 2 164 2 159 18. 11l 1 785 1 824 1 792 1 791 L 832 1 838 1 918 1 797 1 828 1 823 L 785 L 739 1. 772 1 768 1 685 1. 830 1 886 1 819 1827 1. 833

FE 1. 901 0. 881 1884 9 903 8 082 0 002 Ft 8. 821 CA 1.884 0.798 0 854 It 848 0 849 0 852 rn 0. 017 8. 865 0. 874 8. 826 0. 858 0. 861 8. 855 0. 820 0 878 1838 0. 791 1 793 9 926 0 839 N9 I. 218 9. 228 e. 239 9. 235 8.189 0.147 0. 188 0.168 0.159 8 159 141 8. L°8 0.154 0.113 0.189 0.148 0.158 9 167 0.109 1 136 0.168 0 8. OM 8.999 0.848 8.898 8.900 8.888 8.890 8.090 8.009 8. 098 0 8.009 8.009 9.000 8.808 8.000 9.008 8.800 8.000 8.800 8.808 fATSTM 5 012 5 098 5.812 5.017 4.999 4.993 5.887 4.995 5 991 5 993 CR191.111 5. 803 3. 804 4, 995 5. 002 4, 997 5 898 5 007 5. 091 4. 999 4. 997 F-' 327 I(1011 098CE181 306 307 308 309 310 311 312 313 314 31.3 NE1arr ma-PIT 326 328 329 330 331 332 333 334 335 N

5102 45.13 44.65 43.81 44.83 44.19 44.23 44.39 44 37 44. 43 44 58 5102 45 50 45. 19 45. 32 45.95 45 17 45 21 46.34 47.94 46. 46 46.81 F1203 12 96 32 23 12 59 32 23 32 38 32 39 32 12 124e 32 26 32 31 18.203 12 47 32 72 32 33 32 24 32. 38 3216 3181 3155 31. S2 3155 1E0 9.99 0.02 0.06 0.87 8.98 0 83 9 94 FEO 0.01 8.09 9.09 0 e5 9 84 1330 16.32 16.32 16.91 16. 02 16 73 17.09 16.62 16. 64 16.59 16 67 C00 16 56 16.79 16.58 16.28 16. 41 16.67 15. 82 15.66 15 48 15 48 11120 185 1.55 138 138 L S5 125 149 168 148 1.48 I0120 1 68 1 70 1.67 223 1 52 L 71 2 20 2.35 2 45 2.25 9.11 95 44 94. 76 94. 65 94. 52 94. 06 9l113 95. 92 95 84 94 77 95 88 BOO 0. 22 941 96. 21 96. 40 95. 89 96. 69 95. 79 95. 97 96. 25 96. 65 95. 94 95 30 411111C FROPOR8106 8TO1IC FROFO?1tON5 51 2. 171 2 161 2 128 2 142 2. 142 2. 148 2 147 2 146 2 153 2 152 1< 1. 918 1 838 1 866 L 648 1 846 1 847 L 842 L 846 1 842 1. 841 SI 2.169 2 153 2.168 2 181 2 166 t 163 2 296 2 227 2 217 2 209 AL L 824 1 838 1 823 1 894 1 830 1 825 1 785 1 768 1 773 . 1 786 FE 0. e83 8.081 8.082 8.003 / 083 0 001 0 992 CA e 841 0.846 /.881 0 877 e 878 9 see 0.072 0. 062 /. 891 8 864 FE 0 001 8.003 9.003 8.982 9.002 111 8.172 8.146 8.122 8.130 0.145 0.117 9 148 9. 150 0.139 0 139 C11 9.846 A. 857 8. 858 8.828 t 843 8.853 0. 897 9.794 0.791 0.797 0 8.080 8.008 8.999 8.909 8 008 9 090 8 800 8 800 8 000 8 009 I81 0. 155 /.157 8.155 9.295 9 141 9.161 0.26ï 0.216 9.226 0.218 C111511 5.096 4.991 4.999 4. 919 3.097 4.994 5.991 5 003 4 995 4 996 BA 0. 004 0 8 1b0 8. 000 e.ee0 e.e9e e. egg 8 e99 e. Dee 8. 0•99 8. 888 8 009 316 'FLAG' 143-78 323'RIG' 143-80 330 'FM' 144-IC CeT5181 4 995 5. 096 4. 9% 5 018 4. 989 5.194 5. 803 5. 0080 5. 019 5. 082 317 TUG' 143-79 324'FLRO. 143-9A 331 1100' 144-10 ~ 1 P 'FLAG' 043-7C 32511AG' 143-98 332 7tRG' 144-3A 296 'ILAG' 143-111 suns 303 'FLAG' 143-20 310 'PIA' 143-SC 319 'FLAG' 1141-7D 326•FLAG• 843-9C 333 FM' 144-38 297 •FLAG' 843-1B 30 'FLAG' 143-3A 31 1 -FLOG' 143-51) 320 'PM' 84I-01 327 'PUG' 143-93 331+ 'FLAG' 144-3C 209 'FLAG' 143-1C 305 'FUG' 143-38 312'FLAO' 143-6A 1 •PL110' 143-86 328'FLfG• 144-1A 335 'PLAG• 144-30 •FLAG' 143-1D 306 'FLAC' 143-3C 31 ~ "PM' 143-68 3 2 299 322 •FLAG• 143-8C 329 TOG' 844-1e 300 'F111G• 143-2A 307 'PUG" 143-3D 31 'FUG' 143-6C 301 'PIRG' 143-20 308 "PIRG' 143-54 315 •FLAG' T43-68 302 •RAG• 143-2C 309 'nor 143-58 1E1011 PERCENT 336 337 338 339 340 341 342 343 344 345 Imo man 156 357

5102 44.39 44.22 44.43 44.23 44.34 44.65 44.62 46.58 44.72 44.57 5102 44.75 45.62 5102 1L203 32 31 32 38 32. 27 32 58 32 47 3213 32 50 3114 32 23 32 24 11.203 32. 75 32 37 11203 EEO 8.10 8.01 1.81 8.05 8.87 8,12 t.07 8 82 FE0 0 08 EEO CM 16. 68 16 86 16 86 16. 79 16. 59 16. 75 16. 89 15. 05 16. 87 16. 51 CM 16. 65 16. 43 CIE! 18120 154 1.44 138 153 1.49 1 64 1.56 2 69 156 162 11120 1 61 1 93 19120 SUM 95. 02 94. 82 94. 96 95.16 94. 94 95.17 95 64 95. 50 95 44 94. 97 511M 93. 76 96. 42 9.11

MIMIC PROPORTIONS RTONC PROPORTIONS

SI 2.148 2 144 2 150 2 137 2. 145 2 156 2 146 2 229 2. 154 2 155 SI 2 146 2 172 SI IL L 842 L 845 1 840 1 855 1 852 1 829 1 042 L759 1830 1.837 AL 1 851 1. 017 FL

FE 0.004 0.000 0.881 0 802 1.083 0.005 I.003 0.081 FE 0 803 FE CA 0. 865 8. 876 0. 874 0. 869 0 860 t 867 1. 870 0. 773 8 871 0 856 al 0 856 0 838 CR 00 0.144 8 135 0.129 8.143 t.148 t.154 1.145 t 258 t 146 t 152 III 0.158 I. 178 NI 0 8 000 8. 800 8. 808 8. 088 8. 088 8. 008 8. 008 8. 008 8. 000 8. 808 0 t 800 0.000 0 601911 5. 003 5. 000 4. 994 5 087 4.999 5 806 5 085 5 016 5. 083 5. 001 607931 5. 082 5. 800 099931

356 MPG' 144-8D 357 ?LW 144-e1 NEtrl1T PERMIT 346 347 348 349 350 351 352 353 354 355 La

5102 44.62 44.58 44.35 44.17 44.12 44.56 44.76 44.92 4515 44.96 1(203 32 37 32 55 32 38 12.74 32 66 32 85 32 78 32 43 32 67 32 38 EEO 8.13 t 87 e A2 t. 02 t. t2 CM 16. 81 16. 72 16. 91 16. 96 16. 92 16. 99 16. 96 16. 76 16. 71 16. 79 18120 1.62 161 147 127 134 141 157 167 174 1.64 SRI 95. 54 95. 47 ' 95.18 95.15 95. 86 95, 81 96.111 95 79 96 29 95. 77

ATOMIC FROPORTIQIS-

SI 2 148 2.146 2.143 2 133 2 133 2 137 2 143 2 155 2 134 2 157 RL L 837 1 847 1 844 1 864 1 862 L 857 1 846 1.833 L 837 1 031

FE 0 005 1.003 1.001 1.081 0.801 en 0.867 8.862 0.875 0.078 0.876 0.873 t 878 8.862 0.854 8.863 NF 0 151 0.150 8.138 t.119 8 126 t.131 t 146 8.156 I.161 t.153 0 . 8. 008 8. 000 8. 889 8.890 8.890 8. 000 8. 090 8. 080 8.009 8. 000 1815141 5.808 3.005 5.883 4.994 4.998 4.999 5.086 5.005 5.007 5.803

336 *roc* 144-4R 343 •FIA,• 044-50 350 'PLAO. 144-78 337 1tRA• 144-48 344 .FUG' 144-5E 351 'PIRG' 044-71 3 31!•111rIG• 144-4C 34 5 •FI.RG• 14448 352 'FT.RO. 144-7D 339 TOG" 144-4O 346 •PLIIO. 144-68 35~ *PUG' T44-BR 340 TIM" 144-541 347 'PUG' 144-6C 35 •DlA6• 144-88 34 1 •ItRO• 144-58 348 •PLRO. 144-60 355 TUG' T44-8C 342 -pm' 144-5C 3419 'PtAO. 144-7R

384 ►E111111 FEFCEeT 358 359 360 361 362 363 364 365 366 367 WIGHT man 377 378 379 380 381 382 383 385 386 SI02 47.95 47 78 46. 95 47.14 48 06 47.98 48 16 47.31 47.45 47.26 5102 49.71 48 97 49.39 49 27 59. 29 58 08 49.59 49. 76 49 51 49.47 10..20I 3212 31. 87 32. 60 32 89 32 23 3210 31 87 32 15 32 19 32 11 81203 38.13 38.39 30 87 30 68 31.12 38 18 29.65 38 68 29. 97 38 19 1.E0 8.07 1.04 8.04 • 1 82 0.04 1 87 8.07 1. 17 FED 8 87 1.08 8.83 1 17 1.06 187 1e8 8 B CM C80 15.53 15 53 16.17 16. 47 15 27 15.48 15 08 15 83 15.56 15.44 13 01 13.68 13. 38 13 62 13.89 13 08 12 84 13 12 12 71 11 89 8.8.820 215 231 197 169 247 243 245 294 216 224 110 3.44 3.24 3. 25 3.19 3.61 379 3. 78 344 3 68 1 56 911 97.73 97.50 97.76 98.23 98.07 97.93 97.51 97.48 97.34 97.12 St11 96.35 96.27 96.11 96.82 97.16 97 14 95 79 96 99 95.95 %.38

ATOMIC F 168811ONS ATONIC P0(008111815

SI 2.238 2.238 2. 198 2 195 2 217 2 234 2 251 2 220 2 227 2 223 51 2 339 2 312 2 331 2. 111 2 347 2 348 2 348 2 127 2 341 2 339 R L 767 1 759 1.799 L 895 1 768 1.765 1 756 1 778 1 775 1788 R 1 671 1 691 1 671 1 696 1657 1 662 1 633 16% 1 669 167i

FE 8,093 8.082 8.001 8.081 /.001 0.883 1.093 0.083 FE 0.903 1.093 1.8A1 0.093 8 802 1 893 8 983 1 093 Ce 8.777 0 779 8 811 0. 922 1.761 1. 773 1.731 8 7% 1.782 1. 778 Ce 8 656 1.688 1 677 1 684 8 655 0 655 1 652 8 657 1 644 /.669 III 8.195 8.219 8.179 8.153 0. 223 1.228 1.222 8.183 1.197 0.285 19 1.314 8.297 8. 297 8 298 8.325 8 344 1 348 8 112 1 337 1. 75 0 8 O99 8.009 8.009 8.808 8.090 /.080 8 000 8.800 1 800 8. 808 0 8 089 8.809 8 090 8.090 8 009 8 8390 e.099 8.099 8 800 8. 008 (1119.81 4. 976 4. 987 4. 991 4. 978 4. 999 4. 993 4. 981 4. 983 4. 983 4. 988 C01511N 4.902 4. 999 4. 980 4 985 4.986 5. 889 4. 994 4. 985 4. 992 4. 994

>811811 FE811111 368 369 370 371 372 373 374 375 376 1EI618 MUM 387 388 389 390 391 392 393 394 395 49 80 49 22 4965 5102 47. 29 47.75 47. 84 46 64 47. 41 47. 21 47. 22 49.22 49.64 5102 49. 83 49.95 49. 48 49 55 48 43 48 24 31. 54 30. 59 38 34 38 28 39 04 A1203 31 89 31 99 32 32 32 47 12 13 31 19 3126 29. 83 38 85 81203 38.35 1809 39 % 29 60 8.09 1 02 1. 83 F10 8 82 e 18 8 81 0. 06 1 01 1. % FE0 1 03 e el /e2 C199 15 49 15 31 15 41 15.84 15.62 14.78 15. 84 11 14 13.14 CM 13. 34 13. 84 12 98 11 15 1325 13.82 1299 13. % 1277 3. 47 363 14120 223 235 238 212 222 251 2 54 3. 59 3. 51 81020 3. 29 3. 72 3. 49 354 3 42 3 42 3 51 911 96 82 97. 39 97. 95 97.16 97. 39 95. 78 96.13 95 81 96 48 911 97. Be 97. 39 %. 64 96. 34 96 57 96.38 %.08 94. 98 94_ 16 ATOMIC F010 811115 11109 IC FRŒ1A110115 SI 2 239 2.237 2 238 2 197 2 224 2 250 2 244 2 3I3 2. 337 SI 2 329 2 328 2 336 2 321 2 334 2. 328 2 338 2 315 2. 326 8l 1 772 1 767 1.775 L891 1 777 1752 1 751 1667 1 667 R 1 683 1 680 1 677 1 683 1_665 1 683 1 673 1 694 1 682

FE 0.091 8.004 0 091 1.992 1.008 1.892 FE 8.894 8 981 8.081 8 091 8 891 e 891 C8 0 778 8.768 0 769 8.6w19 8 7135 0 755 /.766 0.667 8 661 CA 8.668 0 651 8.652 8 674 8 668 8 656 8 656 1 669 9 668 8.331 119 9 294 B 21.3 B 215 8 194 e 282 8. 232 8.234 0 338 8.328 1q 8. 299 8.336 0.318 8.317 8 323 0.313 8 317 9 328 0 8 090 8.800 8 098 8.099 8 090 8.000 8 901 8.800 8 088 0 8.009 8 899 8 808 8.099 8 898 8 098 8 008 8 080 8 B08 Ce1531 4.985 4.986 4.989 4.997 4.988 4. 989 4. 997 4.998 4.989 C0199 4.971 4.999 4.984 4.9% 4.998 4.998 4.981 4.995 4 9% '11.89' 147-98 358TIM' 145-18 STFMB 365 •1103' 145-48 372 •FLAG• 145-88 377 '118G• 147-251 384 11A5' 147-68 391 385 •1110• 147-7A '11.98' 147-118 359 .PLAT 145-18 366 •R113' 145-51 373 *PM' 145-90 378 'FLAG' 147-28 392 147-78 "FOG' 147-118 360.1119,• 145-241 367 •R8o• 145-58 374 'POW 145-98 379 •RAG' 147-38 38C •R/1G' 39 •RAG• 117-110 361 '111r,• 145-28 368 •FLAG• 145-68 375 'PUG" 147-1A 380'1888' 147-18 387 'FLAG' 847-88 394 3B8 'RAG' 147-99 'RAG' 147-128 36211_143' 145-38 369 71.96' 145-69 376 11AG• 147-10 381 'FUG' 147-48 395 369 'RI1G• 145-38 370 'FLAG' 145-78 , 382 '1188. 147-48 389 •R8G• 147-8C 3113 'RAIS' 147-69 390 'FUG" 147-911 3641193' 145-48 371 'R813' 145-81

;EIGHT81811W 14 15416 417 418 419 420 421 7t22 423 424 1E1911 etKExr 396 397 398 399 400 401 402 403 404 1405 5102 47. 39 47. 48 47. 53 46. 04 46. 97 46 78 47. 06 46 99 47. 77 47. 23 S102 47.23 47.70 48.14 48.14 47.54 47.71 47.87 46.80 47.59 47.53 01203 30 65 31 29 38 85 38.98 31 11 30 61 30.96 30 78 30 39 30 45 01203 3120 3151 3109 30.54 3120 38.97 3145 3120 3179 31.45 FEO 0.11 0.01 0.04 1.06 1.01 8 04 FED 0.02 8.84 0.81 0.87 0.06 0.06 Cm 13. 77 U. 99 14. 03 14. 21 14. 48 14. 26 14. 26 13. 97 13 75 14 10 • 00) 14.32 14.38 14.19 13.77 14.38 13.98 14.53 14.13 14.61 11.43 11120 249 273 2 86 2 98 2 77 2 72 2 74 2 84 3.00 2 72 11120 2.66 2.11 2 43 2. 58 2 36 258 221 221 289 2 24 9111 94. 40 9151 95. 28 94. 97 95. 31 91. 28 95 03 94. 62 94. 90 94. 49 SUIT 95 43 95.74 95.86 9103 95.48 95.16 95.32 95.53 %86 95.73

R10MIC FNMA IONS 0101111 FFOF0011015

SI 2201 2 262 2 271 2 258 2248 2 258 2 257 2 262 2.2% 2 275 SI 2.255 2 263 2.2131 2.298 2 264 2 277 2 248 2 279 2 252 2 259 R 1 738 1 757 1 737 1 751 1 755 1 745 UM 1 746 1 717 1 729 IL L756 1 762 1 736 1 719 1 752 1 743 L770 1747 1 773 1 761

FE 8 004 I.B80 1.082 8.082 O. ON 8. 002 FE 0.081 0. 002 8. 801 I.803 1.893 0.002 co / 718 8 714 I.719 8. 731 / 738 1. 739 1.733 I.728 8 786 8 728 co 0.733 8.731 1721 0.704 1730 8.711 /.743 8.719 8.740 1.735 MI 1 212 I.254 0.265 0. 2713 8. 257 / 255 8 253 I.265 0. 279 8 254 Fn 8.246 8.194 0.223 8.239 8.218 8.239 I.284 8.283 8.191 8.206 0 0. 000 8.000 8.090 8.B80 B. B88 $3. tee 1.000 8.e00 8.808 8 000 a 8. D00 8. 000 8. 000 8.000 8 0e6 8. 988 8. B80 8. a00 8. 800 8.080 CR7938 4.965 4.986 4. 992 5.887 5.002 4. 9% 4. 995 4. 9% 4. 991 4 987 CR15U1 4. 998 4. 952 4. 962 4. 961 4. 968 4. 978 4.968 4.948 4.9% 4. 963

HEIGHT PERCE% 429 426 427 428 429 430 431 IEI908 FI 40 407 408 409 410 411 412 413 414

5102 47.16 46.52 47.28 46.54 48.30 48.58 48.43 5102 47.52 47.33 47.73 47.36 47.53 47.27 47.48 47. 81 17.77 F1203 3103 38 76 30.88 38.48 29.68 29.69 29.45 11.203 31 55 31 41 31 23 31 28 31. 48 31 23 31 47 38 68 30.80 FED 8.86 0.08 8.83 8.89 I.85 8.82 106 182 FE0 0.83 C93 14.32 14.36 13.42 11 79 U 96 12 81 12 92 100 14. 61 14 43 14. 32 14. 33 14. 21 14. 24 14. 62 13. 08 13. 93 11420 266 262 3. 84 2 60 3.59 3.45 3.67 114120 2 23 2 26 2 35 2 42 2 16 2 42 2 87 2 57 2 58 531 95.17 94.33 93.89 9149 94.49 94.62 94.52 000 5111 95 94 95 45 95. 63 95. 41 95. 38 95.16 95. 61 94. % 95.17 RTOMIC FP.OFORTIONS

OFOMIC F10F11411015 SI 2 257 2 250 2 290 2 265 2 323 2 339 2121 IL 1 751 L 753 1.717 1 748 1 678 1 678 L 663 51 2 254 2 256 2 268 2.259 2 264 2 259 2 255 2 287 2 288 FL i 763 1764 1 750 L 758 1 763 1 759 1 764 1.738 1 737 FE I. 803 8 903 0 801 0.084 8.802 131 8.735 1 744 0 697 8.719 8.668 8 658 0.666 0. 0. 801 8. 802 8. BBS FE 881 91 0.247 1 246 0.286 8.253 8.335 8.328 8.342 0.729 8.745 0.711 1.713 CR 0.743 8. 737 8.729 8.732 8.725 a 8. 008 8.008 8.000 B.000 8. 000 8.008 8.BOO NB 0. 205 0. 209 0 217 8.224 8 280 0.224 0.191 0.238 1 239 C91914 4. 990 4. 9% 4. 993 4. 986 5 005 4.991 5.807 8R 8.008 8.eel 8.080 8.008 8.800 0 8.800 8 000 8 00e 8.009 415 •Plm' 150-40 421 'Ftm• 158-98 427'1' 150-138 4.964 4.974 4.953 4.972 4.958 4.967 4.970 00911 4.966 4.966 416 1100. 850-50 422 1188' 199-110 428 nor 15e-130 417 •F1803• 158-58 423 1190• 850-118 429 •FLAG• 148-21 410 71.110* 142-08 396 'rim. 142-18 1403 •Flm^ 142-40 418 '81-m' 150-80 4281 1138G 150-129 4301180V 148-28 •P1m• 112-91 411 'FUG' 150-19 397 'Elm" 142-113 4011 419 'FIFA' 159-88 425 -, ,-; r.-1 431 1180. 140-01 412 'PM" 150111 398 'KM' 142-23 405 •Flm• 812-58 420 •Flm• 150-90 426 -11F7; 1•A-tic 99 •Ftm• T42-28 4 06 •Plm" 112-60 413 1,15G° 850-28 400 TOT142-30 407 'FM" 142-68 41 •8193" 150 Z8 401 71419• 142-38 1408 ^8t0V 142-78 402 1180. 142-40 409 •818• 142-81

11EI1411 FEFCENT 432 433 434 435 436 437 438 479 440 441

5102 48.41 48.83 48.53 47.89 48.36 48 37 48 72 47.79 47.49 47.88 01203 29.77 29 77 29. 63 29.93 29 91 29 30 29 85 29.94 29.91 29. 44 FE0 8.04 9.18 0.04 0.01 085 0.06 8.06 8. 84 8.88 COO 13.24 12 90 12 94 11 19 13.95 12 71 12 73 11 37 13.36 13.00 94120 3.42 356 3.45 3.30 3.54 3.78 3.66 3.32 3.21 3.39 SUI 94.89 94.44 94.54 94.26 94.87 94.14 95.03 94.48 94.111 9170

800n1C FROFORTIa15

51 2 319 2 313 2 329 2 388 2 316 2. 334 2. 3V 2.381 2. 299 2 320 R1 L 681 1. 699 1 676 1. 780 1 688 L 666 1 681 L 708 1 706 1 682

FE 8 002 0 004 8.082 . 8.000 8.082 0 002 8 093 8.882 8 803 al 8.679 8 678 8 666 8. 677 0. 670 0 657 0.651 0. 698 8. 692 8.675 IB 8.319 8 332 8.321 8. 398 8 329 0.I46 8.339 8.310 8. 381 8.318 0 9.889 8. 09e 8. 0913 8.080 8. 009 9.980 8 000 8.090 8.000 8.000 CR19U1 4.999 5.098 4.992 4.995 5.083 5.995 5.091 5.803 4.999 4.997 F-' 1,0 cart Mal 442 443 444 445 446 447 448 1T

5102 48. 03 48. 48 48. 49 47. 61 47. 81 47. 58 48. 36 5102 11203 29. 91 29. 36 29.28 29. 72 29.64 29. 35 29. 54 91.203 FEO 0. 04 8.8I 1.08 9 04 8.29 FEO COO 13.82 12 77 13.08 13.24 13.09 12 74 12 98 C110 11120 3. 27 3. 46 148 3. 22 128 3 38 145 14920 gnu 8 92 ono gun 94. 26 94. u 94. 25 93 79 93. 78 93 29 94. 31 9U1

RTaIIC PROMPT 1015

51 2 313 2 I37 2 336 2 307 2. 315 2.318 2.327 SI 9L 2.698 . L 668 1. 663 1697 L 692 1. 686 1. 676 IL

FE 0.001 9 001 8 003 8.092 8 812 FE CR 0.672 0 660 8.671 0 6:.: 8 679 8.665 0.678 CO 991 0. 305 8. 324 9 317 8. 382 8. 390 8. 312 1 322 188 6R e.090 RR 0 8.880 8. 809 8 088 8 000 8.000 8 008 8.090 0 CR1911 4.999 4.990 4.999 4.994 4.988 4. 934 4.995 CRTSLM

4 32 'FLOG' 148-38 . 438 'FLOG" 148-6B 444 •FtriG• 848-98 431 'FMS' 148-49 439 -row 148-713 445 'Fuir 148-12R 4 34 •FtllG' 149-48 440 •FLAG• 148-78 446 •F16G' 849-128 435 •FtRe• 148-59 441 •FtRc• 148-811 447 •Fine' 148-131 436 'FLAG' 149-50 442 'FOG' 149-88 446 •F1ne• 149-13e 437 'run- 048-6R 443 •ttn0' 149-99

471 472 473 474 475 476 477 478 NEI311 Ctner 449 450 451 452 4S3 454 455 456 457 458 .EialT PEKer, 469 470 59 69 '132 54.16 5123 50;19 5127 5138 55.81 53.72 S1 78 52 34 3102 53 48 55 5: 5140 51. 84 50. Ed 55 27 54. 69 53 54 53. 50 53. 43 29.99 2548 8103 29, 78 29. 26 3131 27. 73 38. e2 27 87 28. 67 31. 22 81.203 25 '7 27.16 29. 75 29.11 38 32 26 98 27. 81 28. 48 28. 77 27. 55 14.11 12 68 694 1157 12 M 14. 77 1136 13. 41 19. 37 1155 600 11 37 9 65 13. 02 12 44 13. 69 9. 76 18. 59 1136 11. 93 19. 18 'PO 7.41 1 34 144 128 4. 57 118 3. 79 NPîO 4.64 5.75 170 197 148 546 4.89 4.72 4.50 5.44 .;p 4. 79 4. 35 2 96 99. 78 98. 23 99 53 98 51 99 38 98.73 99 45 K10 8 02 181 801 l 99. 38 99.16 99. 24 501 97. 86 98. 89 97. 89 97. 36 98 89 97. 48 97. 97 98. 83 99 71 98. 68 IT]RC PROFOF.iIQS ATOMIC FFOF^&TiOtü 2 388 2. 666 SI .• 2 455 2 416 2 2°6 2 504 2 366 2 582 2 452 2.319 148/ 1638 1494 1542 1.681 1.611 1.837 SI 2.460 2 534 2 376 2 483 2 343 2 M8 2.585 2 457 Z 442 2 520 AL 1.535 1565 1688 AL 1. 5N 1.461 1. 621 1590 i 652 1460 1.501 1536 1548 1477 86/6 e. 332 60 8 561 8 599 e 724 1503 9 662 0.505 t 565 8 691 9 337 a 466 a 485 1. 281 e335 fl 642 co e 560 8. 472 8. 645 B. 618 1678 a 480 • 1519 a 559 e. 583 1496 tp O. 428 O. 383 e 263 a 469 8 e0e 1998 8. 808 a 888 a ON a eee 9 eee Ir+ 8. 414 8. 589 8.332 e. 3Sï 8. US 1486 9 435 8 428 a 398 O. 479 O' 6. 808 8. 888 8.000 4.958 4. 965_ 4. 967 ( 963 4.972 4.433 4. 978 K 8. 001 a eel e. 881 041911 4. 968 4.963 4. 970 0 a 888 8.080 8.808 8.280 a 088 8. 00e a 808 a 800 9 880 8. 800 C4T931 4. 973 4. 977 4.975 4. 969 4. 978 4. 964 4. 968 4. 972 4. 971 4. 973 N 484 486 .• 487 488 v Mart PERCE11T 478 480 481 482 483 485 59.43 • 5+12 59. 74 59. 47 59. 82 59. 92 39. 77 59. 82 6819 79. 47 59.89 462 463 464 465 466; 467, 468 25. 00 18.1341 n../17 459 460 461 8..203 21 19 2137 2191 2139 2149 2128 24 99 2124 25.34 698 U13 7.013 7.09 6.61 6.89 6.98 679 665 6 98 698 54 45 54. 58 55. 48 5179 5154 756 5112 53 56 52 72 5218 5133 55. 85 !KO 734 7.37 7.25 7.55 7.28 7.61 7.62 7. 49 7.39 38 14 29. 28 8173 28. 46 25. 79 2' 67 38. 28 27.14 28 82 28.13 27. 32 97.69 99.75 99.45 99. 42 99.43 99.18 99 52 98.85 12.16 911 ' 99.33 99.29 CPO 11.55 11 15 12 94 13.68 9.64 18 78 10 97 9.97 13.31 156 178 4.27 'NP20 4. 73 4. 30 3 o-: 129 171 104 4.95 ATOrIC PROPC61I06 K211 8 91 98 63 98. 25 99. 82 99. 26 2674 2 673 SJM 98. 30 93 95 98. 51 98. 49 9a 34 98. 31 SI 2 671 2 662 2 673 2 669 2 666 2 674 2 686 2666 1.334 1. AL 1327 1339 1335 1333 1341 1.127 1314 1.134 P/09IC P58FOFTIONS e. 335 e.338 0 331 CA 9 339 8 348 8 321 8 328 1134 1325 a318 8 2488 2. 486 2 526 7.364 2 428 1639 8 659 SI 24:4 2468 2399 2359 254 t41 1636 9 639 . e e37 I. 652 0. 623 8. 669 1659 e. 632 1589 1518 5.468 1. 622 1. 565 8 828 R 1. 5:7 1. 423 •1584 1636 1455 .0 B. 8e0 fi 808 8. 00e 8. 088 8. 089 8. 808 8. 800 8. E413 8.Be8 4.966 4.983 4.964 4. 986 4. 977 4.988 4. 977 4. 989 t 541 C0701 4.974 4.988 9. 567 9 559 9. e36 9673 8. 478 8. 528 9. 535 8.487 11651 CA I 373 NA 8. 420 B 390 a 3.~3 8 292 1583 9 447 9 437 e. 492 8 335 K 8. 001 a we 8 00d 8 909 8. 009 8. 898 8. 090 8.980 8.898 8.e09 8 B0e 0 48~ •DL90. 116-5C 4. 967 4. 961 4. 967 4. 972 4. 968 4.974 4. 972 4. 968 469 •r ac• 54-10 a~t2 476 17.118• T54-58 6919.41 4. 978 4. E49 •P'_86• 116-713 . 47 0 'FrAù' 154-114 Cfx2 477 'PUG' 154-68 48 471 'r`.Pl,• 15+-V 4ZB •PtAG' 116-4A 485 •PIAG• 116-78 116-7C 472 •PI.A;' 154-28 479 'kW 116-48 4E6 'PliIG• 480 •Pt.as• 116-4c 487 •PL9ri• 116-8A 473 .R.PG• n4-4A 488 •PLAG• 116-8E 449 •r_ PP• 17-0 456 "F:°:• 179•-49 463 'F194• 179-7A 481 'F °fi• 116-93 474 •P1P5• 154-48 482 •PIf4I• T16-58 450 ',tn. 179-18 457 ?LW 179-48 46 :_w• 179-•78 179-99 475 •F .9G; 154-53 4 51 T'9-1; 458 'PIA' T79-59 465 'cue; 452 •PITr3• 459 •PLaI'i• T79-58 466 'MG" 17948 453 APT 79-:.8 460 •nrT• rie-g0 467 •FtfIG• T54-11: 454 7:i.î• 179-38 461 •r-z•G' 179-68 468 *PUG' 154-1F 455 PIrLi" 179-3E 462 -PIA' 779-6C

512 wpm FE.6+7489 490 491 492 493 494 495 495 497 498 K::,? L5C:5'•'509 510 511 513 514 515 5d 5.? S0 54 . 5155 514. 5192 68. 40 58 66 59 82 59. 32 59. 58 59. 1.9 5158 51. TA 51. 38 5112 5112 j? EO 50 42 11.17 38 47 :11. 54 30.15 R1_•~3 24 41 25. 25 24. 57 25. 21 24. 03 2103 38. 21 Za. 96 30. 02 29. 71 91.2.,: 28 51 :9 58 70 53 30 62 690 196 994 6.33 7. 95 6.18 982 13. 38 1261 1126 12.77 521-25 0.v 14. 31 13. 62 114é 9820 7. 81 7. 33 7. 89 6. 83 7. M 6 86 159 175 17e 179 1:01 14 27 L'. 55 13. 93 13. 36 155 3. 79 SW 98. 57 98.18 97. 91 98 40 97.17 97. 09 98 68 91.12 98 36 97. 31 9154.20 2. 83 3. 38 3. 29 3. 35 125 020 99.26 98 80 ATONIC 0R1*I0T1016 901 9714 98. L 97.97 99. 9e 90 67

SI 2 715 2 655 2 796 2 674 2 715 ' 2 680 2 362 2 382 2 364 2 376 8110111 Ps!F134?19'é 1628 AL 1293 1 347 1319 1349 L 201 1336 L 633 L 624 1629 2360 SI 2312 2336 2333 2 343 2 378 2 354 1653 1651 1 643 1.629 CA 8 297 0 316 8 307 8. 341 1. 382 8 331 1. 657 8 621 8 654 8 636 Pl. 1688 1.6E2 1665 919 8. 691 1. 643 8. 622 8 597 0. 652 1. 692 8. 319 11334 - 1 331 8 334 0 8 809 8 009 8 990 8.008 8. 000 8. e90 8. 980 8 898 8. 808 0 880 V 8 001 8 795 0. 666 1.663 171119.11 4. 975 4 981 4. 945 4. 952 4. 961 4. 949 4. 972 4. 962 4. 977 - t 974 CA 1 714 0 674 0. 686 1. 689 N9 0. 256 O. 382 8 287 e. 298 e. 289 1. 314 I328 0 0 8 999 1. 030 8. e99 8 880 8 008 8. 090 8. 880 4.974 4.973 t978 4 908 1f10+1 F!>

KWIC PPOFCPTIONS

SI Z 72 2 319 2 398 2 342 2 313 2.330 2 348 2 342 2 336 2 328 9. 1.663 1.677 1689 1.658 1679 1664 1.644 L646 1.662 L668

V 8.003 CA 8.00 8.697 8. 712 0.675 0.714 0 694 1 674 8.684 8 678 1.698 81 0. 256 8 251 0. 257 1. Z?9 1 267 8. 281 1. 318 1 390 0 299 0 283 0 8. 999 8 099 8 888 8. 898 8 990 8. 000 8. 808 8. 888 8. 080 8.800 CR19. .*. 4 955 4. 973 4. 971 4. 973 4. 973 4. 969 4. 976 4. 975 4 975 4.978

489"0!AG' 116-9A 496'r1AG• T7-18 50~ 'p~• 17-38 490•F1F5' T16-99 97 .0' gG' T7-1C 50 'PLAG' T7-58 1491'03G• 116-10R 98.0192• T7-111 505''1AG• T7-SA . n 492 ",31 T16-L95 499 0i.43• 7-211 506 -PIA' 17-68 493' car 116-118 500•5L43' 17-3 • 507 •PUAG' 17-eC 494 ^ y' 116-118 501 •0_Pi, 17 -2C 508 •PL.a('i• T7-7A ' 495 .;,fi,;. r-1A 502 -71.961 T--:R s2rY es?,:er 516 517 518 519 520 521 522 523 524 525 1.6101-1-mcO+r 536 537 538 539 540 541 542

49 :1 43. 7.:. 43 68 49 46 49 :37 4? : ls '4 43 : 19 r:', 5182 48 67 49.27 48.88 49 99 49. 95 48 69 4?. 79 51^.2 C93^' --. , ~ ?1 3•.. 1; 3 , 19 3.3 11 __ :2 `.. :5 ~' au -_ • _ fl~~; 32 °.6 32 3T +7 65 32 93 32 82 22 72 33 36 li~..n^ 15. 5! 16 15 16.13 16.16 15. 58 15 91 15 ?? .. 15. e: . '.3 CAO 16. 75 16. 62 16. 61 16 35 16. 76 !6. 'ti 16 61 CAB 11.29 L :8 1 7: L 99 2 13 2. 1e 2 11 1.27 • 1.3? 2 0? 23/ 11120 195 183 2 81 191 2 59 2 83 217 1+120 Slt 199. 15 99 63 100. 91 129 85 18166 128 29 3?. 73 199 81 191701r-+3- 911 109.23 18111 10107 l88.18 191 22 199 14 18193 R11

Kane mPCFTi'?H$ 11TOMIC 718OPCP.T10N5

51 2 2:' 2236 2242 2238 2249 2226 2252 2242 2 229 2223 SI 2221 2247 2238 2236 2222 2.223 2232 51 AL 1 753 1 774 1 765 1 7E5 12T 1756 L 753 1765 1761 1-9 11. 1768 1741 1759 1.763 1152 1.762 1763 IL

CA 9 299 0.791 0 794 8 794 0.798 0.'E2 0 792 0.786 e. au 0:82 CA /.819 1911 1813 1798 1.813 1.829 8.798 co 819 815? 8.153 8166 0.187 9 132 0.1°: 9.166 0.10 0.184 9.176 113 1173 1.163 1.178 1169 1.227 1.188 0.18? Ni 0 8!a9 8 999 1809 8 999 8. 999 8 893 8. 9E41 8 430 8 Cva ô 399 0 l 089 /. 000 OAR 1008 8. 080 0 089 0. 899 0 CAMP' 4 752 4. 954 4 957 4. 974 4. 977 4. 97: 4 953 4. 953 4. 954 4 97 04151.11 4. 981 4. 964 l 998 4. 966 5.014 4. 985 4. 902 C1115811 53626-1-98 539 26-1-19C 542 26-1-19F 11I037 °La:5NT 526 527 528 529 530 531 532 533 534 535 53726-1-108 540 26-1-188 •• 5382E-1-108 541 26-1-10E 5222 42 E6 49 60 49 39 59 96 4? 24 49. 55 49. 30 49. L^ 49.16 43 +.1 :2 91 33. 13 32 99 129s 3z46 22. 81 32 71 32 92 32 48 ZZ. 73 690 16 24 16 56 16. 34 16.28 16 37 16 25 16.12 :6 55 16 58 1€ L97 126 2.12 L90 19? 19' 1.56 1.93 1.38 211 193. 48 101 15 19124 18138 109 96 129 53 99. 49 10e. 53 128. 12 103. 7

?T71726 9225rF72Cti5

52 1224 2 226 2 2:1 2. 252 2 246 2 24' 2. 27 2 232 2 244 2 225 'L 1. 766 1'62 1 752 L 749 1. 746 1. 754 L 767 L 758 1 743 1 -55 • 7 Cl 9 521 0 589 e. au 0. 785 0. 821 17:39 1797. a f'1 9. 811 9:1 9A 2.155 9.15: 0. 136 0.17: 91'S 91: 9165 01"? 9.175 813 0 8 023 8. M 9 9 OH 3. 9718 9. 900 9 .p! ? 7'03 3 N l 8. 1284 8:93 rp-~ n 4. °-: 4. 9E3 4.175 4 959 4. 96? 4. ?E+ 1 961 4. :'2 4. 37: 4 ::3

516 26-1-:9 523 26-1-:0 530 :-:-7A 517 19-1-25 524 25-1-18 531 21-:-713 518 525 25-1-43 532 ;A 519 526 is1-1-4r. 533 : i=3s 520 :.:±:1; 527 25-1-51 534 - --x 521 :5-1-22 528 26-1-5e 535 25-=-?e. 522 529 29-1-64 1,EI,,," n°'=v: 543 544 545 546 547 548 549 550 551 552 111.+41 PEf:E1' 563 564 565 566 567 568 569 570 571 57e. 5112 50. 36 58 34 12. 32 58. 32 58 45 50 41 49. 93 - 49. 69 5116 59. 16 5102 5194 52 37 52 It 52 21 5153 31 12 51 37 59 63 51 16 51 41 F1.11: 314? 31 7? 3192 3111 3114 319.' 30. 6S 38. 94 31 27/ 29 72 q.203 3217 33 88 3113 38 69 31 60 30 62 38 61 38 21 39 36 38 :4 COO 15.16 15.83 14.8-4 14.66 14 44 14.65 14.78 14.62 15.0 14 39 CFO 15.33 11 91 13.86 14.14 14.86 14 44 14 17 13.9i L' 84 lli 81 14O20 3.12 104 3.33 275 I. 29 135 272 128 106 :.14 113!0 3. 22 137 170 182 3 36 163 158 14: . 3. 85 3. 89 gIry ie130. 180. 48 100 90 91 84 99. 22 99. 43 90 23 9145 99168 99. 41 501 18176 188. 45 10174 101 eb 99. 73 99. 81 99. 65 93 45 99 22 99. 45 ATOMIC AROMATIC'S ATQ1IC PROPORTIONS

51 2 293 2 293 2 294 2 31.3 2 313 2 388 2 333 2 299 2 245 2117 SI 2 287 2 362 2 345 2 353 2344 2 332 2 342 2 346 2 344 2r9 FL L 690 1700 L 699 L 696 1 678 i 677 1675 1628 1 696 1.669 11. 1780 1.637 L6Si 1.630 1652 1646 1645 1.643 L640 1634

CA t 749 0. 731 a 718 1. 722 B. 718 B. 7/9 0. 7:8 t 725 t 745 B. 726 C9 t 736 O. 672 t 669 a 683 t 686 1705 t 692 0. 698 8. 680 1677 90 8. 275 0. 268 8. 241 1. 246 1. 292 8. 2°8 /. 262 I. 287 0. 272 1. 279 NF 0. zee 1.235 a 323 1133 0. 297 / 321 1319 1387 1.343 1 343 0 8. 990 8. 098 8. 900 a 030 8. 008 8. 090 8. 808 8. 009 8. 009 8. 080 0 8. 990 8. 888 8 098 8. 008 t 890 1098 8. 880 8. 880 a 998 8 808 011519 4.999 4.992 5.082 4.967 4.993 5.992 4.989 4.999. 4.9°8 4.992 881991 5.803 4.966 4.999 4.999 4.979 5.983 4.989 4. 986 5.997 1006

WIGHT PEPCENT 553 554 • 555 556 557 558 559 560 561 562 man PE9caT 573 574 575 376 577 578 579 580 • 581, 582 N 0 5182 50 10 49. 98 49. 61 49. 61 5181 51. 89 59 89 50. 89 513. 34 59. 23 5102 59. 98 52 08 52 49 52 56 5212 52 42 52 96 52 33 52 39 52 13 O F1282 31 47 3139 3127 3120 3169 3181 3125 3185 3193 3138 11.303 38. 29 3172 3182 38. 71 3122 . :E 81 38. 73 3199 38 76 3118 393 15. 37 15. î3 15 23 35. 65 15. 08 15. 09 15. 25 15.14 11 46 15 0 CFO 1146 13. 86 14. 04 1191 14.12 11 80 1173 1194 13 68 14 03 9020 3 17 3.22 1 81 1 95 2 95 1 30 3. 44 3. 13 1 27 3.13 9020 1 58 3.95 1 96 1 87 1 74 3.96 4.16 1 97 4 86 1 43 911 100 11 99. 71 99 12 99. 51 1e8 73 18129 199 83 101 01 18180 108 57 931 99 22 181 61 10151 10105 101.19 180. 9° 19150 18123 18198 101. 17

ATOMIC P90ACTTIC15 11T0!IC 080OPTIONS

SI 2 223 2 266 2 224 2 279 2 395 2299 2:84 2M 2 277 2M SI 2110 2332 2349 2361 2341 2377 2365 2349 2361 2341 F: 1692 1633 1697 1690 1688 1697 1667 1633 1. 782 1691 1L 1 648 1 635 1 637 1 626 1 1 633 L 621 1 639 1 629 1 658

CA 8. 751 a 759 8. 752 8. 770 0. 730 B. 727 / 740 0. 732 8. 749 9. 711 CO B. 666 /. 671 a 673 0. 679 8.679 0. 563 1658 8 671 0 658 a 67 N9 8 299 0. 226 a 269 8.272 t 258 8.2°3 8:82 0.274 a 28? 1 2'5 N9 9221 1346 8344 t337 B. 7k3 /. 345 8.169 8. 346 / 35: 8 334 0 8. 899 9. 088 8. 983 8 899 8. 000 8. 090 8 900 8. e99 am 8.830 0 8. 008 8. 900 8. 090 8 900 8. 090 a 000 9890 8 999 8000 1999 6915111 5.899 5. 012 5.982 5.021 4.991 5.881 5.813 4 994 5. 015 5 918 CATSUi 4. 985 5.994 5.903 4.994 4. 996 5.990 5 084 S 085 5.9M1 1 090

543 25-2-L9 550 25-2-38 557 26-2-E8 563 25-2-68 570 26-4-39 577 25-4-!8 544 26-2-1e 551 26-2-2: 558 26-2-e8 564 26-4-0 571 26-4-33 578 254-93 545 26-2-13 552 25-2-40 559 26-2-6C 56525-4-2 572 26-4-3C 579 26-4-5c 546 2C-2-29 553 26-2-4C 56021-2-78 566 2i-1-IC 573 25-4-M 580 26-4-6A 547 2=-2-28 554 26-2-`A 561 :6-3-7e 567 -4-2F 57 ,-4-4A 581 26-4-8 548 26-2-2C 555 26-2-58 562 :6-2-9; 568 25-4-m 575 26-4-48 582 2i-44C 549 26-2-3A 556 26-2-5C 569 z -4-2C 57 6 26-4-4C 610 611 612 . 11E5601 PE9iE1T 583 584 585 586 . 587 588 589 590 591 592 IEIfM PurEYf 603 604 605 606 607 . 608 609

6102 w 81 58 71 SL 19 SL 53 51. y 52 34 52 !N SL 97 52 77 . `_ 93 5102 52 47 52 62 58. 65 5195 51 27 5101 5159 SL 74 51 24 58 r 38 01.203 39.69 38. :5 38 79 38. 81 38 45 38 02 38 35 24 99 29 95 2' 34 8.203 29.58 29 54 30.ô6 30 99 38.38 31 29 38 72 30 66 38 22 43 32 14 81 15.13 15 67 CPO 14.11 14.17 13. 88 13. 79 13. 79 12 96 12 83 13. 84 12 61 L_ 35 CAO 12 64 12 44 14. 73 14. 28 14.16 14 57 14. 3 L 3.12 3. 84 11129 141 3. 49 3. 50 3. 11 3. 86 4. 90 3. 78 4. 06 4 x 11120 3 97 195 143 174 148 2 95 1:6 3. 55 108. 30 10/. 41 189 16 9U1 99. 06 99. 04 99. 35 99. 63 99. 08 99.18 99.14 98. 69 99 39 99. 32 SUT 98 66 98 55 99. 69 108. 79 99.21 99. 81 198.19

ATOMIC iROiORTICHS 010116 iROP001015 . 2.342 2 24 2 322 2 331 2.328 2 343 2 346 2 357 2 387 2 374 2 379 2 399 2 196 SI 2 483 2 411 2 315 2 346 2 348 2 321 2 339 SI L 647 L 653 1 e37 0. 1668 9.664 1.653 L654 1.642 1614 1631 1622 1605 15.74 81 1597 1595 1.664 1645 1639 1678 1.652 96 1. 794 t 736 17e3 co /. 689 1697 8 688 8. 673 8 675 8. 634 0 623 8. 641 8. 614 0 14 CA 1621 1.611 8. 721 1687 8. 695 1. 710 1. 6. 1 288 8 274 0 269 MI 8. 316 8. 304 8. 319 1399 12°4 8 341 8. M4 8.136 8 338 1. 278 08 1352 1. 351 1 Y/4 1383 1 312 1. 268 1. 296 1880 1 999 8 889 1 0m 0 8. 818 8. 8138 8. 098 8. 888 8. 808 8. 080 8. 899 1089 18R38 1 383 i 0 1819 8. 801 8. 000 /. 088 8. 088 8. 818 4. 969 4. 912 4. 974 4. 27 4. 993 C8T941 4. 096 4. 993 4.185 4.392 4. 968 4. 976 4. 987 4:973 4. 976 4 I . CATSUP l 973 4. 968 1004 4. 981 4. 984

601 .602 pEyCOO 613 616 61.7 . 618 619 620 621 IEIUiT P686E141 593 594 595 596 597 598 599 , 600 lem 614 615 51 889 531124 58. 65 51 39 5132 5(02 52. 41 52 33 52 49 52 67 53. 21 52 36 52 47 52 93 52 98 82 70 5102 5166 30 79 58 30 5151 51 12 . 61 38. 45 7! 27 et 6`^3 0.2 03 29 32 38. 31 30. 25 38. 53 29 74 29 17 V. 43 29. 34 29. S2 29 95 FO-29.1318î 31. 31 38 45 3181 3B BI 3B. SS 14. 74 14. 63 14. 36 14. 39 ;7Y1 13.01 12K 12 93 12 33 12 29 12 59 1246 122 12.72 CPO 14. 68 14. 83 1104 1126 14 92 CPO 12.72 3. 12 3 35 3. 35 WI 11120 4. 21 1 99 199 4. 28 4. 99 4 02 4. 38 4 23 :2 1920 3. 54 108 181 108 111 124 3. 78 99. 66 49. 81 99. 48 All 9A1 98. 3 99. 86 99. 55 188 12 99. 48 97.91 98. 51 99. 83 98. 95 99 25 911 189. 98 99. 00 98. 08 99. 78 99. 97 99. 61 e ATONIC PROPOP,T!O1S 010116 PPOPORTI016 23:4 2337 23x. 2344 SI 51 2393 2375 2 2380 2414 2415 2407 2416 2414. 2:99 SI 2338 2334 2319 2387 2`x'7 3E5 1.645 1 649 1.652 1 632 0. AL 1.683 L 6.~ L 628 L 626 L 591 L 536 1 592 1 579 L 583 1 i27 PL 1.658 1 642 1655 1670 1 654 I 722 8 715 8. 78.3 8. 715 CA 8. 8. 624 t 626 8 698 9. 69? 9. 619 9 610 8. 603 0 521 co 1 710 1 731 8. 743 8. 747 1. 728 CA 624 1633 t 297 8.276 8.299 8 217 TA pA 0. 352 8. 349 0 370 8. 766 8. 357 8 380 8. 374 8.242 NI 1. 319 8. 274 8. 278 8. 266 8. 274 0 335 8. 378 8. 888 9.899 9.908 8 20.9 0 8.098 8 800 8 899 8.808 8 988 3 080 8.809 8 308 9 392 o 8 889 8.000 8. 800 8. 889 8. 808 0 8. 089 4.989 4.977 4 991 4 993 OI13.11 CATnr 4.965 5.008 4.981 4.981 4 975 4.974 4.975 4.985 4.979 4.+9 CR19.01 5 808 4.981 4.987 4.998 4. 983 617 15-1-119 597 26-5-5A 60375-5-71 610 16-1-N 583 26-4-78 590 26-5-2C 618 15-1-919 591 26-5-2 598 25-5-SC 6 04 26-4-7c 611 1.6-1-W 5814 26-4-7. 619 56-1-14A 585 25-5-10 592 26-5-28 599 Y-5~~T 60512-1-)3 612 16-1-8A 613 16-1-40 62016-1-1413 26-5-1P 593 29-5-26 600 2;-5-c~ 60616-1-38 586 614 16-1-98 621 15-1-14c 587 26-9-1C 594 25-;-48 601 25-5-6C 60716-1-26 595 26-5-46 602 26-5-78 60816-1-6A 615 16-1-199 588 26-5-2 616 15-1-198 589 26-5-2 596 26-5-40 60916-1-t1 1Er7+T PmOEN+ 622 623 624 625 626 627 628 629 630 631 8E5991 PE4':E11T 642 643 644 645 646 647 648 649 65o 651

5102 49. 95 54 61 49. 93 50 13 50. 25 4? 9? 49 94 4? 77 /9. 72 5102 49.81 32 88 55 17 32 85 32 97 52. 61 52 S2 5: 23 _0.02 52 0? P1203 32 59 31 62 3147 31 18 3146 32 05 3216 31 38 31 66 8.203 31. 39 28 97 27.18 29.12 29. 99 V. P9 29. 16 29. 32 29 16 29. 57 100 15.:9 15 35 14.87 14 39 14.84 15 22 16 13 13.33 15. 26 11 24 CAO 13. 43 12 23 18.48 12 48 12 44 12 39 12 49 12 13 . 12 3? 12 74 0420 113 195 3. 21 4. 84 1. 38 3.49 315 138 124 3 4; 1*320 131 4. 72 6.21 4.58 4.69 4. 89 4 97 4. 71 5 10 4 37 SUM 18111 19153 99. 38 99. 86 99. 93 180 75 189 98 100. 22 180. 83 100 v 9.11 M. 46 98. 88 98 88 99 83 99. 87 98 88 99. 24 99. 23 99. 67 98 3

ATOMIC PROPOPTIONS ATOMIC PROPORTIONS

SI 2 256 2 282 2 286 2 294 2 293 2 268 2 248 2 278 2 269 2 277 SI 2 267 2 422 2 316 2 416 2 421 2 41.' 2 418 2 428 2.412 2 390 01 8. 733 1681 1 782 L 670 1692 1 714 1 720 1710 1 714 1 18 R. 1.711 1564 1457 1569 1561 1363 1.568 L35° 1564 1598

120 8.745 & 742 8. 731 8. 715 1 726 8.748 8. 784 8. 758 1 747 B.748 CA t 752 t 688 0.508 161.1 1699 8 695 8.611 15n 8 604 1 627 14A 8.278 t 345 8.286 8 359 8. 229 8. 387 8.278 8.292 8.287 8.381 N0 8 294 t 419 8 549 8. 406 8.415 8 433 8. 421 8 419 8.458 8 399 0 8 009 8.800 8. 098 & 080 8.000 8.899 8.000 8 800 8.800 9 808 0 & 808 fl B08 a 898 B. 008 8 808 8.000 8 880 8.800 8 998 8.008 CAT9J♦1 5. 014 5 858 5. 085 5 845 5 819 5 029 5. 830 1822 5 817 5. Z32 0315111 5 824 5. 983 5 838 5 982 5. 886 5. 821 5 039 5. 8e1 5 838 5 8e4

1E1912 PERU 632 633 " 634 635 636 637 638 639 640 641 1E8947 PERCt01 652 653 654 655 656 657 658 659 66o 661

5102 58 39 50. 53 58.24 58 82 38. 78 50 33 50.73 58. 57 50.67 52 48 5102 52 68 53.29 52 98 5185 518Q 53.13 58 32 58.66 58 48 58 69 11.203 3168 32 17 M 06 32 17 38. 84 31 11 3126 31.9e IL 24 31 13 11.203 29. 19 29 26 28 81 29 41 29 08 29 46 38 52 29 82 29 79 4 99 cm 14 97 15 57 15.91 15 59 14 61 14.23 14 8I 14.69 14 59 13 29 6A3 12 49 12. 40 12 52 12 29 12 48 12 58 14.28 13 62 17... 52 13 37 14120 3 55 1 39 1 69 3. 54 1 26 3. 54 3 89 1 83 3 64 3 24 4320 4.68 4.64 4 73 4. 69 4.58 4.76 4.15 4.17 3.87 4 13 SUN 100 59 101 66 188. 98 192 93 99. 49 99.33 109.62 99. 98 188. 14 193 77 SUM 98.96 99.59 91 99 99. 44 99.08 99.85 99.27 98 27 97.63 9e 29

0T8N1C PROPORTIONS ATOMIC FROPOP.TIOS

2 :47 SI 2237 2272 2258 2277 2:ra 2343 2382 2389 23852~:5 SI 2 408 2 421 2 421 2 414 2 422 2 418 2 314 2 347 2 350 PL 1 695 1.795 1 781 1.6°9 L 663 1 681 1.672 L 663 1.676 1 6.?' ! RL 1. 575 1. 367 1. 553 1577 1562 1. 573 1653 1 628 1634 1 6r,

CA 8 728 8.750 8 767 8 744 8 716 8 784 8 721 8. 718 8. 712 8 733 CA 8.613 8.683 8.614 8.599 8 611 8.689 8.794 8.676 B. 54 8 663 1W 8.313 8. 2°6 8.322 8.308 8.259 8.314 8.334 8.339 8.322 9 213 ' NA 8. 416 9. 409 8. 422 8. 413 8.485 8. 41.9 t 379 8 374 0 34? 9 3'?9 8. 009 8 909 8 008 8. 009 8. 009 8 009 9 809 8. e80 8. 909 3 883 0 & 000 8.009 8 000 8.008 8.09B 8.809 8. 990 8 000 8 030 9 048 00T_1,H 3. 923 5. 023 5.858 5.828 4.999 5 007 5. 0"92 3 029 1016 -5 997 CATSIM 5. 912 1999 5. 91.2 5.993 5.889 5. 812 5. 943 3.223 5 027 5. 831

622-2-19 629 15e-49 63643-49 642 433940 649 13-1-3C 656 13-/-/1A 6237794s 630 17+9 637 42a-48 643 15-1-29 650 15-1-561 657 15-1-119 624 '7e-v: 631 T7A-58 638 4:.0-4C 644 15-1-28 651 15-1-55 658 12-3-213 625131-al 632 130-5c 639 :-8-iu 645 15-1-2c . 652 16-1-5C 6591:-2-2e 626159-:8 633 759-5a 640 432-9 646 15-1-20 653 15-1-9A 660 7:-2-2c 627-70-2e 634 T50-7+ 6414330-E6 647 15-1-38 654 15-1-98 661 f.-2-4A 628.53-441 635 130-713 648 15-1-3e 655 15-1-90 687 688 689 WE1rkT P9F:e4T 662 663 664 665 666 667 668 669 670 671 fIirT P68XTA1682. 683 684 685 686 . 52 12 51 82 9102 59.30 50.19 51 65 51 90 51 65 52 16 51 90 51 28 51 31 45.35 9102 52 50 51 59 53. Bi S3.12 52 96 53.38 I8 93 0 66 1A 16 F1203 39 38 38. 22 39.77 31 02 31 34 30.49 31 29 31 18 30.95 33. 55 g.Z0; 30 9I 31 11 38 53 7A. 99 38 91 13. :8 CPO 14.35 14.57 14. 44 14.19 14. 95 14 29 14 97 14. 72 14. 74 18 :2 ÇÂ0 14.12 13.45 13.64 il 77 14 66 13.92 14.1139' . 87 4. 23 3K0 3. 79 3.67 3.75 3.74 193 4.12 3.64 3.77 3.73 1 22 1E20 3.71 4.37 189 4.15 4. 51 19+ 3 18159 SI1h 98. 83 98. 55 188. 61 188. 85 181. 87 181 15 109. 89 100. 87 180. 73 99. 32 5114 18L 26 181.52 101 32 182 83 1A2 44 182 19 108. 76

ATOMIC PeOPOPTIOMS ATOMIC FP.OPORTIONS 2 400 SI 2321 2319 2337 2339 2314 2349 2316 2315 2322 2147 SI 2354 2394 2373 2363 2M3 2.368 2351 L620 1 638 L 565 AL L 652 1 649 1.641 1 648 /655 1 618 L 668 1.661 L651 1 832 AL 1 635 1 585 1 614 1.Q5 1 619 1. 639 CA 1 710 A. 723 8. 788 8. 685 I. 718 /. 694 A. 723 1 713 A. 715 A. 9133 pi t 678 t 644 t 664 • 1. 637 I. 669 1 663 8 682 t 366 N9 1 333 8. 329 A.329 8. 327 1 341 1 360 A 328 0 331 1 .r7 A 119 pg t 122 t 378 1. 138 t 358 • /.389 1 339 1 339 8.M)88 8 008 0 / 000 8. 899 8.098 8. 900 1 161 8. 008 8.000 , 8.000 t BeA 1 1300 0 B. 008 A. AeA 8.981 lute 1 8913 1 008 82/ S 015 4 992 ~~ 1. S t 0 4. 990 S 092 4. 990 CA19M S An S 82/3 S 087 4. 999 S 1328 S 821 5: 919 S I. 989 > 881 4. 989 S A83

IV IE11iiT PERCENT 672 673 674 675 676 677 678 679 680 681 O 688T9-2B w 46 84 46. 62 53. 63 52 44 53. 36 682 19-2G 5192 46. 57 46 37 46. 68 46. 44 46 46 683 18-10 6891s-20 33. 45 33 69 3159 30 70 38. 95 3185 11.203 13 62 3146 34 03 3118 684 19-18 17.85 17 83 1113 17 93 13 86 14. 31 1154 COO 17. 94 17.91 18. 08 685 19-1c 129 1.56 186 L 50 135 4. 43 194 4. 39 WO 1.33 1.51 686 18-1D 108. 88 98.95 99 68 188.16 99. 49 182 62 19164 181. 34 911 99. 46 99. n 687 1s-sE 91111I0 PFJPOP.TIOMS

51 2152 215/ 2. 144 2 159 2 149 2152 2154 2 374 2 347 2 390 Ft.. 1831 1828 L 842 1814 1824 1825 1829 L 602 1633 1587

CF 9 869 A.899 8 890 8 869 5 884 A 893 8 888 8 E59 0. 606 0 658 N1 1 113 8.1:6 8.115 0 148 8.166 8 1.13 8 121 1 331 0.342 8 382 0 8. 090 8 000 8 809 8 088 8 009 8 030 8 800 8 988 8.800 1 009 5119.11 4. 991 5. 004 4. 991 5 882 S 023 5. 893 4 992 5. 015 S 008 S 009

662 53.2-ss 66913-2-12 676 f 44-2 663 0-2-39 67013-2-i.x 677 134-30 664 L-2_9,1 671 T44-10 6Z8_ '±<-:s 665 13-2-99 672 133-18 679 18-21 666 13-2-119 673144-1C 680 TB-2D 667 13-2-as 674 T44-10 681 Te-2F 668 13-2_1A 675 T44-3F APPENDIX III

Metamorphic Plagioclase Analyses

WEIGHT PERCENT WEIGHT PERCENT 1 2 3 4 5 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30 31 5102 50.02 46.72 50.50 46.33 46.28 46.62 44.76 46.51 45.00 46.13 5102 56.80 56.03 56.73 55.11 48.52 53.25 57.28 55.44 46.39 47.58 47.42 AL203 32.76 33.79 31.57 34.68 33.78 34.68 34.24 34.76 34.67 33.32 AL203 27.36 28.17 28.47 29.10 31.28 30.68 26.97 28.60 34.05 32.94 33.15 CAO 15.45 17.62 14.78 18.87 18.31 18.19 19.29 17.63 19.56 17.77 CAO 9.69 10.34 10.32 11.18 17.17 12.41 8.55 10.18 17.66 16.44 16.68 NA20 2.27 1.07 2.78 1.03 1.17 .97 .60 .90 .45 1.42 NA20 5.92 5.55 5.49 5.00 2.04 4.42 6.99 5.76 1.15 1.73 1.80 K20 .34 K SUM 100.50 99.20 99.63 100.90 99.54 100.46 98.89 100.13 99.68 98.64 SUM 99.76 100.09 101.01 100.39 99.01 100.76 99.79 99.98 99.26 98.69 99.05

ATOMIC PROPORTIONS ATOMIC PROPORTIONS

SI 2.262 2.158 2.303 2.113 2.138 2.119 2.089 2.131 2.084 2.150 SI 2.550 2.512 2.516 2.469 2.247 2.388 2.571 2.492 2.143 2.203 2.189 AL 1.746 1.840 1.698 1.865 1.839 1.858 1.884 1.878 1.892 1.830 AL 1.448 1.488 1.488 1.537 1.707 1.622 1.427 1.515 1.854 1.798 1.804 CA .748 .872 .722 .922 .906 .886 .965 .865 .970 .881 CA .466 .497 .690 .537 .852 .597 .411 .491 .874 .816 .825 NA .199 .096 .246 .091 .105 .085 .055 .080 .040 .129 NA .515 .483 .472 .434 .183 .384 .608 .502 .103 .155 .161 K .020 0 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 0 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000

21. T39-3C 25. 139-6D 29. 4340-4A 1V • 1. T-9-34 5. T-31-38 8. T31-118 22. T39-3D 26. T50-48 30. 4340-48 2. T-9-3B 6. T31-3C T31-11C o 9. 23. T39-1A 27. 150-6A 31. 4340-4C .A 3. T-9-3C 7. T31-11A 10. T33-4A 24. T39-68 28. T50-68 4. T-31-34

WEIGHT PERCENT 11 12 13 14 15 16 17 18 19 20 5102 44.94 48.67 46.01 56.71 56.20 56.64 54.90 57.29 56.53 56.36 AL203 35.55 32.48 33.91 27:62 27.38 28.05 28.16 21.25 26.91 27.36 CAO 19.81 16.03 18.24 9.68 9.76 9.93 10.59 9.53 9.25 9.60 NA20 .31 2.35 1.19 5.81 5.85 5.75 5.30 6.05 6.13 5.87 K20 SUM 100.61 99.53 99.35 99.83 99.18 100.37 98.96 100.12 98.82 99.17

ATOMIC PRQPORTIONS

SI 2.060 2.234 2.131 2.544 2.540 2.529 2.493 2.562 2.561 2.546 AL 1.921 1.757 1.851 1.461 1.459 1.416 1.507 1.436 1.437 1.656 CA .974 .788 .905 .465 .472 .475 .515 .456 .449 .465 NA .027 .21p .106 .506 .512 .497 .467 .525 .538 .514 K 0 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000

11. T33-68 15. T39-40 18. T39-4E 12. T37-4A 16. T39-4C 19. T39-4F 13. T37-48 17. T39-4D 20. T39-40 14. T39-4A NFIOIIr FEF6E111 32 33 34 35 . 36 37 38 39 40 41 IIEIriHr Want 52 53 54 55 56 57 58 59 60 61

5102 52 06 5164 52. 24 5218 59 33 52. 79 52 24 56 47 56 15 53 4? 5102 56 67 55 14 55 74 56 91 53 25 54 21 56 61 57 H 47. 62 4ti 42 R9203 30. 22 30.29 29.89 19 52 38.92 30 19 30 16 29.8? 2.'.53 26 79 91293 21.01 21. 76 27 89 28 59 26 54 27 91 27 49 27 27 22 73 32 76 CM 13 24 13.28 12.55 13.35 84.35 12. 99 19.19 10 71 19 58 9.11 699 19 42 1128 19 92 19 82 9 87 19 19 19 13 ? 75 17.11 17 71 14120 4 43 4.B7 4.59 4 16 9 16 4.49 4.24 5 34 6 96 6.69 8929 5.93 5 35 5 57 5 52 6.99 6/9 6 19 6 21 I 67 1 49 -1M 99. 95 99.19 99.27 109.21 99. 46 109.27 99.84 199 55 199 27 199 99 9.M 191 ?? 199 53 199.92 199 85 190 64 199 37 199 ea 199 67 99.95 93 77

ATOMIC P60PORT1691S 811M1C Fr)OFOF.119115

SI 2 366 2.362 2.385 2 363 2 399 2.315 2 377 2.522 2.529 2 5?3 SI 2 522 2 472 2.593 2.498 2 593 2 529 2 549 2 55? 2 291 2 176 IL 1 619 1.629 1 699 L 629 1.671 1 601 1 614 1.475 1 45? 1 395 19t 1 479 L529 1 479 1459. L 393 1 473 1 447 1 492 1 783 t :97

CO 9.645 0.651 9.614 ' 8 641 9.795 9 624 0 639 9 512 9.509 f 433 CO 9. 477 9. 542 0 522 9 517 9. 423 8 489 9 435 9 466 9. 941 9 313 I41 9. 390 9361 9. 496 0. 346 9.743 0.215 9 374 .9462 0 527 9 5? 111 9. 588 0.465 0 436 8.478 0.691 9.521 9 521 "517 9.145 9 1;3 0 8.999 8.090 8 099 9 909 8 099 B. 099 9 990 1.089 9.910 3 089 0 9. 999 8.899 8. 909 8. 998 9. 079 9 999 9 999 9 909 8. 099 8 900 CR1AM 5. 029 5.093 5. 913 5.096 5 927 5 992 5 093 4 ?71 5.015 4. 997 C819431 4. ??7 4. 999 4.995 4. 991 5 912 5 083 5.9^9 4. 994 4 979 4 991 "

IE1711 PERCENT 42 43 44 45 46 47 48 49 50 51 uEtCi+r wen 62 63 64 65 66 67 68 69 70 71

5102 56 55 54 97 54.82 56.82 56 15 56 09 55 64 56 67 55 35 54 42 5102 47 43 48 54 47 6? 52 13 55 92 54.54 57.77 56 64 5 92 58 21 119203 27. 44 23.72 27. 97 27.31 27,31 27 91 io 99 27 19 28 12 27 64 41.293 33 23 31 96 72 49 29 75 29 87 28.80 27 79 21 44 2? 29 27 85 CRO 10.26 11 35 11. 37 19.11 19 2? 19 99 18 14; 10 09 19. 91 19 11 CA9 17. 46 16.11 17.19 11.65 19 94 11 56 19 14 19 79 11 21 10 92 PAL.b 5.9? 5.46 5 39 5 99 5 89 5 67 5.78 5 79 5 66 6 95 10)2') 1 59 2 94 157 4 86 5 9? 5 14 6 24 6.96 5 97 5 8? 61M 109.24 189.59 99.55 189 14 99 55 199 56 199.28 99 73 109 94 199 32 9691 n 67 98.65 98.85 99.93 99 62 109.94 192 14 181 92 192 49 192 27

R19M1C PP(4'O8110R5 ATONIC PP,OPCP.TI641S

SI 2.535 2.468 2.485 2 547 2 594 2 511 2 540 2.54? 2. 433 2 3;29 51 . 2 132 2 247 2.219 2 499 2 590 2 469 2 542 2 593 2 519 2 55; IL 1.450 1 529 1.494 1.443 1 453 1 473 1.493 1 442 1 473 1 4:1 PL 1 195 1 744 1.774 1 59? 1 495 1 531 1 441 1.492 1. 463 L 431

CR 9.433 9.546 9 552 9 486 B 473 0 523 9 52: 9 185 9.527 9 4^1 CR 0 961 9. 7?9 0 049 9 569 9 599 9 55? 0 487 9 511 9 579 9 455 181 ' 9.521 8 473 9.473 8.513 9 593 9 432 0.504 9.'95 0 429 9 524 H9 0 134 8 183 9.141 8 410 9 514 9 449 9 593 9 519 0 519 9 591 0 8.009 8.103 8 099 8 999 8 999 8 099 8 949 8 999 8 990 S 909 0 1499 9 090 9 001 3 019 9 010 8 099 8 001 9 999 8 993 8 449 191981 4.999 5.09? 5.994 4 999 4 993 • 4 999 5.919 4 992 5.999 5 981 6019911 4. 992 4.973 4 974 5 997 5.011 4. 999 5.003 S 013 5 812 497+

32 17-18 159-10 159-28 52 15a-4R 9 46 59 1fp-R' ,66 17-1e 33 17-1E 150-11 159-26 ~0 47 s 159-48 60 11-18 667 .1771C. 34 17-2R 41 159-1C 4 8 159-34 5 159-447 11-1B ~ 61 6~ 35 17-20 ~ 42 159-1D 49 159-;8 55 159-40 62 ü-18 69 13?-113 36 17-21 43 3?9-1E 50 T541-36 56 159-50 63. r1-IE n 70.133 tC 37 T7-20 44 r59 SP 51 r n- P 57 r 5c 64 31-1F 71 T34,3-re, 38 17-2E 45.159-2R 58 159-56 65 174 gum FEP.CEAT 72 73 74 75 76 77 78 79 80 81 Î. 5102 53 9? 53. 99 5A 92 58 91 5? 61 53 77 54 34 59 53 57 37 5' 12 21.203 27.51 27 51 27 53 27 63 26,76 27 45 26.93 25 35 ' 74 C00 • 19 15 19 15 19 10 9.59 989 9. 66 9. 59 9 53 1950 I9 r~ . 118.53 5 19 6 19 6. 38 6.31 7.99 6 42 6 52 7.95 5 16 5. 81 SUM 191 95 19195 192.93 19217 10226 102 39 191 3? 191 52 111 7.' 199 25

8101118 FROFCRTIC415

91 2 555 2 555 2.554 2 573 2 609 2 574 2 580 2 E21 2 526 2 554 ft 1. 432 1.412 1 4282 1.424 1 389 1.417 1.494 1:63 1445 1. 1:5

CO 4.479 9,478 9.477 8.445 0 412 9 453 9.455 0 405 9 497 9 4' 119 0 521 8' 521 0 545 9 576 9 691 0 545 0 558 9 602 0 543 9 513 0 8 099 8. 099 8 099 8. 090 . 8. 009 8 999 9999 8 099 9 908 8 903 8015191' 4.907 4 987 S 004 4.988 5.091 4.989 4.999 4 99 5 975 4 945 •

AEICA1 PERCENT 82," 83.. 84 85 86 87 "; 88

9102 57 22 47.12 48.39 47.15 48 66 49.44 47.64 R1203 2 94 34 78 33. 99 34.10 33. 73 32.89 34.16 CA0 19.55 18.95 18.15 18.53 17 69 17.15 19 42 12120 5 11 9.99 1 21 1.23 1.69 1 79 195 nJit 10182 101. 75 191. 74 10105 141. 96 191. 27 191. 27 ' • 818918 FPOPORTIOfK •

SI 2. 523 2.131 . 2 101 2.147 2.197 2233 2.189 PL 1 455 1 ô54 1 896 1.839 1 783 1. 751 L 826

CR 9 499 9 913 9 976 0 994 0.852 9 839 0.995 Ill 9 573 9 979 0 195 9.113 9 147 0 157 9 092 0 8 909 8 989 8.999 8.090 8 009 8 000 8.090 C1119.111 5 p'i5 4. 522 4 958 4. 994 4. 984 4.971 4.973

72 819-3A 7@ 139-41. 84 143-IC . 7 139-38 79 1:9-4E 85 143-10 139-3C BO1:9'SR 7~ 86 143-11 13?-40 81 1.19<9 75 143-SF 82 4 87 76 139-48 13?-5C 88 T43-19 77 139-4C 83 14: -18 207

APPENDIX IIC

This Appendix contians the microprobe results for the pyroxene analyses. The results tabulated in Chapter VI are taken directly from these results except for the samples on L160N where the following adjustments were found to be necessary. Table 15 summarizes the initial energy dis- persive electron microprobe data for the pyroxenes on L160N. Samples 27-1 through 27-5 are statistically the same. Then there is a noticeable compositional break and samples 27-6 through 27-8 are similar. The break in the results between samples 27-5 and 27-6 was thought to be due to different probing sessions and not to an actual change in the pyroxene composition. Therefore samples 27-5 and 27-6 were reanalysed on the ARL. The results are included in Table l5 labelled (checks. The new results for sample 27-5 agree well with the previous results, but the Ca in the new 27--6 results is noticeably lower and Mg is higher than before. In order to gauge relative changes in the pyroxene composition across unit 1, the initial mean values for samples 27-5 and 27-6 were adjusted to 208

Table 15. L160N Pyroxene Analyses (atomic proportions based on 6 oxygen).

27-1 n-24 27-3 n-20 27-4 n-23

x Sx +R x Sx +R x Sx +R Si 1.956 .011 .006 1.939 .011 .007 1.954 .011 .007 Ti .005 .004 .003 .003 .005 .003 Al .072 .014 .008 .093 .018 .011 .070 .011 .006 Fe .248 .009 .005 .248 .009 .006 .243 .009 .005 Mn .006 .004 .002 .006 .005 .003 .003 .004 .002 Mg .736 .015 .009 .738 .010 .007 .739 .011 .006 Ca .987 .024 .014 .979 .021 .013 .995 .024 .014 %Fe 12.58 .54 .31 12.62 .49 .31 12.29 .50 .29 XMg 37.34 .70 .40 37.56 .48 .31 37.38 .61 .36 %Ca 50.08 .98 .56 49.82 .68 .43 50.33 .94 .56

27-5 n-19 27-6 n-19 27-7 n-21

x Sx +R x Sx +R x Sx +R Si 1.961 .012 .008 1.971 .007 .007 1.964 .010 .006 Ti .003 .005 .003 .002 .003 .004 Al .066 .013 .008 .060 .009 .006 .071 .013 .008 Fe .237 .011 .008 .254 .007 .005 .250 .011 .007 Mn .007 .003 .002 .005 .004 .003 .006 .003 .006 Mg .754 .012 .008 .705 .010 .007 .717 .014 .009 Ca .984 .026 .017 1.001 .017 .011 .991 .029 .018 %Fe 12.05 .64 .42 12.96 .38 .24 12.77 .56 .35 XMg 37.89 .64 .42 35.97 .49 .31 36.67 .93 .58 %Ca 50.05 1.08 .72 51.07 .71 .46 50.92 1.07 .67

27-8 n-19 27-5 (check) n-7 27-6 (check) n-10

x Sx +R x Sx +R x Sx +R Si 1.960 .006 .004 1.981 .005 .007 1.990 .005 .006 Ti .003 .004 .002 Al .073 .007 .005 .013 .011 .015 .007 .008 .008 Fe .260 .008 .005 .251 .005 .007 .256 .011 .011 Mn .006 .004 .003 Mg .701 .015 .010 .772 .010 .014 .761 .006 .006 Ca .997 .019 .013 .989 .016 .022 .986 .018 .019 %Fe 13.28 .42 .28 12.48 .28 .40 12.78 .58 .59 %Mg 35.80 .77 .51 38.37 .55 .77 37.99 .31 .32 %Ca 50.92 .89 .59 49.16 .67 .93 49.23 .80 .82

n - number of spots - sample mean 5x - sample standard deviation +R - range for population mean at the 99% certainty level 209

give the same results as the checking run. The factors for 27-5 for each element were then used to adjust samples 27-1 through 27-4 and the factors for 27-6 were used on samples 27-7 and 27-8. These normalized results are shown in Table 6, Chapter VI.

WE 1GIIT PERCENT WEIGHT PERCENT 1 2 3 6 5 6 1 8 9 10 21 22 23 24 25 26 27 28 29 10 9102 53.59 52.79 53.68 54.54 53.60 53.55 53.45 53.95 51.71 52.99 5102 52.97 52.82 52.78 50.88 52.19 51.80 52.64 52.86 53.06 57.53 TIO2 .39 .21 T102 .23 .28 .25 AL203 0.57 1.17 .91 .84 1.20 .55 .48 .44 1.93 1.63 AL203 1.95 1.76 2.23 1.87 2.22 2.29 1.67 1.69 1.60 1.36 F10 4.33 5.63 5.97 5.19 5.86 4.12 6.03 6.22 4.08 4.83 F10 8.24 7.88 8.38 8.34 8.20 8.41 7.91 8.45 8.13 1.56 MIA 15.87 16.81 15.00 15.00 14.89 15.50 16.01 15.80 15.87 15.33 MGO 13.26 13.76 12.88 13.24 13.26 13.40 13.58 12.98 13.20 12.98 MO MNO .20 .33 .33 .30 .23 .20 .24 .71 .10 CAO I5.46 25.00 25.09 25.90 25.01 25.38 25.12 25.11 24.86 25.10 CAO 24.63 25.29 24.31 24.06 24.15 23.19 25.03 23.75 24.67 25.68 SOM 99.81 99.45 100.66 101.46 100.56 99.12 99.15 99.52 100.86 100.09 SUM 101.29 101.83 100.5 98.97 100.02 99.57 101.03 99.97 100.81 100.41

ATOMIC PROPORTIONS ATOMIC PROPORTIOI:S 1.959 SI 1.976 1.964 1.973 1.983 1.970 1.985 1.980 1.990 1.952 1.951 SI 1.953 1.962 1.949 1.929 1.947 1.942 1.949 1.973 1.965 TI .011 .006 TI .006 .008 .007 .060 AL .025 .052 .040 .036 .052 .024 .021 .019 .083 .071 Al. .085 .076 .098 .084 .098 .101 .073 .074 .070 .252 .216 FE .134 .175 .184 .158 .180 .128 .125 .130 .124 .149 FE .254 .242 .261 .264 .256 .264 .245 .264 MC .872 .824 .822 .813 .816 .856 .881 .868 .860 .841 MC .728 .754 .116 .748 .117 .748 .749 .722 .728 .721 mu 141 .006 .010 .011 - .010 .007 .006 .007 .007 .009 .993 .070 1.076 CA 1.005 .996 .988 1.009 .985 1.008 .997 .992 .968 .990 CA .965 .996 .970 .977 .966 .931 ,950 6 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6

1. 25-4-104 5. 25-4-10E 8. 25-4-8C 21. 27-1-28 25. 27-1-2F 28. 21-1-38 2. 25-4-IOR 6. 25-4-8A 9. 25-6-10A 22. 27-1-2C 26. 27-1-20 29. 27-1-3C 3. 25-4-I0C 7. 25-4-88 10. 25-6-108 23. 27-1-20 27. 27-1-3A 30. 27-1-30 4. 25-4-10D 24. 27-1-2E

WEIGHT PERCENT WEIGHT PERCENT 32 33 35 36 37 18 39 40 11 12 13 14 15 16 17 18 19 20 31 34 53.16 53.82 52.79 51.83 52.11 5102 52.77 53.16 52.61 52.20 52.96 53.03 52.05 52.48 52.26 52.21 5102 53.72 52.51 52.86 53.02 52.75 .21 1102 .31 .29 .45 .52 .35 .56 .61 .65 T102 .23 1.08 1.66 1.96 1.13 AL203 1.57 1.25 2.26 2.64 2.69 2.15 2.91 3.04 3.17 1.60 AL203 1.49 1.84 1.61 1.62 1.10 1.33 8.02 7.83 7.57 7.90 7.78 7.95 8.10 7.60 FF0 5.13 '5.71 4,41 4.79 4.79 4,39 5.72 4,96 5.67 7.90 FF0 7.73 7.87 12.86 13.29 13.63 12.92 13.56 12.79 M00 14.88 15.11 16.73 16.15 16.30 15.82 15.03 15.80 15.52 13.78 MCA 13.50 13.16 13.27 13.39 .25 .29 .71 MNO .32 MNO .32 .20 25.00 25.52 25.05 25.43 23.66 24.93 CAO 25.04 24.87 23.71 23.37 24.22 25.13 24.12 23.92 23.25 24.58 CAO 25.36 25.03 25.16 25.91 100.01 101.50 101.36 101.20 99.37 98.o7 5191 99.70 100.10 100.00 99.60 101.48 100.87 100.39 100.80 100.30 100.38 SUM 102.12 100.41 101.15 101.26

ATOMIC PROPORTIONS ATOMIC PROPORTIONS 1.961 1.960 1.979 1.953 1.948 1.960 5I 1.951 1.963 1.929 1.923 1.918 1.934 1.916 1.913 1.916 1.946 51 1.964 1.953 1.953 1.959 .006 .006 TI .009 .008 .013 .014 .009 .016 .011 .013 TI .057 .058 .047 .072 .086 .059 AL .069 .055 .098 .115 .115 .092 .126 • .130 .137 .070 AL .064 .081 .070 .071 .245 .248 .242 .236 .244 .239 .246 .254 .240 FE .159 .176 .135 .147 .165 .134 .176 .151 .176 .246 FE .236 .730 .731 .708 .144 .735 .747 .712 .759 .720 .821 .812 .916 .887 .890 .860 .824 .858 .848 .765 11c, .736 MN .006 .008 .009 .007 ON .010 MN .010 .998 .996 1.026 .999 1.008 .981 1.008 .953 1.009 CA .993 .984 .931 .923 .940 .982 .954 .934 .914 .982 CA .994 6 6 6 6 6 6 6 6 6 0 6 f 6 6 6 6 6 6 6 6 0 6

11. 25-6-10C 15. 25-6-2R 18. 25-6-38 31. 27-1-3E 35. 27-1-4c 38. 27-1-4F 12. 25-6-5A 16. 25-6-2C 19. 25-6-30 32. 27-1-3F 36. 27-1-40 39. 27-1-SA 17. 20. 13. 25-6-58 25-6-1A 27-1-2A 33. 27-1-4A 37. 21-1-4E 40. 27-1-58 14. 25-6-2A 34. 27-1-48 WEIGHT PERCENT WEIGHT PERCENT 41 42 43 44 45 46 47 48 49 50 61 62 63 64 65 66 67 68 69 70 5102 51.61 52.40 51.74 51.00 51.67 51.62 51.41 51.40 52.18 51.90 1102 50.86 51.86 51.85 53.26 53.20 51.59 52.89 51.29 52.07 52.96 T102 .31 .25 .41 .25 1102 .29 .35 .24 .34 .31 61.203 1.16 1.57 1.43 2.51 2.28 I.04 1.64 1.65 1.76 1.68 AL203 2.32 2.12 1.58 1.54 1.61 1.40 1.68 1.12 1.62 1.41 FF0 7,62 7.93 7.52 7.59 8.05 7.90 7.52 7.52 7.68 - 7.55 EEO 8.20 8.81 7.45 7.61 8.09 7.97 7.49 8.40 7.81 7.49 MCO 13.00 13.32 13.38 12.99 13.62 12.86 12.83 12.99 13.45 13.14 MCO 13.07 13.18 13.36 13.34 13.60 13.22 13.23 13.23 13.07 13.11 MNO .32 .32 .30 .30 .30 .42 .31 MHO .23 .35 .23 .19 .26 CAO 24.54 23.96 24.95 23.75 24.40 24.26 24.89 24.42 24.96 24.65 CAO I4.49 24.98 25.04 25.74 25.03 24.82 25.40 24.54 25.65 25.21 SUM 98.25 99.50 99.32 98.44 100.58 99.51 98.29 97.97 100.34 99.17- 8014 99.45 101.63 99.52 101.73 101.89 99.17 100.70 99.50 100.50 100.18

ATOMIC PROPORTIONS ATOMIC PROPORTIONS

91 1.965 1.965 1.950 1.933 1.923 1.941 1.955 1.958 1.945 1.953 51 1.919 1.920 1.946 1.951 1.951 1.950 1.959 1.934 1.944 1.971 TI .009 .007 .012 TI .008 .010 .007 .009 .009 AL .052 .070 .063 .112 .100 .091 .074 .074 .077 .074 AL .103 .093 .070 .067 .070 .062 •.073 .076 .071 .062 FE .243 .269 .237 .241 .251 .248 .239 .240 .239 .238 : FE .259 .273 .234 .236 .268 .252 .232 .265 .244 .233 MC .738 .745 .751 .734 .755 .721 .727 .717 .747 .737 MC .735 .727 .747 .730 .743 .744 .131 .743 .727 .727 MN .010' .010 .009 .009 .009 .013 .010 MN .001 .011 .001 .006 .008 CA 1 nit 963 1 . 0n8 , 964 ,973 977 1.014 .997 .997 .994 CA -990 991 1,007 1,014 .984 1,005 1.008 .992 1.026 1.005 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6 N N 1-' 41. 27-1-5C 45. 27-3-18 68. 21-3-36 61. 27-3-86 65. 27-4-18 68. 27-4-28 62. 27-1-50 46. 27-3-1C 49. 27-3-38 62. 27-3-88 66. 27-4-1C 69. 27-4-36 43. 27-1-5E 47. 27-3-2A 50. 27-3-3C 63. 27-3-8C 67. 27-4-2A 70. 27-4-38 64. 27-3-1A 64. 27-4-1A

WEI CIIT PERCENT WEIGHT PERCENT 51 52 53 54 55 56 57 58 59 60 71 72 73 74 75 76 77 78 79 80 S102 52.16 51.90 52.00 52.42 51.80 52.23 52.49 51.70 51.81 52.67 5102 51.54 52.44 52.14 53.02 52.75 53.22 52.12 52.58 53.14 51.9? 1102 .25 .30 .30 .21 .25 .31 1102 .31 .23 .32 61.203 2.48 2.46 2.93 1.86 2.36 2.42 1.42 1.90 2.43 2.51 AL203 1.52 1.44 1.43 1.60 1.74 1.47 1.76 1.66 1.56 2.24 FEo 8.05 7.86 8.21 8.10 8.39 7.83 8.06 7.77 8.04 8.00 FEo 7.92 7.88 7.77 8.13 7.93 7.80 7.74 7.73 7.98 7.93 Mon 13.46 13.68 13.15 13.37 13.26 13.15 13.34 13.32 13.33 13.13 11GO 12.94 13.18 13.18 13.38 13.97 13.30 13.38 13.61 13.62 13.27 11N0 .40 .24 .26 .22 .28 .32 .21 /MO .31 .22 .28 .27 CAn 24.08 24.48 23.62 24.65 23.82 24.41 25.36 24.24 23.87 24.33 CAO 25.42 25.54 24.74 23.47 26.58 25.06 24.88 25.26 26.81 23.86 51111 100.88 100.39 100.54 100.64 99.92 100.27 100.94 99.14 100.05 10 1. 16 SUM 99.65 100.79 99.47 99.81 100.97 100.85 99.87 101.34 101.63 99.27

ATOMIC PROPORTIONS ATOMIC PROPORTIONS

Si 1.912 1.930 1.929 1.948 1.936 1.944 1.950 1.946 1.934 1.942 SI 1.940 1.951 1.960 1.976 1.949 1.968 1.950 1.942 1.958 1.950 Tt .007 .011 .008 .006 .007 .009 TI .009 .006 .009 AI, .108 .108 .128 .081 .104 .106 .062 .084 .107 .109 AL .067 .063 .063 .070 .076 .064 .077 .072 .067 .099 FE .249 .245 .255 .252 .262 .244 .250 .245 .251 .247 FE .249 .245 .246 .254 .245 .241 .242 .239 .245 .249 MC .763 .758 .727 .740 .738 .729 .738 .747 .742 .722 MC .726 .731 .738 .743 .770 .733 .746 .749 .765 .742 MN .013 .008 .008 .007 .009 .010 .007 MN .010 .007 .009 .008 CA .956 .975 .939 .982 .954 .973 1.009 .978 .955 .961 CA 1.025 1.018 .996 .937 .973 .993 .997 .999 .976 .960 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6 6111 6 6 6 6 6 51. 27-3-44 55. 27-3-66 58. 27-3-74 57. 27-3-48 56. 27-3-68 59. 27-3-78 71. 27-4-44 75. 27-4-58 78. 27-4-60 53. 27-3-4C 57. 27-3-6C 60. 27-3-7C 72. 21-4-48 76. 27-4-5C 79. 27-4-6C 54. 27-3-SA 73. 27-4-4C 77. 27-4-64 80. 27-4-74 74. 27-4-5A

WEIGHT PERCENT WEIGHT PERCENT 81 82 83 84 85 86 87 88 89 90 101 102 103 104 105 106 107 108 109 110 S102 51.24 52.09 52.07 52.19 53.04 52.43 52.99 52.91 52.83 52.26 5102 52.61 52.47 52.69 52.48 52.17 52.68 52.27 53.05 52.46 51.79 1102 .63 .23 .23 T102 .23 AL203 2.11 1.71 1.45 1.22 1.19 1.46 1.82 1.29 1.49 1.28 AL203 1.14 1.71 1.31 1.38 1.60 1.49 1.56 1.27 1.36 .99 8.25 FF0 8.19 7.71 7.67 7.61 7.13 7.50 8.10 7.02 7.43 7.15 FE0 7.51 7.58 7.24 7.26 7.78 8.34 8.46 8.06 7.95 12.98 000 13.06 13.55 12.79 13.27 13.27 13.40 13.38 13.22 13.02 13.18 MCA 13.35 13.52 13.74 13.55 13.50 12.85 12.41 12.74 12.48 .29 .19 MW .30 .23 .25 .19 .24 .31 MNO .25 .30 .25 .26 .I3 .23 .29 25.68 CAO 23.06 24.89 24.89 24.96 25.52 25.29 22.90 25.50 26.51 24.88 CAO 25.11 24.75 25.14 26.67 24.25 24.67 24.02 25.37 25.01 101.89 5111-I 98.58 99.95 98.87 99.71 100.16 100.33 99.48 100.24 99.82 98.73 SUM 100.03 100.34 100.46 99.58 99.52 100.03 98.95 100.79 99.54

ATOMIC PROPORTIONS ATOMIC PROPORTIONS 1.972 1.971 SI 1.940 1.947 1.967 1.957 1.973 1.954 1.976 1.970 1.971 1.971 SI 1.966 1.953 1.951 1.964 1.957 1.969 1.975 1.971 .006 TI .006 TI .018 .007 .043 AI, .052 .064 .080 .056 .066 .057 AL .050 .075 .060 .061 .011 .066 .070 .056 .060 .094 .075 .065 .054 .250 .253 8F, .259 .242 .239 .222 .236 .259 .218 .232 .226 FE .236 .236 .225 .227 .244 .261 .267 .250 .241 .699 .711 MG .737 .755 .720 .742 .736 .744 .745 .733 .724 .741 MG .743 .750 .761 .756 .755 .716 .699 .705 .009 .009 .006 MN .009 .007 .008 .006 .008 .010 MN .008 .009 .008 .008 .001 .007 1.010 1.007 1.011 CA .936 .997 1.007 1.003 1.017 1.010 .917 1.016 .980 1.006 CA 1.005 .987 1.001 .989 .974 .988 .973 6 6 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6

27-6-2C 81. 27-4-78 85. 27-4-8C 88. 27-5-t8 101. 27-5-5A 105. 27-5-5E 108. N 27-6-34 ✓ 82. 27-4-7C 86. 27-4-80 89. 27-5-1C 102. 27-5-58 106. 27-6-2A 109. 1 27-6-44 N 83. 21-4-84 87, 27-5-1A 90. 27-5-10 103. 27-5-5C 107. 27-6-28 110. 84. 77-4-89 104. 27-5-SD

WE1C11T PERCENT WEIGHT PERCENT 117 118 119 120 91 92 93 94 95 96 97 98 99 100 111 112 113 114 115 116 52.12 52.28 51.59 52.67 52.99 5102 52.32 52.86 53.13 52.90 52.01 52.58 52.80 52.01 52.92 52.57 5(02 54.00 53.28 52.30 52.90 52.83 .22 T102 .29 .22 .30 .60 .33 T102 .20 .23 1. 74 1.52 61.203 .86 1.46 1.14 1.18 1.60 1.81 1.67 1.71 1.86 1.96 AL203 1.14 1.26 1.25 1.49 1.66 1.37 1.53 1.33 8.28 FFO 7.52 7.42 7.67 7.62 7.96 8.57 7.86 1.59 7.79 7.74 FED 8.08 8.17 1.71 8.24 8.55 7.73 7.99 7.88 8.51 12.98 13.03 12.58 12.41 12.34 12.78 12.54 MGO 13.11 13.67 13.41 13.28 17.33 14.11 13.55 13.00 13.58 13.56 MGO 13.22 12.77 12.56 .28 .23 .20 MNO .28 .22 .20 .20 .31 .27 .21 .28 .27 MMO .26 .23 .20 24.14 25.18 25.10 25.01 24.49 24.17 CAn 24.89 25.21 25.12 24.64 24.29 23.59 24.16 25.25 24.89 24.18 CAO 25.15 25.25 24.85 25.14 99.21 99.82 98.35 100.62 100.25 SUM 98.98 100.92 100.48 99.85 99.80 101.52 100.31 99.94 101.29 100.27 SUM 101.59 100.98 98.91 100.95 100.22

ATOMIC PROPORTIONS ATOMIC PROPORTIONS 1.960 1.968 1.964 1.961 1.966 1.963 1.976 St 1.976 1.955 1,973 1.974 1.949 1.936 1.962 1.941 1.951 1.954 SI 1.983 1.974 1.976 .006 .007 .006 Tt .008 .006 .008 .017 .009 Tt .073 .061 .068 .060 .076 .067 .078 .064 .050 .052 .071 .079 .073 .076 .080 .086 AL .049 .055 .056 .065 AL .244 .251 .251 .265 .258 .218 .229 .232 .232 .250 .264 .244 .237 .240 .241 FE .248 .253 .246 .255 .266 8P. .724 .706 .696 .701 .110 .696 11G .738 .143 .742 .738 .745 .774 .751 .724 .746 .751 110 .723 .705 .107 .111 .007 .009 .006 .007 .006 tIN .009 .007 .006 .006 .010 .009 .008 .009 .009 MN .008 1.006 .998 .964 1.017 1.009 1.021 .978 .987 CA 1.007 .999 1.000 .985 .975 .931 .962 1.012 .983 .963 GA .989 1.002 6 6 6 6 6 6 6 0 6 . 6 6 6 6 6 6 6 6 6 0 6 6 6 P 95. 27-5-34 98. 27-5-44 91. 27-5-24 I7-6-58 118. 27-6-7C 96. 27-5-38 99. 27-5-68 111. 27-6-48 115. 92. 27-5-20 119. 21-6-84 97. 27-5-3C 100. 27-5-4C 112. 27-6-4C 116. 27-6-7A 93. 27-5-2C 27-6-78 120. 27-6-88 94. 27-5-20 113. 27-6-60 117. 114. 27-6-SA

WEIGHT PERCENT WEIGHT PERCENT 121 122 123 124 125 126 127 128 129 130 141 142 143 144 145 146 147 148 149 150 S102 51.12 52.20 52.20 52.31 53.30 53.68 52.27 51.52 51.26 52.38 5102 52.25 53.19 52.28 52.66 52.57 52.08 51.84 52.25 52.22 52.08 1102 .24 .24 .25 1102 .2) .29 .21 61.203 1.13 1.27 1.50 1.17 1.97 1.85 1.34 1.55 1.49 1.22 AL203 1.49 1.87 1.94 1.74 2.30 1.78 1.50 1.70 1.93 1.54 FIn 8.12 8.05 7.94 7.81 7.22 7.4) 8.01 8.22 7.84 7.85 FF0 7.77 8.48 8.46 7.95 8.51 8.33 7.87 8.32 8.20 8.17 MIX) 12.68 12.22 12.26 12.58 13.08 13.32 12.55 13.07 12.82 12.61 Moo 12.25 12.73 13.02 12.70 12.55 12.65 12.82 12.38 12.53 12.74 NNO .33 .25 .21 .26 .18 .23 MNO .25 .24 .25 .26 .21 .20 .27 .21 .22 .28 CAO 25.20 25.11 25.36 24.96 24.23 23.44 25.32 24.44 24.92 25.12 CAO 25.18 25.13 23.47 24.96 23.86 25.04 24.96 25.05 24.64 26.32 SUM 100.25 98.81 99.83 98.83 100.29 99.93 99.75 99.24 98.33 99.42 SUN 99.19 101.64 99.42 100.26 100.23 100.07 99.27 100.20 99.54 99.36

ATOMIC PROPORTIONS ATOMIC PROPORTIONS

SI 1.981 1.977 1.960 1.977 1.972 1.988 1.964 1.946 1.952 1.972 SI 1.971 1.959 1.962 1.963 1.958 1.952 1.956 1.955 1.961 1.961 TI . .007 .007 .001 II .007 .008 .007 A1. .050 .055 .067 .052 .086 .081 .059 .069 .061 .054 AL .066 .081 .086 .076 .101 .079 .067 .075 .085 .068 FE .253 .255 .249 .247 .224 .130 .252 .260 .250 .247 FE .245 .261 .266 .248 .265 .261 .249 .260 .258 .25/ PIG .704 .690 .686 .109 .721 .735 .703 .735 .728 .107 MC .688 .699 .728 .706 .697 .706 .721 .690 .701 .715 NN .010 .008 .007 .008 .006 .007 MN .008 .007 .008 .008 .007 .006 .009 .007 .007 .009 CA 1.007 1.019 1.020 1.011 .961 .930 1.020 .989 1.017 1.013 CA 1.018 .992 .944 .996 .952 1.005 1.009 1.004 .983 .981 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6 Pi F-~ W 121. 27-6-8C 125. 27-7-1A 128. 27-7-3A 141. 27-7-8A 145. 27-7-9C 148. 27-8-1C 122. 27-6-9A 126. 27-7-18 129. 27-7-38 142. 27-7-88 146. 27-8-1A 149. 27-8-10 123. 27-6-98 127. 27-7-2A 130. 27-7-3C 143. 27-7-9A 147. 27-8-18 150. 27-8-2A 124. 27-6-9C 144. 27-7-98

WEIGHT PERCENT WEIGHT PERCENT 137 138 139 140 131 132 113 134 135 176 151 152 157 154 155 156 157 158 159 160 5102 51.45 51.11 51.72 52.61 51.90 51.89 52.23 52.72 52.92 53.02 5102 52.671 52.10 51.51 52.36 51.57 52.27 51.86 51.66 52.43 51.99 T102 .20 .2) .23 .19 T102 .22 .21 .25 .24 .24 AL203 1.48 1.32 1.58 1.46 1.19 1.63 1.94 1.07 1.57 1.59 61.203 1.57 1.67 1.31 1.69 1.71 1.64 1.45 1.67 1.84 1.39 FEn 9.19 6.10 7.92 7.73 6.06 8.33 8.10 7.80 7,16 7.97 FEO 8.48 8.62 8.21 7.65 8.53 8.50 8.65 8.47 8.51 7.91 MC.O 12.65 12.61 12.67 12.95 13.19 12.76 12.95 1).04 12.83 13.12 NCO 13.09 12.78 12.18 12.33 12.29 12.19 12.10 12.78 12.55 12.23 MNO .20 .18 .26 .28 .22 .23 .23 .22 MN)) .19 .27 .26 .32 .26 .24 CAO 24.94 25.06 25.39 24.96 24.67 23.36 23.18 25.44 25.18 25.24 CAO 23.88 24.16 25.23 24.98 24.79 25.3) 24.49 24.16 25.01 25.34 52111 99.11 98.98 99.54 100.21 99.01 98.42 99.23 101.16 100.49 101.16 SUM 100.07 99.59 98.71 99.03 99.21 100.17 98.61 98.99 100.59 99.10

ATOMIC PROPORTIONS ATOMIC PROPORTIONS

SI 1.948 1.960 1.950 1.962 1.962 1.968 1.961 1.967 1.967 1.960 SI 1.965 1.960 1.961 1.977 1.953 1.957 1.971 1.956 1.951 1.965 TI .006 .006 .007 .005 TI .006 .006 .007 .007 .007 AL .066 .059 .1110 .064 .053 .073 .006 .047 .069 .069 AL .069 .076 .059 .066 .077 .072 .065 .075 .081 .062 FE .259 .257 .250 .241 .255 .264 .255 .243 .241 .246 FE .265 .271 .261 .241 .270 .I66 .269 .268 .265 .250 NG .714 .712 .712 .720 .743 .721 .725 .725 .711 .723 MC .728 .717 .691 .692 .694 .680 .685 .721 .697 .689. IIN .006 .006 .008 .009 .007 .007 .007 .001 MN .006 .009 .009 .010 .008 .008 F CA 1.012 1.017 1.026 .997 .999 .949 .958 1.017 1.003 1.000 CA .955 .973 1.029 1.009 1.006 1.016 .998 .980 .998 1.026 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6

138. 27-7-74 151. 27-8-20 155. 27-8-3C 158. 27-8-4C I31. 21-7-30 135. 27-1-5C 139. 27-7-78 152. 27-8-2C 156. 21-8-44 159. 27-8-54 132. 27-7-44 176. 27-7-64 140. 27-7-7C 153. 27-8-34 157. 27-8-48 160. 27-8-58 27-7-54 137. 27-7-68 133. 154. 27-8-38 1J4. 27-7-50 WEIGHT PERCENT - 161 162 163 164 165 166 167 168 169 170 RE101 PERMIT 182 183 184 185 186 187 188 189 190 191 9102 52.96 52.48 52.63 52.43 52.90 52.50 53.05 52.52 52.64 52.00 1102 .33 .23 5102 59. 87 58.01 50.12 59. 28 30.15 39. 86 49. 26 49. 97 48. 74 48 10 6L203 1.86 1.56 1.76 1.85 .59 .15 .55 .22 .48 81203 1.03 188 L 35 142 i33 127 108 1 60 3 B7 1 27 EEO 8.26 7.97 8.49 8.24 8.10 7,95 8.05 7.93 7:81 8.21 1102 191 L33 130 i21 107 1. 19 143 116 206 21.1 NCO 13.04 12.37 12.52 12.31 14.00 13.48 13.84 13.69 13.79 13.75 CO203 0.01 9 03 MNO . 26 .29 . 33 1E0 12. 97 1210 1199 12. 08 12 94 1181 12 IS 12 33 10 94 10 32 CAO 24.72 25.33 24.42 25.04 24.15 24.99 24.86 26.63 24.56 23.78 1100 1261 11 95 11. 89 11 61 1132 12 59 11 83 1L 07 12 77 12 62 SUM 100.85 100.04 100.08 100.40 99.74 99.07 100.35 98.57 99.35 98.22 5C203 /.14 119 113 0 98 0.16 011 9 19 1.08 /12 9 19 MO 1.24 109 /.11 /.17 8.17 115 8 13 114 102 0 95 ATOMIC PROPORTIONS 100 115 1. 24 /.15 123 1.29 1 11 9 73 1 22 9 27 1 30 CUO 9/2 8 10 1 11 9 11 0 68 2115 21.32 2131 SI 1.961 1.962 1.967 1.956 1.977 1.982 1.975 1.990 1.979 1.977 CM 2149 • • 2111 21.21 2106 2141 2133 21.13 9136 TI .009 .007 501 99.55 9181 91.I7 98.92 99.94 99.43 9/. 22 98.37 9142 AL .081 .069 .077 .081 .026 .007 .024 .010 .021 FE .256 .249 .265 .257 .253 .251 .251 .251 .246 .261 ATOMIC PROPO111016 tic .720 .690 .697 .684 .780 .758 .768 .762 .773 .780 L 966 1949 MN .008 .009 .010 SI 1939 1921 1933 1934 1919 1937 1987 1927 1973 1138 9.149 CA .981 1.015 .978 1.001 .967 1.011 .991 1.000 .990 .969 IL 1.846 1.183 0.062 1065 9.068 1937 1.006 0 6 6 6 6 6 6 6 6 6 6 IV 9.059 9 061 11 0.1126 1138 8.039 1.933 0.031 1931 9. 942 0.134 11 ER 0. 000 1031 A. / 416 8 177 9 392 9 399 9.322 0 332 161. 27-8-64 165. 27-5-4AC 168. 27-5-SAC FE 9. 385 0.388 1. 317 1.413 0.650 9 715 1693 1.682 0 729 / 723 162. 27-8-68 166. 21-5-68C 169. 27-5-58C 110 1.718 9.694 1.683 / 665 1004 B.083 8.805 9 000 0.083 9 1833 1.884 0 P06 163. 27-8-6C 167. 27-5-4CC 170. 27-5-50C SC 1905 0.006 0 086 1 806 II 003 9 904 0 085 / 881 1 801 164. 27-8-60 IA / 008 1.00 1894 CO 0, 001 1.907 0.005 1 907 1 899 /.110 9.089 9 01)7 / 998 0 809 at 0.011 1091 1 080 / Ka 0 002 18 /.877 /.064 0.977 0 868 0. 3 1.879 1.877 1.874 9 875 1 879 6. B09 6.808 6.098 6.008 6.088 6 900 6.099 6.189 6 9E83 WEICItT PERCENT 0 6.808 4.109 9% 3995 1997 3 998 4.002 4.095 4.081 4. 01)2 4 911 lll 172 173 174 175 116 177 178 179 180 181 C1119.19 3 9102 52.35 52.31 53.78 53.26 52.52 53.00 52.44 52.43 53.37 53.47 53.56 •CPx• 159-28 190 'EPx' 159-48 T102 182 •'CP%• 159-19 STE1K Ern 186 187 'CP%• 159-38 191 •CP1f• T59-413 AI,203 .08 . JO .46 . JJ .21 .36 183 Tv 339-19 188 *Mr 139-39 FED 7.73 7.98 7.80 7.84 7.98 8.24 8.71 B.61 8.32 8.25 8.01 18 •CPX• 139-1C 185 'W)P T39-2A 189 'CPIf' 159-3C Ml'A 13.89 13.29 13.66 13.86 13.51 13.43 13.54 13.65 13.74 13.82 13.59 11N0 CA0 24.45 24.66 25.09 25.32 24.72 24.32 23.60 23.73 24.35 24.68 24.96 SUM 98.50 98.23 100.34 100.86 98.72 99.30 98.76 98.74 99.99 100.57 100.12

ATOMIC PROPORTIONS

SL 1.984 1.991 1.999 1.992 1.988 1.992 1.983 1.984 1.992 1.984 1.998 TI AL .004 .013 .021 .014 .009 .015 FE .245 .254 .262 .243 .253 .259 .276 .273 .260 .256 .250 NG .785 .153 .157 .765 .762 .753 .763 .770 .766 .765 .755 MN CA .993 1.006 .999 1.006 1.003 .979 .956 .962 .973 .981 .997 0 6 6 6 6 6 6 6 6 6 6 6

171. 27-5-5UC 175. 27-6-80G 179. 21-6-9CC 172. 27-6-8AC 176. 27-6-8E0 180. 27-6-90C 173. 27-6-88C 177. 27-6-9AC 181. 27-6-9EC 174. 27-6-8CC 178. 27-6-90C IEI9rt FEACEIIt 1Q2 191 194 195 196 197 198 199 200 201 11616111 PERCEIrt 212 213 214 215 216 217 218 219 220 221

5102 53 2P 51.92 53.64 53 90 57 97 53 14 51 61 JL 75 53 56 32 41 5102 52 11 52 54 52.83 53.93 53 23 52 89 52 ?4 5? 41 52 67 52 74 9103 114 9. Pg 9 81 1.97 9 99 1 P? I. 23 141 1. 11 199 01203 t 01 0.97 a 72 1 65 e79 eBO 198 1. e1 1 13 19; 1102 9 15 1102 0.24 9 17 FEO 9. 91 9. 53 9.77 9. 49 19 03 ??7 19 97 IP. 79 10.11 9 75 FEO 9.67 10. 38 9. 75 971 9.64 19 91 10 61 3. 21 9 22 ? 5. 191 12 71 12.53 12.42 12 36 11,90 II 12 12 06 11.73 12 55 11 45 1900 1i.47 11. 79 11.78 12 12 12.37 1239 12. 52 1292 12 62 12 0? 910 9 22 0 19 1 21 O. 21 9 11 a 25 0 26 9 22 9. 23 9 26 MlA e. 11 l 27 0 29 8 17 9 23 P 22 e 19 1.29 9 t? 0 16 CRO 24 76 24.61 23 97 2:.97 24.73 2/ 54 22 74 21 16 24 59 24.07 cm 24.67 22 11 24.69 24.97 25.93 21 32 22 69 24 16 24 71 2425 9.11 (01 97 101 66 100.84 199 01 190 83 190.96 99 90 98.97 102 17 99.03 SUN 99 75 98./1 99.21 180. 65 lei 29 99. 69 100.13 111 27 1M °l IT 72

ATOMIC PROPOP110NS 019111 PROPO8910145 l'

SI l 956 1 999 1 995 1 937 1 969 1 381 1 971 1. 972 1 974 1 990 SI 1.977 2 889 1 901 1 985 1 979 1 991 1 988 1 990 1 962 1 398 It 9 959 9 938 9 936 1.148 8. 943 9.041 0 955 0. 964 0.948 9. 019 AL 1.136 1.1/2 0.132 t 829 1. 835 9 939 1 048 1. 044 1959 0 945

II 9 994 TI 9.1397 0 905 FE 9 307 8 294 0 394 9 293 9 911 1 311 9 350 9 341 8 312 9 310 FE • 1.396 1 312 e. 119 1.304 9.390 8 315 0 339 9 205 P 257 9 299 NO 9 799 9 69? 9 691 9 691 0.633 P 657 0 626 9.667 8.689 9 648 98 1 669 8 672 8.668 1 676 0 685 9 695 0 701 0 712 1 712 9 72? N11 9 007 9 006 9 087 0 007 9 006 9 903 9 009 0.997 9 987 1.093 . MM 9.096 0 009 1 397 1.005 0 017 1 097 0.016 1 996 9 006 0 035 CO 9998 9 973 8 956 0 963 9 991 0 901 9 939 9.946 0 971 9.911 CA . 1 999 8 906 1 006 L 001 1 937 1 941 ' 8 913 1 97 9 8:76 9 979 N 0 6 099 6 000 6.998 6 019 6.899 6 009 6 919 6 009 6.099 6 088 0 6.900 6 998 6.009 6 000 6 808 6.0!M 6 909 6 999 6 001 6 900 N 1919.03 4 019 3 999 3 997 3. 991 3 997 1 99? 1. 90P 3 9?7 4. 891 1995 01151111 4.009 1970 4 3004 4. 899 4 803 3 998 3. 999 3. 993 1 009 / PA? U1 I If 1120 FfPCEIIT 202 203 204 205 206 207 208 209 210 211 1E1981 PERCENI 222 223 224 225 226 227 228 229 230 231

7102 5172 53 43 53.67 52.97 31 57 51 16 52 35 32 16 52 36 51 98 5102 52 53 522 59 52.97 52 19 51 84 52 37 52 06 51 90 52 74 52 ?3 01203 9 89 1. 21 9. 1'6 1. 22 1 12 L 94 105 1. 81 1 19 e. 60 13.203 L 00 0.96 • 1.12 107 L 08 1 99 1 11 1 19 9 9? 1 ll 1102 0 17 9 20 1 64 1102 1 17 FE0 9 44 18 39 9 93 10 21 12. 39 3 69 3 :9 9 38 9.48 9. 29 1E0 9. 26 9.87 9.37 9.91 8 92 0 96 8 57 9 21 ? 95 3 9" 1180 12 50 11.86 12 44 12 38 12.99 12 37 12.43 11.79 12 71 12 95 0130 12 97 12.24 12.76 13.14 12 39 12 67 13.19 (2.77 13 13 13 00 Kr 0 25 9 22 9 22 8 17 9 24 9. 19 9.19 9.23 9.21 0.29 18g 1 25 1 22 9.29 8 29 9 15 8 15 0 18 0 2? 9 26 0 25 CM 21.73 2? 4? 24 93 24.17 23 1? 24 13 24 34 24 79 24.39 24 15 MO 24.43 23.90 24 24 21. 71 23.91 23,54 2? 66 23 36 2; 84 21 2:7 SRI 191 72 191 76 192.05 191 12 199 89 199 92 99 66 109.06 199.34 98.17 All 181.52 98.89 199.66 99.12 98.37 99 68 9? 53 98 57 199 01 ?? 78

019916 7P1799T10MI7 0T91IC 6606011110115

SI 1 989 1 97 1 979 1.972 1 949 1.957 1.974 L 996 1 963 1 991 Si 1 964 1.989 1 975 1.979 1.976 1.986 1 912 1 975 1 976 1 9 al 9.038 9.05; 0 842 9 954 9 999 9 946 9.947 9 045 9 951 0 027 IL I 043 1 841 1 049 1.149 e P49 0 044 9 4149 1 149 8 944 0 1u?

11 9 095 9 016 0 913 TI 9 005 FE 9 291 0 320 0 3393 9.119 O. 311 9 305 9 21? 9 2?5 9Z17 9 298 FE 4 299 8 297 8 292 0.202 9 294 0 214 9.269 P 29; 9 24. 9 214 Nr, 9 683 0 708 9 634 9 637 0 681 9 695 0 59? 9 660 9 710 0 638 MO 8 721 0. 692 9 799 8.741 8 699 9 716 9 737 9•i4 9 732 A 7.5 181 0 803 9 907 0 007 9 005 9 007 9 006 8 086 9 907 0 007 9 007 011 9 090 9 1137 / 006 1 096 9 995 9 965 8 895 9 087 9 003 9 913 CO 0 979 P 927 9 %5 0 964 0 93 9 974 9 934 9 r 0.973 9.332 Cl 9 979 1.979 1.959 9 969 0 977 9 956 0 950 9 952 0 357 a 933 0 6.009 6 09O 6 000 6.0113 6 999 6 099 6 040 6 909 6 093 6 00 9 6 909 6 900 6 089 6 898 6 090 6 109 6 009 6 CT 6 9)7 6 190 601911 3.332 3 995 4.099 4 990 4 922 4. 001 4 497. 3. 991 4.P19 4 NO 301411 4.111 1 988 3.999 4.197 1.995 3 991 1 99? 4 900 4 ml ;?30

1 924321-38 199 4121-49 206 4286-7.0 212406-49 219 1288-18 226 4239-48 1014321-_8 200 4121-4E 207 4285-90 21 3 429548 220 4298-t8 227 4233-K. 10144321.3r 201 4721-69 208 4236-48 21[ y 4236-9R 221 4290-IC 228 4289-40 19 5192[-30 202 1321-60 209 4186-4A 2 1 5 4206-90 222 4238-20 229 42~-79 106 4321-40 203 4221-67 210 4216-46 216 4285-8C 223 4299-28 230 4r:2-76 1 974321-48 2044 4321-66 211 4221-4C 2 1 7 4286-100 224 4299-2C 231 1280-7C 108 4121-46 205 4:21-6E 218 4286-108 225 4293-49

IEI91R Want 232 233 234 235 236 237 238 239 240 241 . IEIONT /80fF1R 252 253 2514 255 256 257 258 259 260 261

5192 32 89 52 51 57 14 S1 96 57 r 52 72 L' II SI 09 52 84 52 04 5102 51.15 W. St 50 E/ 59 56 51 42 51 96 S2 94 52 1.3 52 51 52 .11 91273 1 13 1 99 1 1l 1 29 1 97 1 16 1 98 1. 99 1•1 9 72 11.203 107 104 198 / 83 0 93 L 29 1 86 1 31 119 123 1192 9 19 0 17 9 13 3102 9 35 0 23 9 31 I 46 1E0 9 99 9 62 9 59 9 39 3 16 9.2? 9 2? 9 13 9 55 9 72 1E0 21 51 28 27 27 82 28 22 29 10 19 55 29 13 12 51 11 97 12 45 1538 it 57 11 72 12 99 12 75 12 23 11 46 12 74 12 63 11 91 11 95 1100 17. 71 il 41 17 87 17 56 19 % 12 99 17 36 L1 °2 12 61 11 ?9 roe 921 924 921 913 917 92t 9 24 021 1.23 9a1 1110 0te 131 131 0 I 04i 111 92a 017 91: 029 C90 23 64 I/ 93 22 93 23 54 24 99 23 9? 23 93 24 07 24 41 24 07 110 I 67 1.59 8 69 1 71 0 70 2L 84 1 99 2e 72 21 69 22 9: 90 99 34 99 24 99. 98 99 92 100 17 99 El 9' 49 99 1! 99.94 10.79 933 91.19 90 94 91 44 98 19 189 81 90 91 101 67 99 M 199 29 199 41

91981E F59999110115 81811E 190241911016

5I 1.979 1°B9 1 976 1 979 1 999 L 99' 1 969 1 974 1 997 L 994 SI L 966 1 962 1 998 1 971 1.965 1 969 1 907 1 994 1 77 1?5S Fl 9 959 9 94? 9 959 9 754 9 947 P 952 9 943 1•/4 0 015 9.133 R 1040 fin 1 040 1 030 0 942 0 958 1 139 0 939 9 95-' 9 957

II 9 903 9 995 8 945 II 9 017 9 019 9 009 8 013 FE 9 2743 0 794 0 397 8 2?9 9 216 9 295 9 272 1 299 0 399 9 710 FE 1.935 9 917 1 993 0.923 0 932 0 135 0 9:8 0 398 9 372 9:?; Ir 9 711 0 662 0 729 9.721 9 691 9 649 P 791 9 713 1 667 0 673 3113 1931 1 066 1 936 1 924 1.999 9 73/ 9 998 0 676 97.33 9 669 roI 9 977 9 993 9 099 0 11)5 9 993 P 097 9 909 0 096 8 997 8 006 IN 1 099 0.919 0 011 1.919 1 012 8 914 1 099 1 905 1001 4 Cp; 8 993 9.99? CA _ 9 963 9 975 9 931 0 956 0 965 9?77 9 97 0 977 CA 1129 9.10 1.028 0 038 0 032 0 980 0.041 9 845 9 871 9 cm N 6 989 6 099 0 6 099 6 000 6 999 6.999 6 900 6 999 6 990 6 099 0 6 90• 6 801 6 890 6.004 6.9E19 6 599 6. 009 6 098 6 9011 6 991 1-1 1:915111 3 9?7 3 7-37 4 999 4.9415 1 979 3 977 4 991 1 803 3 993 3.994 612933 4.013 4.010 3 999 4.063 4.914 1. 993 3.994 1.976 3 791 3 994 al •

0619141 FEF6E31T 242 243 244 245 246 247 248 249 250 251 1E1082 MEP 262 263 264 263 266 267 268 269 270

5302 52 45 53 19 79 79 32 11 4? 95 51 13 42 27 51 46 52 96 71 3 5102 92 33 50 59 31 79 52 95 Si. 36 SL 79 51 89 SL 65 52 92 5192 91291 9 69 9 99 9 93 0 97 8 9é 9 99 1 23 0 99 t 27 4 93 94.203 136 174 128 L 30 L35 149 1 31 137 1 36 96291 1102 9 16 8 16 9 1? ' 8 3? 1 27 1102 8 38 9.29 044 036 en 03? 835 9 33 1192 FE0 9 78 9 911 211 76 23 89 29 61 29 68 10 7? 29 2.° 11 91 23 93 1E0 12 62 29 81 19 82 12 1/ 12 31 12 11 12 53 12 44 19 97 1E3 1105 11 E6 12 25 17 34 17 86 IT 76 17 64 1I 19 16 99 12 11 19 81 090 12 26 16.88 12 95 12 39 12 30 12.41 12 24 12 2? 12 53 $7? roll 913 921 9 29 936 934 931 015 938 013 0 32 MO 0 16 933 016 /21 916 82T! 913 919 9l7 m7 Cro 23 97 2: 47 1 93 9 59 9 69 9 59 22 71 0 56 21 89 8 51 UIO 21 04 9 67 22 31 21 67 21 15 21 46 21 25 29 49 22 97 (11) 911 93 47 99 ?S 99 21 189 66 99 03 99 19 99.72 99.44 99 54 199 33 933 1/9.13 99. 93 99 51 111 99 99.89 99 76 99 65 99 82 99 41 911

910911 F9.I911FTI01IS Ri831C PROPptT106

SI 1 993 1 995 1 969 1 995 1 961 1 999 1 97? 1 991 1 974 1 979 SI 1 973 1.978 1 937 1 973 1.962 1 961 1 966 1 972 1 98' S1 9L 9 971 9 079 8 911 9 042 9 919 P 049 9 957 1 P41 9 056 9./4I R 5 060 1 134 1.057 / 957 1 961, 8 963 • 059 1 062 9 969 0.

II 9 175 8 905 0 976 8 911 9 199 fI 0.911 0 099 9 913 0 019 9 PLI 0 911 9 911 P 011 II FE 9 29? 9 :97 9 9:1 9 319 9 942 9 926 9 349 0 949 9 374 0 922 FE 8 298 9 93 0 343 / 378 9 393 9 394 1 399 0 397 9 317 FE 11, 9 674 9 623 1 941 1 911 1 919 1 919 0 416 4 975 a 694 1 927 953 9 689 9 979 9 731 9 695 1 709 9 791 0 692 9 699 9 711 M; MI 9 094 9 096 9 010 9 012 9 011 9 918 9 095 0 910 0 094 9 914 ell 1 895 8 911 9 995 9 997 9 997 9 994 1 804 9 096 9 993 Hi ra 9.97? 9 943 9 943 9 921 9 92? 9 924 9 91? 4 923 9 E^? 9 P21 68 0 858 8 929 0 995 0 969 9"65 9 971 0 8E4 9 9:1 8 301 Ca 9 6 499 6 910 6 099 6 999 6 1.441 6 009 6 999 6 007 6 809 6 709 0 6 999 6/P4 6 949 6 POP 6 999 6 099 6 909 6 09 6 999 0 C87901 3 9E6 3 939 4 997 3 995 4 919 1 9O9 ' 981 3 993 3. 927 4 999 6919-11 3 996 4.095 4.806 3 091 3 396 3 997 3 994 1 985 3 972 (9(911

232 4M-70 2 79 4122-93 246 159-16 0F1: 7 52 158-24 9Px 2 59 858-3E 266 Is9-Sf 233 4322-49 2 30 4322-SC 247 351~t6 0F' 253 T58-28 OF3 260 359-3(991111 267 t5,3-5e 2314 4722.19 241 1722-78 248 7115'71:116F.:7511.1'.. 254 138-X (F73 261 t59-311 268 T59-SE 235 4322-41 24 Z 4?22-7 P 249 Pr5 tE OF.: 255 159-2, iFx 262 159-49 269 153-EI 236 4:22-531 243 4:22-76 250 f5?-tEY0. 256 159-2E 0Px 263 I58-4C OP`: E/501. 270 r31-E8 2 37 4222-59 244 153-1 GPM 251 153-1F p! 2 57 159-3a 2614 158-494:9611 238 1322-61 245 T39-11 W° 2 58 138-38 9P5t EY.5Ol. 265 150-59 217

APPENDIX IID

This appendix contains the individual microprobe results for olivine. Also included are nine analyses of sample Brd 11.1001 from the Jimberlana intrusion (Roeder et al., 1979). This sample was used as an internal standard between runs. It has a composition of Fo87.9 with 2000 ppm Ni (Dr. I. H. Campbell, pers. comm.). The average composition from this study is Fo87.96 with .27% Ni.

38 • .. - :,°'E:r, . 2 3 4 5 6 7 8 9 18 N-`:-°T F`-calr 2 L' 24 25 26 27 28 29

37. ..2 38 67 35 79 35.47 35 67 35 58 35 73 35.66 35.62 33. 64 35 71 S: 2 36 39 36.17 37 26 36 23 • 36. 58 36. 26 36 28 36.12 36 et 3E Y^. 31 61 :1 75 31 93 32 01 3169 I1. 54 32 10 31. 92 32 85 32 e4 C°2'3= 1 91 "A 3157 3109 31. 77 38. 79 38. 91 38. 92 38. 74 39. 92 38 05 38. 96 ÇEO 23. 77 27. N 25. 64 26. 22 27. 06 26 89 27. 11 27. 25 27 41 24. 21 143 8 42 8 52 8 55 0. 51 8. 63 150 154 I. 45 153 8. 57 MOO 33 4 33 97 34. 70 13 21 34. 46 34. 69 34. 58 34.19 34.14 34. 41 36O 0 93 i15 118 186 189 12 L e3 L 01 187 195 900 867 162 8.51 053 8.62 147 0.37 8.66 163 l 43 308 8 94 104 8. 89 I e9 COO 0.9? 194 180 194 197 • 186 187 197 106 184 TIM 111 23 193 29 99. 86 180. 85 99. 73 99. 90 188.18 99. 83 189. 23 1e9. 22 C110 8 86 102 8 06 186 1 83 SUM 97.66 91. 76 98.91 99.28 99.69 99.22 99.53 99.11 99.29 91. 17 ATOMIC PP.!i'^PT1C!IS ATBMIC PROPORTIONS SI 0. 991 8. 991 8 979 8. 982 8. 981' I. 984 1 981 1. 981 I. 988 1981 FE 8 71.5 8.728 9.736 8.737 8. 731 1 726 1 739 1. 723 1. 737 1 736 SI 1 996 1.985 1 882 1 971 1 983 1 481. 1 988 1.901 1.978 L/14 MG 1 272 1 271 1 266 1.263 1 271 1 268 1 261 1 278 1 265 1 268 CR 1099 MN • 8. 018 0 012 1.013 1 812 l 813 8.912 /. 913 1. ell 1 812 1. 813 FE /. 590 1 618 0. 576 1 392 1618 1 688 l 617 O. 6.1.9 1623 1 538 CO 1 020 1825 1021 1823 1820 8.026 8.023 1822 1024 1821 03 1382 1373 1.398 1417 1.384 1399 1398 1384 1382 1394 Cu e 001 8. DR/ 1 082 1 882 hH 1.916 9.014 1.012 tell 1 814 1 811 1 013 1 815 1 e13 1 81e 0 4. 019 4 990 4. 000 4. 800 4. 808 l 008 4. 880 4. ee8 4. 888 l088 CO 1819 8. 021 O. 817 it Bstl 8.821 8.813 1 819 1 013 8.823 0 818 1 991 CRTSITI 3. 088 1 B18 1 828 1 817 1 818 1 816 1 E18 1 118 1 119 1 918 co 1 eel 8.809 8.891 l eel 0 4. e01 4.000 4. 008 4.000 4. 888 4. 088 4. 000 4. 880 4. 008 4. 898 011931 1884 1014 2 998 1821 1814 1819 1819 1818 1021 2 996 N ~ETGNf PEFCE1rt 11 12 13 14 15 16 . • 17 18 19 28 H OD • WICK PERMIT 31 32 33 34 35 36 . n 38 39 41 SI^2 35 63 35 63 35 94 35 6e 35 09 3613 35 31 35 85 35 94 35 74 1132 8 94 5102 3618 35 89 34. 61 35 99 34. 73 31 e8 3519 35 29 31 22 3119 4.11 3159 3189 3246 3222 3158 32.87 3197 3166 3213 T102 1 82 rr_;) 38. 94 30 88 3181 38. 83 31. 86 3143 3148 3184 3112 38. 72 C403 • I 01 SC

IIFIGRT IFc,,E11T 41 12 41 44 45 • 46 47 48 49 59 WEIGHT PERCENT 61 62 63 64 65 66 67 68 69 70 1192 :5 11 :5 25 • :5. 43 35.29 35.33 35.19 35 34 35.28 35.41 35.16 SI02 36.88 36.31 36.31 36.42 36.71 36.49 36.67 36.75 36.37 36.43 FE9 39 71 31 28 1029 30.83 31 95 32.13 32 81 32.58 32 52 32.55 EEO 32.83 32.91 32.83 32.66 33.60 32.85 33.13 32.87 32.64 32.10 I!i') 71 22 '1 32 31. 11 1132 39. 38 2?. 19 29. 61 2?. 74 29.46 29. P6 MO .34 .48 .41 .27 .36 .41 .29 .33 .34 .44 19O 0 54 0 63 0 63 9.58 9. 4? 9. 41 9. 48 9.51 8. 42 0 45 MCo 31.67 31.66 32.01 31.46 31.28 32.43 31.56 32.55 31.48 32.08 00 9 ?? 111 1. 05 1% 1.12 198 1. 99 9. 96 115 111 SUM 101.71 101.37 101.57 100.81 101.94 102.17 101.65 102.51 100.82 101.05 rir, 9 12 9 96 9.96 3'.11 ?3 37 100 12 99. 12 99. 95 99. 34 98 62 99. 41 99.86 99. 47 99 12 ATOMIC PROPORTIONS

OW Fv010F.Th>fY, 5I .992 .983 .981 .989 .989 .979 .989 .981 .988 .985 FE .739 .745 .741 .742 .757 .737 .747 .734 .742 .726 SI 9 97 9 91 9 9?1. 9. 971 8 981 8 993 8 994 8. 984 8.984 9 991 MN .008 .011 .009 .006 .008 .009 .007 .007 .008 .010 03 0 715 9 719 9.115 0.714 9 742 9.752 8 764 8.769 9.756 9.768 MC 1.270 1.277 1.288 1.273 1.256 1.296 1.I68 1.296 1.275 1.293 M3 1 213 '1 111 1 234 1 29 1 253 1 249 1 229 1. 237 1 241 1 242 . 0 4 4 4 4 4 4 4 4 4 4 MI 0 015 9 015 0 015 9.914 9 812 9.019 9 011 0.P12 11910 9.811 (II 9 0.2 n 025 0 024 9 024 9.925 9.924 9.024 9. 921 8.926 8.925 CS a 90: 8 091 8 991 9 4 (N1 4 910 4 009 4.090 4.090 4.9P1 4.080 4.009 4.099 4.990 61. 25-4-2C 65. 25-4-38 68. 25-6-64 .181 i'.41 : 022 3 01? 3 013 3. 022 3 918 3.917 1 915 3. 915 1816 3 819 62. 25-4-20 66. 25-4-3C 69. 25-4-68 63. 25-4-2E 67. 25-4-30 70. 25-4-6C WP.ICIIT PERCENT 64. 25-4-34 51 52 53 54 55 56 57 58 59 60 SI02 35.37 35.15 35.38 36.89 36.73 36.41 35.95 36.65 36.96 36.53 660 32.61 32.29 32.80 31.89 32.03 31.84 31.78 31.71 33.11 32.76 MCO 29.92 30.02 30.07 31.81 31.68 31.55 31.40 31.92 31.97 32.19 WEIGHT PERCENT SC203 0.03 71 72 73 74 75 76 77 78 79 BO IINO 37.30 0.47 0.46 0.46 0.31 0.34 0.32 0.38 0.47 0.28 0.47 8IO2 35.91 36.85 36.95 36.41 36.71 36.39 36.83 37.16 36.56 COO 1.18 1.13 1.18 MO 32.24 32.57 32.58 32.33 32.75 32.48 32.59 32.46 32.63 32.65 SUM 99.57 99.06 99.89 100.90 100.79 100.12 99.51 100.75 102.33 101.95 HNO .36 .41 .48 .37 .43 .41 .39 .40 .49 .35 NCO 32.49 32.05 32.39 31.90 31.88 33.15 32.04 32.38 32.37 32.80 ATOMIC PROPORTIONS . SUM 101.00 101.88 102.39 101.01 101.77 102.43 101.85 102.39 102.05 103.10 SI 0.982 0.981 0.980 0.996 0.994 0.993 0.988 0.992 0.989 0.982 ATOMIC PROPORTIONS 0F. 0.758 0.753 0.760 0.720 0.725 0.726 0.730 0.718 0.741 0.736 I10 1.239 1.248 .986 .988 912 .989 .990 981 .997 1.242 1.280 1.278 1.282 1.286 1.275 1.275 1.289 SI .974 989 .986 SC 0.001 00 .731 .731 .727 .732 .731 .726 .732 .724 .732 .723 HN .009 .011 .008 0.011 0.011 0.011 0.007 0.008 0.007 0.009 0.0)1 0.006 0.011 MN .008 .009 .011 .009 .010 .009 .009 CO 0.026 0.025 0.026 HC 1.313 1.282 1.289 1.287 1.278 1.320 1.282 1.296 1.294 1.294 0 4 4 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 0 4 4 4 4 4 4 4 4 CATSIM 3.017. 3.019 3.019

71. 25-4-7A 75. 25-4-98 78. 25-4-11A 1 72. 25-4-78 76. 25-6-9C 79. 25-4-118 73. 25-4-7C 77. 25-4-9D 80. 25-4-11C 41 •n ^~ 3 an • 42 41"255-3 :4: 54. 25-4-14 47 "91"255-3 49 • g "91;23-3 51' 55. 25-4-10 74. 25-4-9A .1:,..".11-1 .Ir ' 49 '0115-3 64 56. 25-4-1C 44 '91,";,-.:.-1(' 59 '91."25-3 FB 57. 25-4-10 45 "91.'25-- t0 51."0L"25-3 6C 58. 25-4-1E 16 'Ct'2`-, SE , 52."OL"25-3 6D 59. 25-4-2A 53."O1."25-3 6E 60. 25-4-28

WEIGHT PERCENT WEIC1IT PERCENT 8I 82 83 84 85 86 87 88 89 90 101 102 103 104 105 106 107 108 109 110 5102 36.61 36.81 36.88 36.34 36.60 36.60 36.75 37.20 36.56 37.56 5102 36.75 36.63 37.01 37.14 36.15 37.25 37.01 37.21 17.34 36.58 Fro 31.74 32.33 32.66 31.72 33.26 32.73 33.31 31.58 33.57 32.70 FF0 33.06 33.98 33.37 33.71 33.51 29.92 30.02 29.72 30.26 30.95 MNO .25 .35 .39 .38 .29 .35 .36 .43 .36 .41 NNO .39 .31 .34 .45 .33 • .36 .52 .30 .46 .42 MCO 32.51 32.44 31.55 32.76 31.51 31.53 31.92 32.08 31.61 31.72 NCO 31.91 31.50 31.40 31.42 31.66 34.80 33.69 33.97 14.41 34.13 SUM 101.12 101.93 101.48 101.21 101.67 101.21 102.34 103.29 102.11 102.39 SUM 102.12 102.40 102.12 102.72 101.66 102.32 101.24 101.20 102.46 102.08

ATOMIC FROPoRTIONS ATOMIC PROPORTIONS

SI .987 .986 .994 .980 .988 .990 .985 .988 .984 1.001 SL .986 .984 .993 .992 .978 .982 .988 .991 .985 .974 FF, .715 .724 .736 .715 .751 .741 .747 .746 .756 .729 FR .742 .763 .749 .753 .759 .660 .670 .662 .668 .689 148 .006 .008 .009 .009 .007 .008 .008 .010 .008 .009 MN .009 .007 .008 .010 .008 .008 .012 .007 .010 .009 MC 1.306 1.295 1.267 1.316 1.267 1.271 1.275 1.269 1.268 1.260 MC 1.276 1.261 1.256 1.251 1.277 1.368 1.341 1.349 1.353 1.354 0 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 4 4

81. 25-6-IA 85. 25-6-44 88. 25-6-4D 101. 25-6-8D 105. 25-6-90 108. 25-7-1C 82. 25-6-18 86. 25-6-48 89. 25-6-6A 102. 25-6-9A 106. 25-7-11 109. 25-7-1D 83. 25-6-1C 87. 25-6-4C 90. 25-6-68 103. 25-6-98 107. 25-7-16 110. 25-7-2A 84. 25-6-1D 104. 25-6-9C

WEIGHT PERCENT • WEI(:MT PERCENT 111 112 113 114 115 116 117 118 119 120 91 92 93 94 95 96 97 98 99 100 5102 37.21 37.44 37.33 36.81 36.82 36.72 37.54 37.27 37.02 37.04 SI02 36.93 37.26 36.57 36.65 36.79 37.04 36.92 37.32 37.27 36.78 EEO 31.26 30.98 30.85 30.66 30.87 30.09 30.38 30.46 30.85 10.75 Fro 34.05 32.84 33.00 32.29 13.01 32.15 32.80 33.41 33.96 33.26 1810 .46 .50 .47 .30 .47 .40 .41 .40 .31 .34 MNO .20 .38 .39 .28 .28 .27 .39 .40 .30 .32 MCO 34.24 33.05 34.37 33.73 33.81 33.73 34.19 33.38 34.15 33.83 MCO 32.16 32.30 31.83 32.09 32.80 32.11 32.71 32.24 31.41 32.44 SUM 103.18 101.98 103.02 101.29 101.97 100.94 102.53 101.52 102.39 101.95 SUM 103.35 102.78 101.79 101.30 102.88 101.58 102.82 103.36 102.94 102.80 ATOMIC PROPORTIONS ATOMIC PROPORTIONS SI .979 .995 .982 .984 .980 .984 .989 .993 .980 .984 SI .982 .991 .985 .988 .979 .994 .982 .989 .994 .981 FF. .688 .689 .679 .681 .687 .615 .670 .679 .683 .681 FF. .757 .730 .743 .728 .735 .722 .730 .740 .757 .742 10I .010 .011 .010 .001 .011 .009 .009 .009 .008 .008 11N .005 .009 .009 .006 .006 .006 .009 .009 .007 ._ .007 MC 1.343 1.309 1.347 1.344 1.341 1.347 1.343 1.326 1.348 1.340 4 11G 1.274 1.280 1.278 1.289 1.301 1.284 1.297 1.273 1.248 1.289 0 4 4 4 4 4 4 4 4 4 O 4 4 4 4 4 4 4 4 4

111. 25-7-2R '115. 25-7-3C 118. 25-7-5C 91. 25-6-6C 95. 25-6-78 98. 25-6-8A 112. 25-7-2C 116. 25-7-5A 119. 25-7-6A 92. 25-6-60 96. 25-6-7C 99. 25-6-B8 113. 25-7-3A 117. 25-7-58 120. 25-7-68 93. 25-6-6E 97. 25-6-70 100. 25-6-8C 114. 25-7-38 96. 25-6-7A WEIGHT PERCENT 121 122 123 124 125 126 127 128 129 130 S102 36.77 37.13 36.77 36.87 36.94 36.88 37.33 37.21 36.79 37.69 Fro 30.26 31.62 31.56 30.95 32.42 32.13 32.12 31.58 30.95 31.25 NNO .35 .62 .49 .33 .38 .45 .50 .36 .25 11GO 33.98 33.16 33.06 33.30 33.25 32.80 33.42 33.55 33.10 33.93 51111 101.37 102.33 101.39 101.61 102.93 102.19 103.32 102.84 101.20 103.12

ATOMIC PROPORTIONS

SI .982 .987 .986 .985 .980 .985 .984 .984 .987 .990 FE .676 .703 .708 .692 .719 .717 .708 .699 .694 .686 NN .008 .010 .011 .007 .009 .010 .011 .008 .006 MC 1.352 1.314 1.321 1.326 1.314 1.305 1.313 1.322 1.323 1.328 0 4 4 4 4 4 4 4 4 4 4

121. 25-7-6C 125. 25-1-84 128. 25-7-94 122. 25-1-7A 126. 25-7-88 129. 25-7-98 123. 25-7-70 127. 25-1-80 130. 25-7-90 124. 25-7-7C

WEIGHT PERCENT , 131 132 133 134 135 136 137 138 139 5102 40.30 39.96 40.83 39.67 40.00 39.75 40.14 40.30 40.38 FE1) 11.67 11.90 11.59 11.44 11.82 11.79 11.74 11.71 11.83 MNO .09 .13 .09 .16 .09 IICO 48.15 48.12 47.83 48.02 47.97 48.04 48.05 48.20 48.10 610 .32 .24 .29 .28 .22 .18 .38 SIIM 100.13 100.30 100.49 99.12 100.17 99.99 100.24 100.55 100.78

ATOMIC PROPORTIONS

91 .994 .987 1.003 .989 .987 .983 .989 .989 .990 FE .241 .246 .238 .238 .244 .244 .242 .240 .243 IM .002 .003 .002 .003 .002 NC 1.771 1.770 6.751 1.784 1.765 1.771 1.764 1.764 1.758 NI .006 .005 .006 .005 .004 .003 .007 0 4 4 4 4 4 4 4 4 4

131. Brd 11.10014 134. Brd 11.10010 137. Brd 11.10010 132. Brd 11.10018 135. Brd 11.1001E 138. Brd 11.100111 133. Brd 11.1001C 136. Brd 11.1001F 139. Brd 11.10011

APPENDIX IIE

Amphibole Anelyeee

WEICIIT PERCENT WEIGHT PERCENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 18 19 20 S102 53.77 53.46 54.55 58.85 57.86 58.65 51.27 51.13 51.40 45.09 5102 46.22 46.93 ' 46.60 44.71 43.08 54.59 53.95 48.92 48.55 51.27 AL703 4.55 4.58 3.62 0.39 1.23 0.36 6.51 6.54 6.78 12.13 AL203 11.08 11.00 10.46 14.88 16.25 1.63 1.21 8.71 9.01 6.25 1102 0.18 0.20 0.15 0.57 1102 0.63 0.61 .56 0.44 0.33 0.10 0.27 0.30 0.49 FPO 11.77 12.75 11.62 4.00 3.79 4.08 14.79 15.16 14.91 17.82 PEO 17.40 17.32 17.04 18.55 18.96 25.24 25.33 17.34 11.29 14.15 IN:O 16.67 15.44 15.96 21.74 22.82 22.00 13.74 13.66 13.78 10.11 NCO 10.90 11.20 11.17 9.46 R.03 17.35 17.67 12.17 11.61 14.04 NNO 0.25 0.21 - 0.22 0.28 0.25 0.22 NNO 0.21 0.18 .20 0.13 0.06 0.55 0.62 0.07 0.14 0.12 CAO 13.32 13.89 13.64 14.20 13.47 13.89 12.73 12.90 12.85 12.38 CAO 12.36 12.52 12.36 10.83 11.33 0.94 0.21 12.93 12.62 13.05 NA20 0.06 0.06 0.68 NA20 0.75 0.65 .49 0.81 0.95 K20 0.01 0.01 0.42 R20 0.12 0.27 .08 0.11 0.17 0.18 SUN 100.31 100.35 99.60 99.18 99.17 98.97 99.51 99.87 100.19 99.42 SUN 99.68 100.69 98.95 99.87 99.10 100.29 99.09 100.58 99.56 99.38

ATONIC PROPORTIONS ATOMIC PROPORTIONS SI 7.812 7.832 7.992 8.340 8.192 8.328 7.615 7.593 7.596 6.880 AI. 0.780 0.792.. 0.624 0.064 0.204 0.060 1.140 1.165 1.181 2.184 7.618 TI 0.020 0.022 0.017 0.065 SI 6.997 7.026 7.081 6.733 6.578 8.122 8.138 7.300 7.312 2.643 2.925 .286 .215 1.532 1.600 1.095 FE 1.432 1.564 1.448 0.476 0.648 0.484 1.838 1.882 1.843 2.273 AL 1.978 1.941 1.871 .011 .031 .033 .055 110 3:620 3.372 3.488 4.592 4.816 4.656 3.043 3.023 3.034 2.300 Ti .071 .069 .063 .051 .037 2.421 3.142 3.196 2.164 2.177 1.758 N NN 0.032 0.028 0.028 0.035 0.032 0.028 FE 2.203 2.169 2.165 2.331 2.125 1.827 3.848 3.973 2.707 2.575 3.110 TJ CA 2.080 2.180 2.140 2.156 2.044 2.112 2.027 2.052 2.034 2.025 NC 2.458 2.499 2.529 N NN .022 .026 ..017 .009 .068 .019 .009 .018 .015 NA 0.011 0.018 0.201 .027 2.012 1.855 .149 .034 2.068 2.037 2.078 K 0.003 0.003 0.082 CA 2.006 2.008 1.747 .254 .282 0 24 24 24 24 24 24 24 24 24 24 NA .220 .190 .146 X .024 .053 .011 .021 .033 .016 0 24 24 24 24 24 24 24 24 24 24

1. 27-1-2F. 5. 25-4-46 8. 4341-18 2. 27-6-3R 6. 25-4-4C 9. 4341-IC 3. 21-6-64 7. 4341-1A 10. 4352-14 11. 4352-18 15. 4289-2D 18. 18-34 4. 25-4-44 12. 4352-54 16. 4289-6A 19. 18-38 13. 4352-58 17. 4289-68 20. T-9-14 14. 4289-2C WEIGHT PERCENT 21 22 23 24 25 26 21 28 29 30 31 1102 51.32 50.13 51.25 50.37 50.16 51.42 51.53 45.25 46.64 47.14 67.13 41.20) 6.33 7.03 7.01 7.29 7.14 6.97 6.61 13.61 11.90 12.28 11.84 T102 .41 .49 .49 .52 .60 .34 .38 .97 .69 .63 .36 Flio 14.39 14.97 15.28 14.14 14.49 14.84 14.26 16.16 15.89 16.21 15.88 14:0 14.16 13.55 11.78 13.81 14.12 14.23 14.34 10.08 11.01 11.27 11.20 MNO .20 .17 .15 .11 .19 .13 .20 .22 .11 .13 .11 C40 12.76 12.84 12.88 12.82 12.83 12.90 12.87 12.49 12.28 12.62 12.62 NA20 .03 .20 .21 .05 .49 .40 .51 .27 620 .02 .11 .07 .09 .08 SUM 99.60 99.21 100.84 99.86 99.96 100.87 100.17 99.78 99.01 100.87 99.51

ATOMIC PROPORTIONS

Si 7.594 7.497 7.512 7.478 7.436 7.531 1.592 6.815 7.022 6.982 7.062 AL 1.104 1.239 1.213 1.275 1.243 1.204 1.167 2.381 2.112 2.144 2.092 TI .046 .055 .054 .059 .066 .037 .041 .110 .079 .069 .042 FF. 1.781 1.872 1.878 1.830 1.790 1.818 1.757 2.111 2.001 2.007 1.991 MC 3.129 3.019 3.019 3.051 3.108 3.107 3.151 2.263 2.472 2.488 2.501 MN .024 .021 .018 .016 .023 .016 .025 .021 .015 .015 .014 CA 2.002 2.058 2.029 2.039 2,030 2.024 2.031 2.016 1.980 2.00) 2.027 NA .010 .056 .060 .014 .143 .118 .146 .077 K .004 .022 .014 .018 .015 0 24 24 24 24 24 24 24 24 24 24 24

21. T-9-18 26. T-9-5A 29. T54-16 Cm 1 22. T-9-24 27. T-9-58 30. 154-1C Crn 2 23. T-9-28 28. 154-1A Grn 1 31. T54-10 Grn 2 24. T-9-44 25. 1-9-48 Appendix IIF. Sulfide Analyses

(EIGHT P6CENT 1 2 3 4 5 6 7 8 9 10. IEI7TT PERCENT 21 22 23 24 25 26 27 28 29 30

FE 45 78 46.47 46. 19 44.90 44 08 46.69 44 27 44 13 45 78 45. 44 FE 46. 27 59.21 59.33 59. 38 59 73 68.85 59.81 68.85 59.78 5? ?- CO 1.95 l 98 1.18 I 21 133 i 02 1 91 2 13 1 97 1. 82 CO 1 71 8 97 1.83 1 14 9.86 1 95 8 97 8. 91 L 14 1 2 CU 9.13 Ni B. 05 t 88 t 83 1 09 9 17 0 21 D4 2 82 1. 91 43! 112 S 53 58 53.88 54.99 54.07 53. 81 54.95 51 22 52 53 52 98 51 71 5 53.78 39.65 39.57 39.66 39.64 39.63 39.81 38 88 V.78 :? ?9 999 180. 39 191- 25 18129 1e128 181. 22 192 68 99. 48 9179 99. 66 182 17 5111 11L 76 99. 89 iné. w 182 zâ .92 H i0l 73 192 71 1e8 e1 181 78 12 24

810NIC PROPORTIONS RTOIIC P2213102

FE 0 981 1 992 1. 982 1.934 1.941 1. 976 1 955 8 964 1 991 1.979 FE 1.988 1057 1E61 1960 /.865 11871 l 862 1987 1963 OM CO t 821 1828 • 1822 1865 l 967 1 820 • 1 839 8.844 d 021 I. 821 CO l135 1.113 1814 1. 016 8. 812 l 814 l 213 1213 1016 125 CU 1983 NI 1881 1981 10/8 t 82 1182 1 e13 214 1. 880 . 1908 CU l932 S 2 899 2 908 2 889 2 808 2 899 2 800 2 9ee 2 988 2 880 2 808 5 2 8e9 1 838 1 800 1.000 1 988 I. 990 1.898 L O08 1899 1 091 C111911 I 885 I 212 1 104 2 999 1 008 2 996 2 994 I 908 1 811 2 999 4711911 1 123 1 871 1 876 1 876 L 879 L 885 1.997 1.952 1 879 1 19

1 'PY' 4348-111 S1312 2I5 S 'PP 4348-2E (9512 9. •Pr 4341-40 21 'PY• 4279-2F 25 •Po• 434e-2F t7d12 29 'PO. 4340-3 sac 2 'PV• 4249-18 t 'PP 4341-2 1 0 'Pr 4341-48 22 •PO' 4348-261 STFMi OP13 26 'PO. 4340-3C 30 'PO' 4340.91 1 'PY' 4340-1D CPC 7. 'PY' 4341-2B 23 'PO.4340-28 27 'PO' 4348-4342-310 ~ 4. 'PY' 4348-2D LTd2 .1 'PY' 4341-2C . 'P0' 4341-2C EidQ 28. 'PO' 4340-3E GM

4EI011 PERCENT 11 12 13 14 15 ' 16 17 " 18 19 20 40 1EI61fT PERCENT 31 32 ' 33 '34 . 35 36 37 38 , 39 • FE 45.85 44.97 4118 4176 46.02 4139 46.18 59.97 6188 46.47 Ft 61 67 61 28 60.22 68.14 68. 15 32 71 31 97 38 67 31 25 22 18 CO 196 226 1.24 1 85 192 273 181 8.93 190 149 CO 188 t 97 195 1 89 L 86 197 1.19 137 148 0 4 NI l 05 1 e1 NI 1 21 1 81 1 94 35.83 32 22 co t 86 0.12 CU 1 88 34.45 34 89 34 48 ZN 19 e 5 42 28 39. 82 42 21 39.99 40 26 33. 13 31 23 35 21 34 98 37 46 5 52 62 5167 52 68 51 88 5136 52 95 53. 49 39. 68 39. 98 51 31 911 182 23 1.81. 17 12139 101.34 101.46 1.80. 74 192 71 11171 99. 72 leï 49 911 99. 82 188. 98 18216 119. 41 199. 38 99.17 198. 68 188. 63 18197 10129 RTONIC FROPO1T10kS RTp1IC PROPORTIONS FE 1 865 1.869 0 869 • 1. 863 1.858 4. 257 4.157 1 e00 t 995 8 93 FE 1 979 1 962 8.966 1 977 1. 998 1 941 1 991 0• 4: 1 865 1eel CO t 015 t 813 8. 013 1 815 1 814 t 141 1 156 1. 112 (81.5 1113 5825 l 017 1. 219 t 856 8. 821 e e13 . 8. 013 1 838 fp t 828 1846 NI l 003 1 888 0 eel 4.726 4.762 9. 991 8.888 NI CU 1 eel e 997 vase 1 ?19 991 t Bee CU l S i 008 L 888 1. 889 1.800 L 908 1Me 1 888 2 000 2 ee8 2 atl D( /. 803 COMM 1882 1882 1. 872 1.888 1872 17.124 17. 975 1999 1996 1 9V 5 2 009 2 898 2 998 2 ee8 2 888 2 080 2 888 1899 1. 800 2 000 2 993 2 994 1099 2 997 1812 1882 879 1932 0119l1 1/83 1 e08 31 'Po' 4340-2 35 •PO' 4343-3C 39 'Ur 4349-38 32 'Po' 4343-211 36 'PEW 4343-5R 0 'CPS" 4341-N 11 'PY' 4341-40 OR10 1 'PY'4352-40 TFN2 19 'PO' 4I43-7 5 33 •PO. 4343-28 37 'P£N1' 4343-5C 'PY' 4343-30 CP42 20 •PY• 4279-a 1 2 •PY• 4352-2E 16 34 'PO' 4343-31 38 'CPY' 4340-3R 511112 GPq 1 3 'PY' 4332-2F 17 'PV 4343-3E CPN2 14 'PY' 4332-4C (it12 18 'PO' 4343-5E

48 49 50 62 63 64 65 WEIGHT PERCENT 41 42 43 44 45 46. 47 tam PERCENT 60 61 FE 59. 81 69 46 59. 82 136 1 11 1 01 FE 30.37 39 10 31 % 30.34 10.02 30 91 30 29 39 14 10 59 ;R s; CO L 17 1 12 L 07 66.27 64 33 63 59 CO 9 37 9 32 P 71 0 48 8 13 8 45 0 Si 9 S? 8 51 9 '? HI CU 34 60 33. 94 11 25 34. 70 34. 83 34.6Z 34. 71 33 97 34 73 14 54 211 0.11 S 33 52 35.44 37.78 A. 49 35 95 34 94 35 91 36 19 34 94 11 02 S 48.32 18.34 IB 49 36.21 36 68 35.97 Sul f08 91 99. 99 18162 101 Z1 10B 35 190. 83 18183 109 79 199 77 199. 69 5111 18129 182 82 181. 38 103. 97 182 5•9 102 M.

ATONIC FP.OPOPTIOHS ATONIC EMPORIUMS

FE 9 9"'2 0 973 0. 971 0.988 0 904 0. 986 8.9C--9 0 959 1 095 1 001 FE 0 852 0 861 8. 848 8. 822 8 924 1 816 CO 9 911 8 816 0. 020 0.915 0. 914 0.914 9 816 9 919 0 915 9 Olî CO 8.816 0 915 1 014 • 1 999 8. 959 9 !94 CU 9 993 0%7 0 837 8 987 1. 093 1.000 0. 964 9 990 1 093 0 ?? Ill S 2 909 Z 090 2.949 2 009 2 009 2 091 2 OLIO 2 009 2. 009 ' 2 009 211 8.001 4 000 •4.991 3.949 3 926 4 024 4 915 1 099 CRTSUI 3 976 3. 959 3. 630 3.999 S L 888 L 000 1.909 1.808 L 8139 • 2.811 1111911 L 867 1877 L 862 2 821 1. 982 41 •CFY" 4341-38 11112 4 5 'CPY" 4343-2C 6xN2 49 "CFY' 4343-58 42 'CM 4341-4C G712 46 •CPY' 4343-20 ORNZ 50 •CFY' 434:-50 43 •CFY' 4352-20 47 'CRY* 4343-1R 44 "CPS,' 4332-28 48 •CpY• 4343-10 6.3 •1116. 4352-2D 60 'F9' T16-3F 64 •1116. 4352-40 61 TV 116-3G 8k112 62 •P9• 116-3N (2042 65 11111 4332-48 WIGHT PERCENT 51 52 53 54 55 56 57 58 59

CR 8. 81 FE 39. 75 39 84 30.57 38. 79 30. 87 60.13 68.57 68. 36 60. 45 CO 850 0.54 0.61 9.39 8.54 121 1.29 LU L 13 CU 34 66 34 60 34. 84 34. 91 34 10 S 35, 86 35. 78 36. 80 36.12 36. 68 40. 62 48. 73 49. 78 N.14 CL LESS 0 E8 Cl. SUN 181 77 101. 76 102 11 182 22 192 18 101. 96 182. 68 102. 18 182. 82

01011C PROPORTIONS

CR 8 099 FE 9 985 8.998 8 973 0 979 0 969 /.830 8.854 0.851 0.858 CO 0 915 8. 016 0 019 I. 912 0. 016 8.816 I. 817 0.915 0.015 CU 9 976 0.976 9 975 8.975 0.949 S 2. 009 2.909 2 O08 2 808 2 889 L 009 l 800 L 000 1. 889 . Cl 0 CRTSUI 3 975 3.982 3.966 3.966 3.925 1. 866 L 871 L 866 1. 873

51 •CFY• 154-39 STFM2 G7S 55 'CM' 114-38 59 •P0• T16-20 MR 52 •CFP T54-38 56 •P0• 116-28 sum CPIS 1i011 53 •CPY• T54-3C 57 •P0• T16-20 GPM 54 •CPY•116-39 58 •PO. 116-2C (9162 APPENDIX IIG (1lnenite and Magnetite Analyses) weight percent 1 2 3 4 S 6 7 8 9 weight percent 19 20 TiO 50.74 50.15 51.15 50.71 50.44 49.75 49.22 49.98 52.40 2 TiO 52.30 52.09 Cr 203 2 Cr 203 Fe0 48.67 48.62 48.24 48.17 47.67 48.16 48.31 46.89 44.44 V205 .16 .09 .13 .12 .17 .04 .16 .33 FeO 46.44 46.21 V205 .13 .15 Mn0 .74 ,.74 .71 .78 .77 .80 .72 .74 .50 Total 100.31 99.51 100.25 99.79 99.00 98.90 98.29 97.77 97.67 Mn0 .78 .69 Total 99.66 99.14 atomic proportions atonic proportions Ti .971 .969 .977 .974 .976 .967 .965 .978 1.011 Cr203 Ti .997 .991 Cr Fe 1.036 1.045 1.025 1.029 1.026 1.041 1.053 1.021 .953 Fe .984 .984 ✓ .003 .002 .002 .002 .003 .001 .003 .006 ✓ .002 .003 Mn .016 .016 .017 .017 .017 .018 .016 .016 .011 Mn .017 .015 O 3 3 3 3 3 3 3 3 3 O 3 3

19. T59-58 Exeo1 IL weight 20. 759-5E Exsol IL percent 10 11 12 13 14 15 16 17 18 TiO 50.51 49.93 51.39 50.15 50.93 49.93 51.89 52.40 51.69 2 Cr 203 .25 .19 Fe0 46.69 46.95 47.53 47.80 47.97 47.90 46.47 45.89 46.34 weight V205 .07 .10 .55 .68 .56 .97 .09 .14 .12 percent 1 2 3 4 Mn0 1.39 1.33 1.18 1.18 .73 .63 .84 .64 .69 22.53 20.91 Total 98.66 98.31 100.65 100.41 100.19 99.43 99.29 99.07 99.04 1102 Fe0 23.65 24.08 30.83 30.64 atomic proportions FeZ 3 52.61 53.55 68.57 68.17 V 205 .24 .23 Ti .980 .974 .975 .967 .972 .960 .994 1.002 .996 Cr .005 .004 Mn0 .72 .77 Fe 1.007 1.019 1.003 1.013 1.018 1.025 .990 .976 .989 Total 99.75 99.31 99.40 98.82 ✓ .001 .002 .009 .011 .009 .016 .002 .002 .002 Mn .030 .029 .025 .025 .016 .014 .018 .014 .015 atonic proportions O 3 3 3 3 3 3 3 3 3 Ti .594 .558 Fe44 .694 .715 1.000 .999 - 1. T-16-1A IL 7. T-7-48 IL 13. 4289-28 IL Fe4/I 1.389 1.431 2.001 2.001 2. T-16-16 IL 8. T7-8A IL 14. 4289-5A Crnl IL ✓ .006 .006 3. T-16-1C IL 9. T7-88 IL 15. 4289-58 Grn2 IL Mn .021 .023 4. T-16-6A IL 10. 78-4A IL 16. T59-5F Crn IL O 4 4 4 4 5. 1-16-68 IL 11. 18-48 IL 17. T59-7A Grn IL 6. T-7-4A IL 12. 4289-2A IL 18. T59-78 Crn IL 1. 1.59-5A Host MAC 3. T-8-5C MAC 2, T59-50 Host MAC 4. T-8-50 MAC 227

APPENDIX III

This appendix contains the procedures and details relating to the petrochemistry of the rocks. The three sections of this appendix are:

Whole Rock Analyses IIIA Rare Earth Element Analyses IIIB Cu, Ni, Pt, and Pd Analyses IIIC

APPENDIX IIIA

Twenty three samples were analysed for major elements on the XRF in the geology department. The FeO in these samples was determined by titration with potassium di- chromate. Loss on ignition was done by heating a 1 gm. sample for one half hour at 1075°C within a pure nitrogen atmosphere. The sample preparation was carried out according to the procedure of Norrish and Hutton (1969). Each analysis was performed in duplicate and the average values are presented in Table 11, Chapter VII. For a discussion of the instrumental precision and the accuracy of the method see Gorton et al. (1979). 228

! APPENDIX IIIB

This Appendix contains the procedures used to analyse the samples for REE. Approximately 300 milligrams of each sample was weighed out and sealed in plastic viles. These samples were irradiated overnight in the Slow Poke Reactor at the University of Toronto. After a seven day cooling period, the first count was done on the equipment at Erindale College. A second count, usually done 40 days after irradiation, had to be carried out slightly later because of instrumental difficulties. The observed elemental peaks and counters used for these counts are shown in Table 16. The results of these counts were convereted to ppm in the sample using the formula:

ppm - peak_ counts/live time e X t• wt • F

where a - In 2 half life t = time between sample and standard F = factor for element when solving this equation for F using the accepted ppm. Nim-G was used as the standard for all elements except Eu where UTB-1 was used with a value of 2.06 ppm. The 229

Table 14.

One Week After Irradiation

Low Energy Detector element KeV half life (days)

Ho-166 80.573 1.12 Nd-147 91.000 11.0 Sm-153 103.23 1.958

High Energy Detector

element KeV half life (days)

Lu-177*1 208.46 6.70 Yb-175*2 396.10 4.208 La-140 1596.20 1.675

Forty-eight Days After Irradiation

High Energy Detector

element KeV half life (days) *3 Tb-160 298.582 72.1 Pa-233 311.90 27.4

Sixty Days After Irradiation

Low Energy Detector element KeV half life (days)

Gd-153 97.43 242.0 Eu-152 121.83 4526 Ce-141 145.443 33.0

*1 to correct for an U interference in the Nim-G standard with this peak, 12% was added to the ppm calculated.

*2 to correct for an U interference in the Nim-G standard with this peak, 6% was added to the ppm calculated.

*3 Tb has an interference from a Pa peak at 300 KeV. To correct for this, 17.67% of the Pa peak at 311.9 KeV was calculated and subtracted from the Tb-Pa doublet at 298-300 KeV. 2310

accepted values for Nim-G were taken from Jackson and Strelow (1975). Table 17 includes the results for the samples along with detection limits that were calculated using the method of Kruger (1971). Only those values which are greater than or equal to the detec- tion limits are shown in Table 12, Chapter VII. The Ho and Gd values are not included in Table 12 because initial chondrite normalized plots indicated that these elements were too low. Rlthough the samples were crushed in a tungsten carbide mill, the chondrite normalized Lu results look satisfactory. Therefore, despite the interference of a tungsten peck with Lu, the results are included in Chapter VII. Two samples of Nim-G and UTB-1 were analysed with the unknown samples. One of the Nim-G samples was used as a standard and the other analysed as an unknown. Table 18 shows the results for these samples along with the percent differences from the accepted values and, in the case of UTB-1, the coefficient of variance. Table 17.

Sample Number La D.L. Ce O.L. Nd D.L. Sm D.L. Eu 0.1.. Gd D.L. Tb D.L. Ho U.L. Yb D.L, Lu U.L. Volcnn1cs g 23-1 6.1 .4 15.5 3.6 11.7 4.4 3.73 .03 1.01 .03 3.2 1.6 .7 .2 .5 .2 3.1 .5 .1 23-2 5.9 .3 13.9 3.7 10.1 4.6 3.41 ,03 .90 03 3.2 1.7 .6 .2 .5 .2 2.7 .44 .5 .1 2 0-1 7.7 4 20. 6 3.7 11.8 5.2 4 .53 .03 1 .30 .03 3.3 1.7 .8 .2 .9 .3 1.9 .5 .6 .1 Subsid1nry intrusion 1 6-3 6.6 .4 16.3 3.5 14.3 4.7 3.93 .03 1.02 .03 3.2 1.6 8 .2 .8 2 3.5 .5 .5 .1 Bell River Complex 19-7(QCzG) 12.7 .4 30.2 2.0 17.6 5.2 4,53 .03 1.32 .02 2.6 1.4 .7 .1 .5 .2 3.1 .5 .4 .1 T45(An) .7 .3 .9 2.0 -.1 2.4 .16 .01 .24 .02 .6 .9 .0 .1 .0 .1 .0 .3 .0 .04 T42(aG) .6 .3 1.4 3.2 1.2 3.8 .44 .02 .29 .03 .0 1.4 .2 .1 .1 .2 .8 4 .1 .1 Ni r47(fc) .6 .3 .6 .9 1.2 3.6 .28 .02 .24 .01 .2 .5 .2 .1 .1 .2 .5 .4 .1 ,1 W T35(G) .2 .3 .8 2.6 .1 1.5 .26 .02 .24 .02 .1 1.1 .2 .1 .1 .2 .2 .4 .1 .1 N 143(pyxG) 1.0 .2 .1 1.7 .1 2.6 ,08 .02 .19 .02 .0 .8 .1 .1 -.1 .2 .0 .3 .o .1 27-17(cpc) .4 .2 1.0 3.6 1.4 5.5 1.43 .03 .4 50 1.6 1.8 .5 .2 .3 .2 1.2 .6 .3 .1 T50(cpc) .2 .4 -.9 5.1 -1.4 6.2 1.17 .05 .35 .04 1.o .2 .5 .2 .3 .5 1.9 .7 .3 .1 T57(Du) .2 .2 4 2.8 1.3 4.6 .04 .03 .02 .04 .0 1.4 .0 .2 -.1 .3 .0 .4 .1 ,1 lamprophyre Dykes T16 26.7 .3 71.4 3.8 46.2 6.8 12.22 .05 2.09 .04 0.0 1.7 1.4 .2 1.5 .6 5.1 .5 .7 .1 TE2 .3 .3 -.9 2.8 -.1 3.7 .05 .02 .50 .03 -.5 1.2 .0 .1 .0 .3 .0 .5 .1 .1

D.L.= Detection Limit (all values in ppm)

232

Table 18.

Nim-G

pre- this ferred study D.L. Jiff. La 105 110.4 .04 5.1 Ce 195 198.1 2.4 1.6 Nd 73 58.6 12.6 -19.7 Sm 15.5- 15.11 .08 -2.5 Eu .39 .27 .02 -30.8 Gd 10.9 10.2 1.1 -6.4 Tb 2.1 2.4 .2 14.3 Ho 3.3 3.2 .7 -3.0 Yb 11.1 13.0 .8 -2.3 Lu 2.1 2.1 .2 0.0

UTB-1A UTB-1B

pre- this % this ro Coef. ferred*1 study D.L. diff. study D.L. diff. z Var. La 24.2 26.3 .3 8.7 25.5 .4 5.4 25.9 2.2 Ce 51.758.9 3.1 9.7 54.0 3.7 .6 56.5 6.i 4.8 32.7 6.4 5.1 32.7 .2 Nd 11.1'123 2.6 6.2 Sr 7.7 . 7.90 .05 2.6 7.96 .04 3.5 7.94 .6 Eu 2.06 2 2.03 .04 -1.5 Gd 6.55 5.3 1.6 -19.1 6.0 1.6 -8.45.7 8.8 Tb 1.08 1.0 .2 - 7.4 1.0 .2 -7.4 1.0 D.0 Ho 1.332 .9 -32.5 .8 .3 Yb 3.6 3.7 .5 2.83.9 39.3 3.8 8.3 Lu .55 .6 .1 9.1 .6 .1 9.1 .6 0.0

*1 UTB-1 preferred values are for BCH-1 from Taylor and Gorton, 1977. '2 value from Dr. Ian Campbell, personal communication. (all values in ppm) 233

APFENDIX IIIC i

This appendix contains the Cu, Ni, Pt, and Pd results for the rock chips and rock samples collected in the eastern lobe of the Bell Hiver Complex. Brief field descriptions of the samples are also included. In order to access the analytical precision of the results, standard soil samples were sent with each series of samples. The results for these standards are shown in Table 19. The Pt and Pd values included in this appendix were taken directly from the reports of Bondar-Clegg and Co. Ltd. to Canadian Occidental Petroleum Ltd. Bondar- Clegg was contacted in May of 1980 to clarify the differ- ence between N.D. and 45. At that time they gave detection limits of Pt=15 ppb and Pd=2 ppb. Therefore all quoted Pt values which are less than 15 ppb or N.D.

should read 415 ppb and all quoted Pd values of (5 and N.D. should read <. 2 ppb. 234

Table 19. Soil Pit 41

L68N/18 50E Cu Ni Standard % cliff. % Jiff. No. porn from mean ERE from mean 22004 16 14 14 65 22060 11 -21 6 -29 22175 11 -21 7 -18 22208 15 7.1 7 -18 22364 15 7.1 5 -41 22419 10 -28 15 76 22551 14 0.0 9 5.9 22686 16 14 10 18 22 782 14 0.0 8 -5.9 22865 13 -7.1 8 -5.9 22976 13 -7.1 7 -18 23020 14 0.0 7 -18 23181 15 7.1 8 -5.9 23216 14 0.0 9 5.9 23304 15 7.1 8 -5.9 23484 14 0.0 7 -18 23522 16 14 10 18

Mean 14 9.1% 8 21.9%

Soil Pit 42

L6ON/20+50E Cu Ni Standard t diff. t Jiff. No. pnm from mean ppm from mean 22014 720 5.4 32 0.0 22024 694 1.63 30 -6.2 22130 700 2.5 32 0.0 22278 712 4.23 27 -16 22390 730 6.9 28 -12 22437 720 5,43 28 -12 22517 700 2.5 33 3.1 22650 7-0 2.5 32 0.0 22723 700 2.5 35 9.4 22891 720 5.4 35 9.4 22918 720 5.4 36 12 23066 640 -6.3 32 0.0 23118 620 -9.2 33 3.1 23262 620 -9.2 32 0.0 23331 620 -9.2 33 3.1 23425 600 -12. 30 -6.2 23621 700 2.5 33 3.1

Mean 683 .5.5% 32 11.2%

Soil Pit $3B

L16N/11E

Cu Ni Standard t cliff. % cliff. No. VDm from mean pow from mean 22147 258 30.3 57 -16 22752 190 -4.04 69 1.5 22808 189 -4.54 72 5.9 22954 278 5.05 76 12 23092 187 -5.55 71 4.4 23163 182 -8.08 66 -2.9 2:286 180 -9.09 67 -1.5 23382 192 -3.03 68 0.0 23454 196 -1.01 63 -7.4 mean 198 7.88 68 5.7% 235

Details of Rock Samples and Analyses Assay Rock ppm ppb Book 4 Location r e Description Zu Ni Pt Pd now called 4207 L28N-0+28W bAn 70/30 with blebs of maphics in nearly pure An, tr. of Py 39 20 10 .e5 4210 BIO-+00-73+35W and 6'W bAn 60/40 mg with 14 diss.Py 16 22 5 -5 4222 L16N-5+68E Cpc 0/100 mg with--21 diss. sulfides660 540 10 •5 4275 L03-2+09W 4 20'S aG 80/20 mg gneissic with 1% dins. Po 69 38 5 N.D. 4276 LON-16W G 50/50 mg gneissic with dies. Py 94 23 10 -5 4277 IAN-35+90E Gossan with magnetite ands-31 Cep in a 50/50 mg G(gneissic) 1040 400 145 70 - 19 z,57 4278 L12N-05+70W fG 70/30 f g-mg,gneissic diss. Py 85 28 15 •5 4279 LO4N-05+80W •Pyx G 40/60 mg,gneissic 1-2% Py 1140 82 35 45 - 2 s333 4280 LO4N-11 +50W Pyx G 40/60 f g-mg,gneissic, Tr.Po 36 11 5 •5 4281 L08N-14W and 20'S bAn 90/10 blebs of maphics 1-2" diem. Mg with--11 Py 38 20 5 .5 4282 L2BN-10+40E i 58'S bM(chips of 70/30 mg with--10 dies. Py 146 25 N.D. •5 more An rich areas only) 4283 L44N-05W AnG 20/80 f-m grain,trace Po 20 13 N.D. N.D. 4284 L44N-7+30E AnG 20/80 ,m-grain, TraceSulphides 34 20 5 .5 428b 140N-2W An 90/10 mg was the major rock. This material is 98/2 with I% diss. Py 100 18 5 .5 4286 140N-17E and B1'3 Cpc 0/100 cg with--11 diss.sulphides200 112 N.D. .5 4287 L48N-2+50W fG 75/25 mg-cg with -y% sulphides 131 25 N.D. .5 L56N-17+46E i 9'S Cpc 0/100 mg-cg with ,1% diss. " 400 220 N.D. N.D . 4289 1.56N-33+68E i 20°S G? 50/50 Fg with . 10tgarnet melocrysts and -.I% diss. Py 400 54 N.D. N.D. 4290 156N-37+60E i 10'S An 97/3 mg with. IA diss. Py 25 24 N.D. N.D. 4291 E.B.L.63+BON G? 60/40 fg with garnet metacrysta and•-11 diss. Po 129 13 N.D. -5 4292 BLE 64N G7(gossan) 50/50(fg) with 1% sulphides 100 15 5 N.D. 4293 L64N-34+90E Cpc 0/100 mg with.. 1% Py 910 225 15 •5 4294 E.B.L. 67N bAn m-cg,80/20 in an outcrop of 50/50 mg G 4 3% Po 1140 150 N.D. -5

4253 L20N-08145E PyxG 1/9 mg • I% Po 1020 31 5 •-5 4258 132N-37f PyxG 40/40 sq, trace pyrite 146 20 5 N.D. 4262 L92N-23+50E An 90/10 mg,tr. Po 880 184 15 20 4263 L100N-26+50E bAn 90/10 mg,tr.sulphides 35 25 N.D. N.D. 4295 L92N-64+80E An • 122 20 5 -5 4296 L100N-68E bAn " ",1-21 sulphides 35 17 5 N.D. 4297 L80N-24,30E fG 70/30 mg with --II% sulphides 274 126 5 10 4298 L80N-39+70E bAn 80/20 with --I% Py • 45 30 10 .5 4299 L80N-40+S0E PyxG 20/80 fg with-.1% Po 560 71 10 •5 4300 196N-15E and 30'N fG 70/30 mg with••IA sulphides 68 99 10 .5 4301 L96N-22+52E i 29'N fG 70/30 mg with clots of mafics 2" diam. -2% sulp:sides (Py-Ccp) 2350 163 5 5 4302 1,96N-46E and 20'S aG 85/15 mg with-11 Py 72 24 5 N.D. 4303 L96N-66E fG 70/30 mg with-sit Py(material taken from a mafic rich area 114 50 35 ...5 now chlorite) 4304 1108N-59+50E and aC 85/15 mg with.. 1/2% Py 18 19 15 5 20'N 4307 128N-20+77E and 3B'N bAn 70/30 mg with.- It sulphides in blebs 78 19 _5 5 4315 1.120N-57E(30'S) Cpc 5/95 gossan fg, 11 S. 86 36 ._ 5 ~5 4316 BLE 134 +80N aG 80/20 mg, gneissic tr. S 12 21 •_5 ~5 4318 176N-06W bAn 80/20 •mg,l-2t Py 61 16 .5 -5 4321 1116N-57+10E 4 20'S Cpc 3/97 fg-mg with-11 diss. S. 620 195 5 <5 • 4322 1,124N-58+15E Cpc 0/100mg-cg with •"1% diss. S. 395 125 5 5 4323 L128N-57+80E Cpc 0/100 mg with .1% diss. S. 350 125 .5 <5 4324 1124-61E and 150'N Cpc cores mg 0/100 with 1% diss.S 680 1600 .5 .5 +e 4325 1132N-59+10E Cpc 0/100 mg with •-11 diss. S 300 80 N.D. 5 4326 L140N-61E aG 80/20 mg with.- 11 Py 78 23 5 •5 4327 1148N-41+90E bAn i Pyx G 80/20 mg with 20/80 fg pyxGic material 250 85 5 •S 4328 1184N-48+85E i 15'S Cpc 0/100 mg with -1% diss. S. 1700 409 5 30 - S 4329 1.184N-25+70E An 99/1 mg with --1% diss. Po 1410 215 •5 5 4330 L188N-25+65E An 10/90 mg with -1% diss. magnetite, S(Ccp, Po) 1100 219 - 5 ~ 5 4331 1192N-75+42E t 271'S Cpc 0/100 mg-cg with •.21 diss. S 742 768 •5 5 wn. 4332 L152N-25+43E(N.S.) G 5/5 with tr. Py 111 37 15 40 -- 4333 L148+S0N-23E(N.S.) G and M patches 1% Py 11 21 N.D. 5

236

Assay Rock PPm ppb Book i Location Description eu Ni Pt Pd 4334 L136N-30+60E(N.S.) G tr. Po + Py 69 24 .5 ,5 4335 L136N-31E i 1S0'S(NS)G barren 18 26 N.D. .5 4336 L136N-58E and 8'S(NS)G with blebs of An, 0.5t Py 56 23 /5 .5 e4337 L136N-60E and 10'W(NS) G barren 3 9 N.D. .5 4338 L152U-41+44E(NS) Cpc Bldr. with.-0.5t Po + Py 246 179 N.D. .5 -+N339 E.B.L.162+20E and 55'W (NS) Cpc barren core 101 249 e5 -5 4340 L200N-46+B5E An 99/1 mg in contact with G 5/5 mg - 1% dies. Po 2730 881 10 40 4342 L204N-24+90E and 50/50 mg with.-.1t dins. Po and 30'N G some magnetite 551 105 N.D. . 5 4343 L204N-30+15E An 97/3 mg with-1% dies. and and 10'N veinlet Py 1640 337 5 50 4347 L200N-19+40E and PlonG 10/90 mg with..,lt dies. Ti V 10'N magnetite 2.94 1700 4348 L208N-25E and 31741 40 magnetite mq 2.88 1985 (30'E of claim post L3 chlorite P1CL1353526) 4349 L8N-14+50W arid SO'S bAn 70/30 mg withe.lt dies. i veinlet Py 55. 20 N.D. N.D. 4350 L8N-14+85W and 5'N bAn B1dr.70/30 mg with lidiss.Po 1590 302 e 5 10 S e,00 4351 L0N-35+90E 3 C + Py gossan magnstits 2890 1670 85 55 •w% 25(..15 4352 L8N-23+50E i 20'N fG Bldr.75/25 mg with 1% diss.Py 854 261 N.D. ' 5 4353 L112N-74+65E 435'S fG 7/3 ,-3% pyrite 104 24 N.D. 10 4354 L32N-1+80W 6 121'N mAn 90/10 mg with--0.56 Py 45 34 N.D. 5 4355 L40N-43+60E i 30'N fG 70/30 mg with--0.5% dies. Py 143 52 N.D. 5 4356 L84N-16+60E Cpc 0/10(fg-ng).2-5t Py 6 Ccp 628 329 N.D. 10 4357 L72N-29+50E bAn 70/30 mg with .1% diss.Py i Ccp 119 28 N.D. •_5 1564 L56N-17+43 to Cpc 0/10 mg-cg with 2% sulphides N.D. 5 17+45.5E ~-1565 L56N-17+45.SE to Cpc 0/10 mg-cg with « 1% sulphides N.D. 45 17+48E 1566 L208N-73+13E G 65/35 mg with dins. Py and Py in blebs 25 44 5 N.D. 1567 L184N-66E G 5/5 mg and barren 49 27 N.D. N. 1568 L168N-56E G 5/5 mg - barren 171 36 15 20D. - lj 5 S-0 1569 L160N-57E Cpc Bldr. tr. of dies. Py i Po 264 117 15 20 — 1 32_00 1570 L160N-42+70E Cpc 0/10 mg-cg(gossan) 280 174 5 ~5 1571 L168N-46E Cpc 0/10 mg-cg (gossan) 173 107 N.D. N.D. 1572 L176N-47+78E Cpc 0/10 mg-cg (gossan) 143 .34 10 20 "?-1 so 1573 L184N-49+B7E G 5/5 mg - barren 36 32 5 -5 1574 L192N-53+30E G with Py + Py mineralisation 350 45 10 -S 1575 L208N-26+60E Cpc gossan 329 67 10 N.D. 1576 L176N-18E An i G bands of mag present with tr. S 270 295 5 N.D. V 1563 1577 L176N-18+50E Cpc 0/10 mg magnetite 320 32 44 N.D. N.D. 1578 L176N-19E Cpc 0/10 mg magnetite 934 1400 187 5 10 1579 L176N-19+35E Cpc 0/10 mg (gossan) 830 362 32 N.D. N.D. - 125 77 N.D. N.D. 1580 L184N-22E G 5/5 mg with magnetite 1300 1581 L200N-24+20E - G 5/5 mg m agnetite rich tr. Py 1100 726 86 6 N.D. N.D. 237

Assay Rock PPm ppb Book 4 Location -MME Description Cu Ni Pt Pd 4272 6-20-BC-39 G 50/50 mg with tr. diss. Py 23 29 ~5 4.5 4273 6-20-DA at pt.o 100' from shore,123 from S. Cpc mg gossan with '.1% disem. S. 660 225 H.O. 5 side of large N.Island on Lac Beaupre 4274 6-20-CD 273 G 50/50 mg with-.1% Py in blebs 120 40 5 4.5 4305 705RCD-538 aG 80/20 f-mg with -1% Py 24 14 20 N.D. 4306 707 RCD 509 An 90/10 mg with.•Is% Py dissent. 105 24 40 N.D. 4308 713R at S aG oc 80/20 mg with= y% Py 27 16 N.D. c5 mAn 4309 713R pt. P fG 70/30 mg with ..1% Py dissent. 52 38 =5 c5 4310 713 RAB 248 fG 70/30 mg with lit Py 35 19 _ 5 45 4311 713 RAB 305 bAn 70/30 mg with -1% dissent. Py 50 20 ,5 =5 4312 717 RAB 681 G 50/50 fg with, sit dissent. Py 120 13 N.D. 5 4313 717 RAB 774 aG 80/20 mg with - 1% discern. Py 84 37 H.D. c 5 4314 718 RAB 520 aG 80/20 mg with- 1/2% dissect. Po 11 25 N.D. <5 4317 705 WAS A+422 CPc 5/95 fg trace sulph. 105 62 <5 =5 4319 719 WAS A+704 aG 80/20 mg tr. sulphides 33 19 .4 5 ~5 4320 719 RAS 266 fG 70/30 m-cg with- it dissent. sulphides i - 5% dissent. magnetite 211 44 c 5 =5 4341 821 RG8 396 G 60/40 mg with 2% dissent. S(mostly Po with some Ccp) 2570 453 <5 10 4344 818 WAS A+645 G-PyxG 1-2% pyrite 57 20 ,5 -5 4345 823 WCD C+1358 An 9/1 mg 1-2% pyrite 62 20 c 5 =5 4346 825 W1 airphoto 10821-175 An 9/1 mg 1-2% pyrite 12 16 < 5 5

Abbreviation's for rock sample data a) mineralization d) Grain size Hag = magnetite fg = fine grained Po - pyrrhotite mg - medium grained Py - pyrite cg - coarse grained Ccp - Chalcopyrite S - sulfides (undifferentiated) e) Miscellaneous dissent - disseminated b) Nbl - hornblende Bldr. = boulder ep - gneissic c) Rock types Tr - trace cpc = clinopyroxenite 5/5 - plagioclase ratio pyxG - pyroxenitic gabbro hornblende G - gabbro 5 - less than 5 fG - feldspathic gabbro N.D. - not detected aG - anorthositic gabbro An - anorthosite bAn - bleby anorthosite mAn - mottled anorthosite Gr - granite Grd - granodiorite Syn - syenite

Sample Nock % Grain Cu f11 rt Pd Pourrie Hock % Grain 1 3 Cu Ni Pt I'd NnTber location Tyne P1ag., Size Eags SUlf idea PM PM 2211 U13 Nemarke Number Location Tyne plan., Size Map,.. Sulfides pew plxm 8212 matt 1iemmrke 2 104-17R 26 41 seey'125 54 1,56-17+63-60R cpc 0 mg + 1 620 315 no 10 LnN-29g 0 50 mg Tr 13 18 ser1128 55 1.56-17+(n-731. coc 0 mg 2 486 a4o c5 10 ?IIrN-16W 16 11 56 3-7PE. cpc 0 mg-cg + 2 498 ))6 ND 10 15F-17+7 0111. 5 I74N-11'a ro 70 mg-cg L56-17+78-R1K c oo 0 mg-cg 1 1 302 114 NU 5 F 07N-0PE r; 50 mg 30 19 5P I.56_17+P3-PPI; cro 0 mg-cg 2 296 9( 45 10 7 117N-141: 0 50 mg 107. 40 59 1.56-17+P9-93E nnc 0 mg-cg 2 115 NU l0 n 6 T128-17F. 0 50 mg 13 11 ,6n 1,56-17+93-98E opc 0 mg-cg 2 Tr 2j9 8H NU 5 9 117N-21E 0 50 mg 47 10 61 156-17?00-1R+3E cpc 0 mg-cg 2 Tr 226 69 NU NU 10 117N-21E 0 50 mr, 6 16 Ly62 T 56-1R+03-68? cpc 0 mg-cR 277 60 ND NI) I,nnN-1nF 3 I1 0 50 mg 10 39 63 156-18+n6-13E cpc 0 mg-cg 3 260 129 NU NU I? LnBN-n7W G 50 mg-or, 22 18 F4 1.56-18+13-181: c pc 0 mg-cg 3 263 59 NU NU 11 LOAN-09w bAn 70 mg 11 17 65 156-18+18-23E ope 0 mg-cg 3 199 36 ND NU 14 101313-1Ow 7 18 bldr.? 6E L56-18+23-28F, one 0 mg-cg 2 272 lit NU ND 15 T,0PN-2617 10 70 mg-cg 93 20 67 156-1P+36-39E C po 0 mg-cg 5 289 97 ND KI) w/garnet 16 1.74N-151; 12 31 6P L56-18+63-68E cpc 0 mg-cg 2 Tr 249 60 ND NU 17 1.nPN-7.71: pyxG 20 fg 59 dike? 69 L16-5+80E cpc 0 mg 1 642 140 ND ND 18 LOHN-03W 0 50 mg-cg 4 23 70 L•I 6-5+POE, cpo 0 ' mp, 1 )00 160 NU NU 19. LOHN-044 0 50 mg-cg 65 26 71 1.16-5+80R cpc 0 fg-mg Tr )23 114 ND ND ?n LAPN-05W 0 50 mg-cY. 520 49 -72 I.t56-40+10-20E cpc 0 mg-cg + 1-2 )1+3 162 NU 21 L72N-4611 0 50 mg 1 L156-40+20-10E c nc 0 mg + 1-5 659 1100 1.5 1Ô 22 L20N-37+90E pyx0 30 fg-mg 225 bi + 10 / ~~ V 1156-413+jn-4oE cpc 0 mg 1-2 230 276 4.5 -- :, P. -23 W611-1940408 cpc o fg-mg + Tr 391 110 40 60 1.156-40+4n-50E cm 0 mg + 1-3 240 4.5 0 24 L15(-39+10-208 pyx0 10 mg + Tr 216 125 45 15 7f 1156-41+10.40E cpc 0 fg ~ 1-2 201 278 5 25 L156-39+20-)0E cpc Tr 107 e9 NU 15 77 4 fg + Tr 168 190 (5 LA) f r 5 mg + T15f-41+ 0--50F cpc 0 45 03 26 I.156-3n+10,10E pyx0 10 mg + 12 16 NU 5 78 I.l5f-41+50-6OS cpc 0 fg + Tr 267 264 <5 5 27 I.156-39+110:.50E pyx0 10 mg + 10 37 ND 15 70 I.156-41460-70F ana 0 mg + 220 44 45 45 2P L156-39+60-70F, cpC 0 mg + 1-2 512 31N 5 5 fo L156-41.+70_OnE cpc 0 mg + 140 112 (5 5 29 1.156-39+7040E cpC o mg + 1-2 455 621 c5 15 + 81 (156-41+1O-00E cet 0 mg + Tr 209 189 ND 45 •30 1.156-)9+80-90E one 0 fg-mg + 1 363 2213 4.5 5 - F2 1.156-41+90-42E cpc 0 mg 4 Tr 602 292 ND 10 cim 0 mg-cg + 1-2 555 394 LO 10 •0 P1 1.156-42+0-1OE cpc 0 mg + 211 60 45 ~5 3~ ~ ,¢12 1156-40+0-10E E cpc o mg-cg + 1-1 )87 181 ND 5 ... P4 1,156-42410-20F. cpc 0 fg-mg 4 Tr 219 84 45 5 I ~- 11 8Ln-28+50N f0 70 mg 1-2 ~8 78 -J15 I456-11 747.0-301•: fF. + 112 62 ND 5 14 PLf`-14+15N 0 60 mp, ~-1 0 24 87 LrON-i0w TO 75 mg 6 18 15 PLn-40N An 100 mg 40 12 R? L.8oh-o9W M. 70 mg 21 26 j6 BTC-50+52N aG 80 mg 2 225 109 89 (.PON-013,1 10 70 mg 42 17 BLO-75+65N bAn 70 mg 6 12 90 I.PON-074 bAn 70 mg Î41 6o 18 L7.4N-11+89W r0 70 mg 13 13 91 LRON-17E cpc 7 mg-cg 0 19 19 1.14N-5+P3418.66N Ord - fg 1 21 0 92 I.P0N-19E a0 RO mg 26 24 11 n 116N-0w all 80 mg 6 17. 93 1,80N-20h: G 50 mg 32 39 41 1.16N-5+42W bAn 70 mg 8 11 9h LP0N-71r; G 50 mp, 80 36 42 L•16N4•14W 10 70 mg 1 320 )9 95 1,8013-41E G 50 fg-mg 26 16 41 12PN-3Ar O 0 mg 13 43 96 10011-4513. pyx0 30 mg 16 28 4r` 1,4oN-15+II0E 0 60 mg 40 22 97 0A013-57E O 60 mg 16 12 11 5 1,5(.13-9+30E cpc 3 fg-mg 3 34 oR 1.0OM-64A G 50 mg 23 40 46 1.64N-15+P1W bAn 80 mg 8 15 09 1,8011-671. G 6o mg 1) 14 47 L64N18+30I; aG HO mg 66 24 100 LPON-71r•. O 5o mg 21 20 411 172N-76+50E, bAn 70 mg 14 1H 1 01 I.PON-72E pyx0 30 mE, 105 3 49 LIION-13+50W G 50 mp, 06 118 107 1,P0N-71E G 50 mv, 31 36 50 1.n61:_61+70E aG 65 mg 10 20 ~ 101 1800-741, pyxG 30 fg-mg 0 51 1.56-17+46-51E coo 0 mg-cg 1 6840 206 NU 475 104 1.0C•4-6Pg 0 mg 52 34 42 1.56-17+51-56M' one 0 m13-cl! 1 570 210 NU 10 105 I96y-67E G 05 mP, Tr 46 1 51 L56-17+58-63F cm 0 mg-cg + 2 512 355 ND 10 106 [9611-561: mg 20 15 1 07 196N-55E •G 05 mg Tr 16 12 v tag L.06N-461: aG HO mg 35 19 104 1.112N-72E TG 75 mg )1 12 110 1112N-71E bAn 90 mg 119 24 111 L117N-611 ; 10 75 mg 12 13 Snmpin Rock % Oraln 4 %Sul- Cu Ni Pt Pd Snmple Rook % Graln % %Sul- Cu N1 Pt Pd Number Xooatlon Typo Plaa. Size Mmg. fides um ppm pub pub Nemarke Number, Location Tyne Ping. Size Mai. fides PL PPP. ppb Remarks 12 L1170-6118 G 50 mg 40 32 168 L56N-24E 80 80 mg 17 27 13 I.11714-598 0 50 mg 61 36 169 L56N-2)E 14 L11711-5135 496 64 a0 80 mg )6 21 cpc 0 mg 1 170 1568-21E O 60 ma, 15 1.1170-57E pyx0 15 mg 16 20 171 114^N-02 E 16 G 50 mr 4 1g 1.1120-5501. An 95 mg 15 12 172 1.40N-018 bAn 70 mg 17 L112N-48E G 60 mg 4 0 35 20 L4mN-R1. An 90 mg Tr 18 12 18 L17PN-078 G 50 mg 70 23 17~ 1.400-01w bAn 70 mg 244 35 19 L170N-57E cpo 0 mg 50 147 175 L40N-07w O 50 mP, 10 19 20 1328-3n11 0 50 mg 32 176 L56N-12E bAn 70 mg 49 NU NU 21 1.480-01w 0 50 mg 147 L56N-11E bAn 70 mg 49 42 22 LOON-3511 a 50 mg 16 28 178 L56N-09E 7 eeo 3 (8-mg 21 40 1.00N-34E a 50 mg 6 23 179 L5611-07E G 50 mg 5 28 2~ 1AON-338 0 50 mp, 14 L 180 L72N-104 An 95 mR. 25 10011-328 11 bldr7 10 19 15 181 172N-09a pyx0 30 mg 31 33 Bldr.t 26 L00N-3111 10 11 bldr7 182 27 21 74 17211-074 O 50 fg-mg Bldr.t 27 LOON-79E 0 50 mp, 38 187 L72!1_06w O 50 cg 41 28 L00N-2811 76, bldr7 39 184 1720-InR An' 95 mg 16 20 30 L120-02E f0 70 mg 185 80 80 mg f0 L72N-03E 21 22 31 1.128-03E 70 mg 16 18 186 L72N-018 G 50 mg 8 12 Iildr. t 32[.32.N -091i pyx0 40 mg 5o 26 156N-10w bAn 70 mg 13 22 33 I.328-10E G 60 mg 19 187 47 108 L7211-058 O 50 mg 50 20 3 1 [•32N-15E G 50 mg 29 1Pa L.72N-448 bAn 75 mg 40 16 mg 10 35 L320-17E 0 50 12 190 17211-3511 O 50 mg 24 50 36 1.32N-22E 0 50 mg 36 16 aG 80 mg 14 101 I.72N-348 5 18 37 1.328-2711 0 60 mg 192 17211-13E f0 70 mg 7 20 38 1.328-28E G 50 mg 8 60 5 101 L72B-31E f0 70 mp, 19 h01 711-318 G 3115 bAn. 80 mp, Tr n Tr 119 46 194 L.72N-251, )6 26 B1dr.7 Ll7N-37E pyx0 r`0 mg L.72N-241, aG 00 mg 40 32 4l 1•4nR-41E G 60 mg 16 15 196 24 18 42 1488-40F 1.72N-21E O 50 mg 0 60 mg B 1 107 L72N-1111 f0 70 mg 62 23 41 148N-308 0 60 mg 188 13 108 1.880-74F O 50 mP. 44 L444-35E G 60 mg 17 199 1880-73E G 50 fg-mg 21 49 45 1440-11F G 50 mg 10 14 200 LRON-69E O 50 mp, 15 15 46 14P0-2111 0 60 mg 13 201 L88N-68E O 50 mg G 60 6 1 98 31 47 1480-19E mg 202 1,R8N-(i6E aG 80 mg 12 31 4P 1:4RN-02w 0 50 mg 192 40 20 L88N-65E bAn 80 mg L64N-25r•. bAn 80 mg 20 32 40 20~ L080-648 Lamp. 59 5m 18011-114 f0 % 75 mg ij 22 LPPI'-62E 122 70 12 205 0 50 mg 51 [.248-IOE G 50 mp, 16 206 1.88N-59E cpc 0 cg 180 18 G 50 mg 11 52 12414-t1E 30 207 LP.8N-57F bAn 70 mp, 17 18 57 1.248-121i bAn 70 mg 8 9 11 1.88N-5211 f0 70 mg 6 t6 54 G mg 20 1.248-15E 50 20 11 209 L!+9N-518 a0 80 mg 25 20 55 1.24N-17E 60 85 mg 9 156 20 210 LRP,R-29E G 50 mP. 1 17 56 [.2411-18E G 50 mg 211 LP8N-21+F nG 80 mg 2 15 57 1240-278 pyx0 )0 mg 2m 14 j 58 12 10 212 L88N-27E aG 80 mp, 17 13 1.740-978 0 50 mg 21 1.88N-26E fG 70 mg 32 22 50 1,24N-1411 G 50 mg 12 1,P811-18E 14 14 Fn 85 83 19 21 An 100 mg 1.40'‘'-OPE n0 mg 215 LRRN-10E aO 80 mg 16 18 6.1 1408-118 G 60 mg 121 30 146 20 216 1.1040 -47E O 60 mg 48 10 62 1.518-458 pyx0 10 mg 1.104N-43E nO 85 mg 4 10 (1 1.5f8-448 pyx0 10 mg 6 16 217 31 16 218 1.1048-42E aG 80 mp, 13 17 L4 1568-43E pyx0 10 mg 10 12 65 1,54-42F pyx0 10 mg 3 18 219 1.1048-41e An 95 mp, /6 1.560-4111 nyx0 10 mm 1ni 23 220 1.7128-OBE O 50 mg 1.120N-11E O 50 mg 36 41 67 1568-261. bAn 70 mg 31, 20 221

Sample Rock % Grain % %Sul- Cu Ni Pt I'd Snmpla Rock % Grain % %Sul- Cu NI Pt Pd Number Location Tyne flag. Size l'es. fldem pas pal ppb Remarks Number Location Type Ping. Size pag. fidem pa __ pa pa Remarks 222 L120N-09E 0 50 mg 36 26 279 1.1688-47E 10 70 mg 40 72 22) L1208-07E pyx0 10 mg Ti' 82 23 2F0 L1688-516 pyx0 20 mg 4S 45 224 L1288-56E 0 40 mg 4r 2 281 1.16811526 pyx0 40 mg 39 42 275 1.12P8-55E pyx0 10 mg 24 24 282 LION-516 0 50 mg 51 32 275 I.1208-596. a0 80 mg 32 25 281 L.168N-5~E cpo 0 fp, 58 132 27.7 L1208-60E An 90 mg 38 15 284 1.1608-55E pyx0 40 mg 116 36 228 [.1368-74+42E pyx0 40 mg 81 31 285 1.1688-57E G 60 mg 159 279 1.136N-626 cpc 0 mg Tr 7 119 266 1.16811-58E f0 70 mg 31 61 210 L130-576 nG 80 mg Tr 88 28 288 1..18411-05E 7 15 65 231 1.1368-55E f0 70 mg Tr 123 32 289 L1R4N-09E An 90 mp, 113 19 2.12 1.13fiP!-VIE An 90 mg 16 19 290 1.1848-18E 0 60 mg 38 31 233 L1366-53E An 100 mg Tr 20 11 291 L1848-20E An 90 mg Tr $1 51 214 1.13611-57E bAn 90 mg 21 16 292 . 1.1848-256 pyx0 30 mg 99 34 235 L1368-496 0 60 mg 5 40 203 L184N-30E nG 80 mg 30 20 736 L1368-4RE lamp. fg 6 15 294 L1848-73E bAn 90 mP, 7 45 217 L1368-46E f0 70 mg 20 20 296 I.1P4N-356 bAn 9n mF'. 23 23 238 L116N-45E pyx0 40 mg 52 69 208 1.1848-376 pyx0 20 mg 93 42 219 I.1368-30E 0 60 mg Tr 43 41 300 1.102N-0+506 aG 80 mg 35 66 241 L152,1-09E bAn 90 mp, 18 19 301 I.12811-08E f0 65 mg 11 18 242 1.1528-101.1 60 80 mg 15 15 102 L1284-146 f0 65 mg 163 76 242 L1528-13E f0 70 mg 5 58 501 1.136N-OOF; cpo 0 mg 7 30 244 L1528-16E 0 50 mg .27 20 3n4 L1168-01E An 100 cg 8 12 IV 245 L1528-206 cpc 0 fg 188 98 105 L136N-11E 0 50 mg 20 30 246 L152N-21E bAn 90 mg, 50 56 o 247 L1520-22E G 50 mP, 41 52 in~~ 1.1 J6N-13F ü 0 mp 2 20 248 1.1528-23E f0 75 mg 16 108 1.136N-18E C0 65 mg 5 249 L152N-27E G 60 mg 40 309 L116N-19E pyx0 25 mg 1+7 J6 250 L1528-29E cpc 0 mg 1~ô 110 1.144N-00E bAn 90 mg 38 27 251 L.1528-286 60 80 mg 165 311 L1448-04E CG 65 mp, 5 17 257 L1528-34E cpo 0 fg 67 50 312 L1448-056 G 50 mg 4 12 251 L152F!-36E cpc 0 fg 12 8920 313 1.14411-06E f0 75 mg 6 20 254 L160N-22E 10 70 mg 7 314 114411-186. f0 75 mg 30 66 255 1.1608-23F, pyxG 20 mg 315 L1448-26E pyx0 40 mg 36 36 256 1.1608-24E cpo o fg 15 16 316 1144N-31+E pyxG 40 mg 1j7 257 L16011-27E 00 80 mg 60 33 317 L1448-35E G 50 mg 67 jg 25n L160F1-29E G 50 fg 53 60 318 1,1448-516 An 100 mg 30 14 750 L1608-30E cpc 0 fg Tr ~3 319 1•144N-52E An 90 mg 29 15 260 L160F'-15E n0 RO mg 225 ? 80 ) 261 L1608-37E cpc 0 fg 32 20 j71 Î1441'-51'F f6 75 mv 48 74 263 I.1606-10E An 90 mg 491 519 322 L1446-55E 10 75 mg 12 15 264 1.1608-41E 0 60 mg 321 1.1448-56E fg 70 mP 12 20 265 1160N-45E 7 3 19 324 1.144`I-57E fG 75 mR 14 16 266 L1608-466 f0 70 mg 1 )2 32.5 L1448-5P6 10 70 mg 8 14 2f7 11608-48E 60 80 mg 53 18 ;2F L1528-40E cpc 0 mg 16 119 269 1.1608-506 pyx0 10 mg 100 32 327 1.1528-476 pyx0 10 mg 71 35 270 1.16011-51E pyx0 30 mg 1431 178 1.152N-46E cric 0 mg 7 145 271 L160N-54E pyx0 20 mg 20 ~5 320 1.1528-45E pyx0 10 mp, 116 52 272 1.16ne_5 E pyx0 IO mg 9 69 330 L1528-44E 10 65 mp, 16 22 271 I,160M-55E 60 80 mg 20 31 717 .‘ L16011-196. pyx0 11 mg 78 49 274 L16n8-38E An 90 mg 12 24 314 L168N-17E cric 0 mg 67 18 275 1.1686-19F: nG 80 mp, 72 J16 116811-21E An 05 mg 17 20 776 1,16P8-60E 0 50 mg 2213 38 318 1.16811-32E 0 50 mr! 11 18 277 11686-41E cpo 0 fg 26 27 340 L1766-185 riyx0 35 mg + J70 208 270 I.1618-456 coo 0 fg 380 24 141 1.1768-106 cric 0 mF, 194 75

Sample Hock ;T, Grain % 4Sul- Cu Ni Pt Pd Sample Bock % Crain S %Sul- Cu Ni Pt 1t1 Number Location Type Elm. Size Egg fides mm mg mg ppb Remarks Number Location Type Wm. Size Egg. fides p,pm gpg pL ppb Remarks 342 I.1764-256 cpc 0 mg 82 45 1°7 L40N-39EIOON 0 50 mp, 15 18 NU t5 344 L176N-20E f0 75 mg 16 16 398 1.32N-311E f0 70 mg 5 Tr )8 42 ND 0 345 1176N-30E pyx0 10 mg 51 24 799 L32N- 690E cpc 0 fg 10 22 23 ND .5 346 1174-'31E0 50 mg 315 03 400 1A0N-~070E1)8N 0 50 mg Tr 151 28 ND 45 347 1.176N-33E 0 50 mg 67 24 401 L176N-)7E f0 60 mp, )6 ~1 348 L176N-)4E pyx0 40 mg 66 32 , 402 1176N-38E f0 60 mg 18 7 349 L176N-35E pyx0 30 mg 16 115 903 1176N-39E 0 50 mg i) 15 )50 L176N-36E 0 50 mg 13 12 404 1.176N-44E cpc 0 fg 6 130 351 1,16811-22E 0 60 mg 40 25 405 1,176N-46E pyx0 15 mg 35 21 352 [.168N-17E cm 9 mg + 115 28 406 1,176N-47E cpc 0 mp, '129 177 353 ' 1.160N-13E f0 70 mg 9 68 407 1,176N-49E cpa 0 mg 243 .11 )54 [.160N-20E arm 9 mg 29 36 408 L176N-50E cpc 0 mg 168 u3 355 1,160N-38E 1'0 70 fg-mg 8'+ 14 409 1176N-52E f0 65 mg 49 44 356 1160N-49E 0 60 mg 68 27 411 L200N-18E pyx0 30 mg 129 75 357 100N-5+10W 0 60 mg Tr 552 58 ND 5 412 1.200N-19E f0 75 mg 23 21 35s 1.08N_4+10W 0 60 mg 69 14 NU 5 413 1.200N-21E cpc 0 mg 69 8 359 LOON-0+90W bAn 70 mp. Tr 11 12 ND 5 414 1,200N-22E cpa 0 mp, 59 23 360 LOON-6Wh100'8 0 60 cP. 35 16 NI) 10 415 L200N-23P, f0 65 mg 20 13 361 LOON-0+40W 0 50 mg )8 14 45 10 417 1200N-25E f0 65 fg 10 30 )62 L0N-0+70W cm 0 mg 18 17 ND 5 418 1200N-31E f0 70 mg 8 18 363 LON-35+75E40S 0 50 mg 110 50 NU 20 410 1.20011-32E f0 65 mg 26 24 364 LON-75+20E35N An 90 fg 42 24 ND 10 420 L200N-3 E f0 75 mg 30 1j LPN-2)+75E81N 0 50 mg 47 23 ND N 365 5 421 1•200N-3'+E f6 75 mg 8 46 at. 366 L2nN-760W242N bAn 70 mg 28 15 ND 10 , 422 12004-35F. 4 F,, 3(i7 120N-6+85W bAn 70 mg Tr 30 50 ND 5 423 12.00N-46E ro 65 mg 3~ 27 368 L20N-(,W63'S f0 70 mg Tr 38 14 c5 5 424 L200N-47R a0 85 mg 14 169 110-5+40W bAn 70 mg Tr 43 17 ND 5 425 1200N-37E 0 50 mg 69 26 370 116N-580W63'S bAn 70 mg 50 10 5 10 426 L156N-42+90E cpc mg + 1 390 286 ND 10 371 LBN-I170E40'S cpo 0 fg 109 63 (5 5 Bldr. 427 L156N-42+40E cpc mg + 452 189 15 15 372 L8N-1470E40'S 0 60 mg 1) 30 <5 10 Bldr. 428 1.156N-42+50E cpc mg-cg + Tr 608 146 e5 10 37~7 LEM-1470F.40'S An 100 mg 16 18 (5 5 Bldr. 420 1,156N-42+60K cpc . mg + 686 305(5 10 37 LON-14E 0 50 mg 30 15 ND c5 Bldr. 430 1156N-42+70E cpc fg-mg + Tr 204 168 NU 5 375 1.24N-1470E 0 60 mg 25 19 t5 10 431 1.156N-42+80E cpa fg-mg + Tr 734 345 ND 5 376 12PN-1480E40S cpc 0 mg, 310 79 ND 10 432 1156N-42+90F, ape mg + Tr 335 ' 50 45 10 377 L21?N-1520E 0 50 mg 67 20 ND 5 433 1156N-43E cpc mg 4 89 26 k5 5 378 L32N-1620E 0 50 mg 4 8 ND 5 434 I,156N-43+10E cpc cg + 179 24 5 5 379 1.32.N-15906 0 60 mg 35 20 ND 5 435 L156N-43+20E cpc mg + 60 29 ND 5 380 1360-16E f0 70 mg 30 16 ND 5 436 1156N-43+30E cpc mg + 114 39 ND 5 78l L32N-225W40N 0 60 mg 64 )2 ND ND 477 L156N-43+40E cpc mg + 1 280 331 45 5 3e2. L•241I-2230E 0 60 mg 28 14 4.5 ND 438 1,156N-43+50E cpc fg + Tr 364 281 e5 10 3N L24N-2215E100N 0 50 mg 11 8 NU 5 439 1156N-4)160E cpc mg + 116 35 d5 20 38~ L24N-24EI+0N 0 50 mP, 16 9 . NU 5 440 1156N-4j+70E cpc mg + 166 21 0 10 3r5 L24N-2525E pyx0 )0 mg 197 49 ND 5 .441 1200N-24E cpc mg 61 20 396 L2411-2880E98N 0 60 mg 85 20 5 cNU 442 1200N-17E a0 0 mp, 60 24 387 L24N-3180E opa 0 fg 10 15 14 ND 5 443 1.1844-01E (0 0 fg 61 8 3P8 L24N-3180E 0 50 mg 20 12 ND ND 444 1184N-36E An 7 mg 41 19 3P9 1.240=3170E pyx0 30 mg 1120 39 t5 ND 445 L184N-34E 0 0 mg 4 31 390 L32N-3510E61N 0 60 mg 41 29 ND ND 446 1,168N-50E pyx0 0 mg 1 13 )01 LPN-3510E81N pyx0 30 mg 3 50 ND .5 447 L168N-35E n0 0 mg 4Ô 20 )92 L36N-3460E30S An 90 mg 5 10 ND 45 448 6176N-28E a0 0 mg 2 8 393 1,44N-35E An 95 mg Tr 33 12 ND 5 Bldr.4 449 1,168N-25E f0 0 mg 12 36 714 L44N-346 0 60 mg 7 8 ND (5 450 mg 11 14 <5 1192N-09E bAn 90' 305 144N-39g f0 65 mp, Tr 70 21 (5 451 1192N-11E bAn 90 mg 2) 34 306 L40N-396100N cpa 0 fg 34 48 (5 (5 452 1192N-12E a0 80 mp. 15 36

Snmple Nock % Grain % %Sul- Cu Ni Pt Pd. Snmple Rock ( Grain % %Sul- Cu N1 Pt Pd Number. Location Type P_lag. Size Nag, fides, ppm ppm ppb ppb Remarks, Number Location Type P_laA. am Nag. fides pQm ppm p q ppb Hemarke 453 1.1920-15E f0 70 mg 159 1.12411-75+30E mg 454 63 507 fG 70 11 11 ND 5 L192N-16E pyx0 30 mg 21 23 508 I.174N_75E156S An 95 mP. 10 26 NU 5 455 1.192N-27E pyx0 10 mg 80 122 509 L120N-715+20E 0 60 mg 44 33 ND 5 456 1•1020-28E An 100 mg )1 12 510 L116N-7~30E168N nO 80 mg 42 27 t5 10 1,197.N_29E An 100 mg 457 16 23 511 L116N-75+20E a0 80 mg 10 13 <5 5 458 1.19214-30E An 90 mg 23 21 512 L116N-75E117S f0 70 fro 95 26 ND 5 459 L19214-31E G 50 mg 3 23 513 1,11214-74E190N a0 80 mg 4) 26 <5 5 460 1.192N-17E a50 jj 47 514 L112N-7350E1005 bAn 90 mg 30 16 45 10 461 L192N-33E pyx0 10 mg 1 16 92 516 L1120-7540E840 cpc 0 fg 198 38 .5 10 462 L102N-37E pyx0 20 mg 65 16 517 1.112N-7550E100S 0 50 mg 103 20 NO 15 463 1.102N-51E pyx0 30 cg 18 26 518 1.112N-76E f0 70 mg 7 14 9 43 45 5 464 L1 211-76E 90 80 mg 332 519 L108N_7$50E73S An 90 mg Tr 16 13 `5 5 4(.5 1.192/1-75E fa 70 mg 54 44 520 L112N-44+80E bAn 90 mg Tr 9 12 ND 10 Bldr. 466 L208N-16E RO 80 mg 16 28 521 L108N-445410E 0 50 mg Tr 38 21 45 10 Rldr. 467 1.208N-20E 0 50 mg 36 20 '''.y.522L10hN-4470E122N bAn 90 mg Tr 14 13 ND 5 468 L20814-22E nO 80 mg 38 30 523 1,1040-43+80E 0 65 mg Q3 28 45 10 469 L20BN-24E An 90 mg 20 16 524 1.104N-11470E bAn 80 mg 1-2 46 24 ND 5 81dr.7 470 L2080-25E 0 60 mg 285 90 .525 1.100N-19E100S pyx0 20 mg 31 40 45 70 Pldr. 471 1.20811-26E pyx0 20 fg Tr 325 62 526 02N-1340E300N fa 70 mg 35 50 .5 10 472 1.2080-28F, 0 50 mg 14 34 527 MN-1515E84N na 80 ma, 12 (5 10 473 L2080-29E a0 80 mg 20 1) 52P L92,N-1530E100S An 90 mp, Tr 30 17 45 15 474' 120811-30E 7 379 100 579 VAN-1670E7PN bAn 80 mg 475 L208N-31E pyx0 20 cg 10 23 530 I.84N-1650E184N 0 65 mg 5 16 ND 15 ~ 476 1,20011-44E pyx0 30 mg 777 119 . 531 LP.4N-1650E184N 0 50 fg 47 18 NU 5 N 477 1.20811-41E f0 70 mg 67 58 5~2 I.Pü N-166OE bAn 80 mg 3 24 NU 5 478 L208N-42E pyx0 40 fg 37 12 I.B4N-l7°0E30N pyx0 40 fg 22 9 5 l0 479 14 533 L20911-45F, pyx0 30 mg 11 534+ L.PON-18+40E aG 80 mg )8 23 ND 10 480 L20A1'-46E na 80 mg 97 37 535 L77N-11440E fa 70 mg 32 16 ND 10 481 L208N-47E pyx0 40 mg 35 20 536 L.72N-1466W67S G 60 mg 2 19 ND 10 402 I.208.N-4PF. pyxa 10 mg 24 37 537 L68N-15W n0 95 mg 32 17 NU 10 407 [.20811-49E CG 70 mg 12 13 29 1~ D'dr.? 404 L208N-50E g0 80 mp, 62 49 541 I44N-4]5470E C 60 mg 20 cs 405 1,2084-56E f0 70 mg 61 26 542 I48N-1 410E40S G 60 mg 19 15 t5 10 486 L7.080-65E pyx0 20 mg 16 11 5~3 0EN-3970E39S pyx0 30 mg 50 14 •5 10 487 1.2000-6911 fa 70 mg 7 17 544 l.5FN- 0410E coo 0 mg 10 651 61 45 10 488 1.708/1-70E G 60 mg 38 48 545 L1t4N-27+15E 0 60 mp, Tr 76 28 45 15 mg 15 21 489 1.70811-71E a0 80 5461444-265021798cpo 0 1g-mB 36 52 ~5 l0 49n 1.7014N-72E cpc 0 mg 8 97 547 1.44N-2650E219N bAn 70 mg 27 10 ND 10 491 1,2000-75E An 90 mg 38 19 548 L52N-25480E 0 60 mg 46 15 45 10 492 L208N-76495E pyx0 40 mg 10 9 549 L5611-7.4425E bAn 70 m; 27 17 c5 10 493 L700N-76F; na 80 mg 25 12 30E G Go mg 34 15 N1) 10 64 550 L5611-254 494 1.1240-58+19E cpc 0 mg + 1-2 255 ND 45 551 1.60N-25+30E 10 70 mg 30 20 45 10 405 L1240-57460E cpc 0 mg + 1 150 30 NU NU 552 L6ON-25+7011 bAn 70 mg 11 13 5 10 496 1.124N-57+50E cpc 0 fg-mg Tr 90 12 ND ND 553 1.64N-27E10N a 60 mg 5 9 5 5 497 L124N-57+40E cpc 0 mg 102 23 ND NU 554 L.6811-2144OE bAn 70 mp, Tr 11 11 <5 10 40 L1240-57+0E cpc 5 mg 44 555 L72N_30+25~ 0 50 mg 12 71 ~5 15 409 L124N-57+20E cpc mg 105 16 N5 ND 556 L72N-~741nE f0 70 mg 4 11 NU 15 + 45 500 1.124N-57+10E cpc 0 fg-mg Tr 124 NO NU 557 L72N- 7+20E 0 50 fg 20 12 C5 10 dyke 501 L124N-57E cpc 0 mg Tr 93 100 NU e5 558 L72N-43420E 0 50 mg 26 17 ND 15 502 L12.4N-56+90E cpc 5 mp, + 1 • 200 88 ND NU 503 L124N-56+80E cpc 5 mg 76 16 NU <5 504 1.124N-56+70E cpo 5 mg Tr 61 25 15 5 505 1,124N-74480E e0 80 mP, 1'r 130 45 5 NU 5n6 1124N-75+90E nO RO mg 37 20 <5 45 Snmple Rock % Drain % %Sul- Cu Ni Pt Pd Number Location Type, P1ag. Size Maa• fides 22m 22m ppb ppb Remarks, 559 I.72N-42+50E An 90 mg Tr 85 20 ND 15 550 [.8ON-58E bAn 70 mg 20 14 45 10 Bidr. 561 L808-61E50S f0 70 mg Tr 68 33 45 10 562 LRON-66+156 00 80 mg 10 8 ND 10 563 L80N-6920F:40S f0 70 mg Tr 95 35 ND 10 5(4 I,80N-7085F258 0 60 mg 27 20 ND 565 I.R ON-74+25E 0 50 mg 46 18 ND 15 566 IP4N-70+10E n0 05 mg 8 10 ~5 10 7 ro 0 D 56 LCBN 74+43E 80 mg Tr 117 j7 ND 1Ô 569 INN-73+30E a0 85 mg 10 24 5 10 570 1.888-62+078 0 50 mg 238 46 5 10 571 TARN-59g cpc 0 mg-og 1 314 27 ND 10 572 L8BN-59E cpc 0 mg-cg 1 0.5 718 94 45 15 571 1AON-59E cpc 0 mg-cg Tr 310 31 ND 15 574 [.00N-59E cpc 0 mg-cg Tr 287 28 L5 15 575 [88N-59E coo 0 mg-og Tr 319 26 ND 15 576 I.88N-59E cpc 0 mg-cg Tr 138 17 hD 15 577 LOON-59E coo 0 fg-mg Tr 160 16 t5 15 578 LR8N-50+25E40S bAn 70 mg 84 18 ND 15 579 L88N4960h255 0 60 mg 11 32 ND 20 580 DLOO-87+30N 0 50 mg 31 11 4.5 10 581 L968-53+30E bAn 70 m4 22 16 10 15

Rock type nbbrevimt[ons come from Table 2. The following additional abbreviations ore used: Bldr.=boulder MaP..-mngnetite +=sample in magnetic fg-flne grained mg-medium grn[nnd cg-coarse grnlned ND-not detected Tr-trnce P1ag.-plap.[oclaee 244

APPENDIX IV

A ground magnetometer survey was conducted on the property to help extend lithologies into covered areas. Two magnetometers were used in this survey. A Geometrics Unimag G-836 was used for the first part of this survey and it had a sensitivity of 10 gammas. This magnetometer was on loan from Exploranium Corpôration until the company's was repaired. The survey was completed with a•Geometrics Model G-816. Although this magnetometer had a sensitivity of 1 gamma, readings were rounded to the nearest 10th gamma so that they would have the same sensitivity as the ones taken earlier. Both of the magnetometers which were used measured the total intensity of the earth's magnetic field. Survey Procedure Base stations were established on BLO+00 every 400' up to 80N and on TL47+00 from 80N to 212N. Measurements were taken every 100' on each grid line on the property. If anomalous values were obtained, readings were taken at 50' intervals until the anomaly was passed over. All values were corrected for diurnal variations by frequent returns to base stations.

167

712 , Re ~ 30 , 427rC 722 Rp 722 722 ...... • ..~~ R4 RC ...••••;!P • •• •• •• WS / ' •• 722RA 71e 0 i •' .. , RO gay wE Co r'•. • ~ RN ' ~4~1a • , .• ..""k 72.2 y r • • 719 — 71! WC RA i~ 2 718 J 719 , RO WA 112• \,113~ WS ` 2 I 1 I 714RC 72 • 719R ~ 74 WI • SO I • am..• •••••. ~ 719 ~.1/i22MIA 718114 // 1 1 fr4 L-~76 I 123RA • 1 (Ts •822RÇ / I / .6.y ,r..~v^ ~ ~ 423 A47 ' / WC 71N4.• 717 1 RO / • a CLAIM / > l t f / 717RC I / 423 f 1 1 ' k ~— ~ 71f MS 419 WC .i I ~ • '^ Y 67o1 7071 ~ rr~ v~ i ~ AREA re ~ ♦ • .v.r. 70.~y. . r • % Aa: y ~7~i i "so • 420 wows( ; 74 • /k •• +• RC 1.9p .t W_ •-~ Oc 707RD i • 707RC • 3! ♦' \ ~ • .F 3b,c i 4 3 ; 2 1120R0 819 r . RO ~ 707MC1 707115 SO ~ 713RE 705R0 T05RC ' r-ii —-- .~—,-'-- • — I~ i / 1 MIRE a ~~ 4! J .• , • 822RA 713 • TQS • 11123111 t RA4 `` ...,•11 / ~ •i C ~0 ~ ~RD rrD 70S~A •• ~ 1 3c ~. t 705 ••• f 705R9 ' J 79 ." - N - 419WO WA ~ • . I 4 ._ :( , I /,.- \ 7041rC I / i • 3b,c, 4 ; • ~birll • • : • 3 • I •'• •• • l': ~~., _ 704 .. I . / r ~ 70SWC Rs •-•' I;/ - I '/ ••. E ~ ~. / • •-.,• sl 7 , •,. . •••~ I •••.. ... t• •90 I . `_~ ;f 74

•~,/ . ~ / • if _f •• •••• • Ii - I. 1 - ~/ 11•~~, I ; / ~ ROCK UNITS GENERAL GEOLOGY LE SEND of the L.. Altered loves, melody esIes1li111 .0.(7e Strike sad dip •s,l*se.es 1.70.1.6 MN TN EASTERN LOBE X40 Strike et vertical ipeeis I.yerisi !stilly associated bodied tiffs of the (i,terbsddss with lreywstks sod \sr i•S4 Strike end dip es IMee's Isyeris5 ascertain SELL RIVER COMPLEX sa Waits seul► of 1he semples) • ••••

Figure 64. Geologic map of the eastern lobe of the Bell River Complex showing the pace and compass traverses.