Chemosymbiotic Species from the Gulf of Cadiz (NE Atlantic)

Total Page:16

File Type:pdf, Size:1020Kb

Chemosymbiotic Species from the Gulf of Cadiz (NE Atlantic) EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric View metadata, citationAtmospheric and similar papers at core.ac.uk brought to you by CORE provided by Repositório Institucional da Universidade de Aveiro Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences, 10, 2569–2581, 2013 Open Access www.biogeosciences.net/10/2569/2013/ Biogeosciences doi:10.5194/bg-10-2569-2013 Biogeosciences Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Climate Climate of the Past of the Past Discussions Chemosymbiotic species from the Gulf of Cadiz (NE Atlantic): Open Access Open Access distribution, life styles and nutritional patterns Earth System Earth System Dynamics Dynamics C. F. Rodrigues, A. Hilario,´ and M. R. Cunha Discussions Departamento de Biologia & CESAM – Universidade de Aveiro, Aveiro, Portugal Open Access Correspondence to: C. F. Rodrigues ([email protected]) Geoscientific Geoscientific Open Access Instrumentation Instrumentation Received: 28 November 2012 – Published in Biogeosciences Discuss.: 7 December 2012 Revised: 7 March 2013 – Accepted: 25 March 2013 – Published: 17 April 2013 Methods and Methods and Data Systems Data Systems Discussions Open Access Abstract. Previous work in the mud volcanoes from the Gulf 1 Introduction Open Access Geoscientific of Cadiz (South Iberian Margin) revealed a high number Geoscientific of chemosymbiotic species, namely bivalves and siboglinid Model Development polychaetes. In this study we give an overview of the distri- The finding thatModel hydrothermal Development vent mussels have a signifi- 13 Discussions bution and life styles of these species in the Gulf of Cadiz, cantly depleted δ C signature, very distinct from the values determine the role of autotrophic symbionts in the nutrition of other typical deep-sea invertebrates, led Rau and Hedges Open Access of selected species using stable isotope analyses (δ13C, δ15N (1979) to postulate that these mussels rely onOpen Access some non- and δ34S) and investigate the intra-specific variation of iso- photosynthetic food source.Hydrology Later this findingand was repeated Hydrology and tope signatures within and between study sites. During our for several cold seep invertebrates,Earth System and confirmed by the ob- Earth System studies, we identified twenty siboglinidae and nine bivalve servation that they host symbiotic chemoautotrophic bacteria chemosymbiotic species living in fifteen mud volcanoes. (Conway et al., 1994; CavanaughSciences et al., 1992). In this symbi- Sciences Solemyid bivalves and tubeworms of the genus Siboglinum otic relationship, the invertebrate host facilitates the access to Discussions Open Access are widespread in the study area, whereas other species inorganic carbon, oxygen and reduced sulphur-compounds,Open Access were found in a single mud volcano (e.g. “Bathymodiolus” and in return it uptakes the bacterial metabolic byproducts Ocean Science mauritanicus) or restricted to deeper mud volcanoes (e.g. or digests symbiont tissueOcean for itsScience nutrition (Fisher, 1990; Discussions Polybrachia sp., Lamelisabella denticulata). Species distri- MacAvoy et al., 2002). The carbon source for thiotrophic and bution suggests that different species may adjust their posi- methanotrophic bacteria is different, with the former using tion within the sediment according to their particular needs, pore water or near-bottom water dissolved inorganic carbon Open Access Open Access and to the intensity and variability of the chemical sub- (DIC) and the latter using CH4 (Fisher, 1990; Conway et al., strata supply. Tissue stable isotope signatures for selected 1994). Solid Earth The different carbon fixationSolid pathways Earth involve distinct species are in accordance with values found in other stud- Discussions ies, with thiotrophy as the dominant nutritional pathway, and isotopic fractionation (e.g. carbon, sulphur and nitrogen), with methanotrophy and mixotrophy emerging as secondary which makes stable isotope approaches particularly useful for elucidating the nutritional status of organisms in vent strategies. The heterogeneity in terms of nutrient sources (ex- Open Access Open Access pressed in the high variance of nitrogen and sulphur values) and seep environments (Conway et al., 1994; Van Dover and the ability to exploit different resources by the different and Fry, 1994). Carbon isotopic values have been used to The Cryosphere differentiate animalsThe with thiotrophicCryosphere symbionts from those species may explain the high diversity of chemosymbiotic Discussions species found in the Gulf of Cadiz. This study increases the with methanotrophic symbionts (Brooks et al., 1987; Kenni- knowledge on distributional patterns and resource partition- cutt et al., 1992), and to identify the source methane pool ing of chemosymbiotic species and highlights how trophic as either thermogenic or biogenic (Sassen et al., 1999). 15 fuelling varies on spatial scales with direct implications to Chemoautotrophs tend to have lower δ N values than het- 34 seep assemblages and potentially to the biodiversity of con- erotrophs or marine phytoplankton, and the δ S values of tinental margin. animals hosting thiotrophic bacteria are depleted relative to animals with methanotrophic symbionts and to heterotrophs Published by Copernicus Publications on behalf of the European Geosciences Union. 2570 C. F. Rodrigues et al.: Chemosymbiotic species from the Gulf of Cadiz (Brooks et al., 1987). In fact, values of δ34S below 5 ‰ can Siboglinid polychaetes are represented in the Gulf of be used to infer a thiotrophic mode of nutrition (Vetter and Cadiz by a high diversity of frenulates (Hilario´ et al., 2010). Fry, 1998) reflecting the isotopic signature of the sulphide Frenulata, the most specious clade of siboglinids, include a source (Fisher, 1995). Stable isotope signatures can therefore wide range of body sizes and tube morphologies. They live in provide information on food resource use and partitioning, a variety of reducing environments, including shelf and slope both inter- and intraspecifically (Levesque et al., 2003). sediments, cold seeps, hydrothermal vents and organic falls, Previous work in the Gulf of Cadiz mud volcanoes (South with their tube spanning oxic–anoxic boundaries (Hilario´ et Iberian Margin) found a high number of chemosymbiotic al., 2011). The anterior end of the tube remains at the sedi- species, namely bivalves and siboglinid polychaetes (Ro- ment surface or extends into the oxygenated bottom water, drigues et al., 2008; Hilario´ and Cunha, 2008; Hilario´ et al., where oxygen is absorbed by a gill-like structure. Hydro- 2010; Oliver et al., 2011), and studies on the faunal assem- gen sulphide, or methane in the case of Siboglinum poseidoni blages in the area show high biodiversity and high variabil- that harbours methane-oxidising endosymbionts (Schmaljo- ity in structure, composition and density, which are likely to hann and Flugel,¨ 1987), is transported across the posterior result from a combination of biogeographic, historical and tube and body wall into the trophosome, a specialized tissue environmental factors (Cunha et al., 2013). Especially rel- where the endosymbiotic bacteria are housed (reviewed by evant for the distribution of chemosymbiotic species is the Hilario´ et al., 2011). In addition to the nutrition provided by variability in the fluid sources and transport mechanisms de- their symbionts, species of the genus Siboglinum can take up termining the intensity of the fluxes and the geochemistry of and metabolise dissolved organic compounds at a rate suf- the porewater and sediments. ficient to sustain respiration but not enough for growth and The Gulf of Cadiz is an extensive cold seepage area in- reproduction (Southward and Southward, 1981). cluding over 40 mud volcanoes at depths between 200 and Due to its characteristics (biogeographical location, large 4000 m (Pinheiro et al., 2003; Van Rensbergen et al., 2005). number of seeps, seep regime variability), the Gulf of Cadiz The molecular and isotopic composition of the hydrocarbon provides a unique setting for the study of chemosynthesis- gases present in the different mud volcanoes reveal a pre- based assemblages. The high diversity of chemosymbiotic dominance of thermogenic sources with varying degrees of species found in the Gulf of Cadiz led us to hypothesize thermal maturity (Mazurenko et al., 2002, 2003; Stadnit- that (1) at small spatial scales different morphological and skaia et al., 2006; Hensen et al., 2007; Nuzzo et al. 2008) life style adaptations allow the co-occurrence of species and and, in some cases, partial recycling of thermogenic methane trophic niche partitioning, and (2) trophic diversity under dif- and other hydrocarbons mediated by anaerobic oxidation of ferential geochemical conditions results in high biodiversity methane (AOM)-related methanogenic archaea in the shal- at local and regional scales. Herein, we determine the trophic low sediments (Nuzzo et al., 2009). Differences in both fluid range of chemosymbiotic species using stable isotope analy- geochemistry and composition of the microbial assemblages ses (δ13C, δ15N and δ34S)
Recommended publications
  • (Mollusca, Bivalvia) from Deep-Water, Beaufort Sea, Northern Alaska
    A peer-reviewed open-access journal ZooKeys 462: 11–26A new (2014) genus and species of Thyasiridae( Mollusca, Bivalvia) from deep-water 11 doi: 10.3897/zookeys.462.6790 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new genus and species of Thyasiridae (Mollusca, Bivalvia) from deep-water, Beaufort Sea, northern Alaska Paul Valentich-Scott1, Charles L. Powell, II2, Thomas D. Lorenson2, Brian E. Edwards2 1 Santa Barbara Museum of Natural History, 2259 Puesta del Sol Road, Santa Barbara, CA 93105 2 U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 Corresponding author: Paul Valentich-Scott ([email protected]) Academic editor: R. C. Willan | Received 12 December 2013 | Accepted 11 November 2014 | Published 10 December 2014 http://zoobank.org/865205A2-6C79-4131-9C25-5625F3D8C59B Citation: Valentich-Scott P, Powell II CL, Lorenson TD, Edwards BR (2014) A new genus and species of Thyasiridae (Mollusca, Bivalvia) from deep-water, Beaufort Sea, northern Alaska. ZooKeys 462: 11–26. doi: 10.3897/zookeys.462.6790 Abstract Bivalve mollusk shells were collected in 2350 m depth in the Beaufort Sea, Arctic Ocean off northern Alaska. Initial identification suggested the specimens were a member of the bivalve family Thyasiridae, but no known eastern Pacific or Arctic living or fossil thyasirid resembled these deep-water specimens. Comparisons were made with the type of the genera Maorithyas Fleming, 1950, Spinaxinus Oliver & Holmes, 2006, Axinus Sowerby, 1821, and Parathyasira Iredale, 1930. We determined the Beaufort Sea species represents a new genus, herein described as Wallerconcha. These specimens also represent a new species, herein named Wallerconcha sarae.
    [Show full text]
  • Metagenomic Analysis Suggests Broad Metabolic Potential in Extracellular Symbionts of the Bivalve Thyasira Cf
    McCuaig et al. Animal Microbiome (2020) 2:7 Animal Microbiome https://doi.org/10.1186/s42523-020-00025-9 RESEARCH ARTICLE Open Access Metagenomic analysis suggests broad metabolic potential in extracellular symbionts of the bivalve Thyasira cf. gouldi Bonita McCuaig1, Lourdes Peña-Castillo1,2 and Suzanne C. Dufour1* Abstract Background: Next-generation sequencing has opened new avenues for studying metabolic capabilities of bacteria that cannot be cultured. Here, we provide a metagenomic description of chemoautotrophic gammaproteobacterial symbionts associated with Thyasira cf. gouldi, a sediment-dwelling bivalve from the family Thyasiridae. Thyasirid symbionts differ from those of other bivalves by being extracellular, and recent work suggests that they are capable of living freely in the environment. Results: Thyasira cf. gouldi symbionts appear to form mixed, non-clonal populations in the host, show no signs of genomic reduction and contain many genes that would only be useful outside the host, including flagellar and chemotaxis genes. The thyasirid symbionts may be capable of sulfur oxidation via both the sulfur oxidation and reverse dissimilatory sulfate reduction pathways, as observed in other bivalve symbionts. In addition, genes for hydrogen oxidation and dissimilatory nitrate reduction were found, suggesting varied metabolic capabilities under a range of redox conditions. The genes of the tricarboxylic acid cycle are also present, along with membrane bound sugar importer channels, suggesting that the bacteria may be mixotrophic. Conclusions: In this study, we have generated the first thyasirid symbiont genomic resources. In Thyasira cf. gouldi, symbiont populations appear non-clonal and encode genes for a plethora of metabolic capabilities; future work should examine whether symbiont heterogeneity and metabolic breadth, which have been shown in some intracellular chemosymbionts, are signatures of extracellular chemosymbionts in bivalves.
    [Show full text]
  • 2014 Annual Report Santa Barbara Museum of Natural History 2014 Was an Exciting Year for the Museum and Sea Center
    2014 ANNUAL REPORT SANTA BARBARA MUSEUM OF NATURAL HISTORY 2014 was an exciting year for the Museum and Sea Center. We had strong attendance at both campuses. The Sea Center had over 97,000 visitors last year, the highest on record and we are confident we will pass the 100,000 mark in 2015. Financially, we outperformed our 2014 budget, both on the revenue and on the expense side. And our endowment grew by almost $1 million last year. We unveiled our new tide pool installation at the Sea Center and we opened our Curiosity Lab at the Mission Canyon campus. Both of these new spaces are exciting and transformative peeks into our future. In September, we held our second Symposium on Human Origins and the scientists that came from all over the world to participate drew full houses at each of the two day sessions both at the Museum and downtown at the Lobero Theatre. A number of important collections were also gifted to the Museum. A butterfly collection comprising almost every species found here in California. Another collection consisting of 920 fossil ammonites was gifted to us. Three significant shell collections arrived as well as a number of important rare books that were gifted to the library. Numerous smaller collections also arrived which fill out our holdings. In March of 2014 we submitted our Master Plan and updated Conditional Use Permit application to the City of Santa Barbara; these were unanimously approved by the Planning Commission in early January of 2015 with Elisabeth Fowler, Chair HONORARY tremendous community support.
    [Show full text]
  • A Phylogenetic Backbone for Bivalvia: an RNA-Seq Approach
    A phylogenetic backbone for Bivalvia: an RNA-seq approach The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation González, Vanessa L., Sónia C. S. Andrade, Rüdiger Bieler, Timothy M. Collins, Casey W. Dunn, Paula M. Mikkelsen, John D. Taylor, and Gonzalo Giribet. 2015. “A phylogenetic backbone for Bivalvia: an RNA-seq approach.” Proceedings of the Royal Society B: Biological Sciences 282 (1801): 20142332. doi:10.1098/rspb.2014.2332. http:// dx.doi.org/10.1098/rspb.2014.2332. Published Version doi:10.1098/rspb.2014.2332 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:14065405 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A phylogenetic backbone for Bivalvia: an rspb.royalsocietypublishing.org RNA-seq approach Vanessa L. Gonza´lez1,†,So´nia C. S. Andrade1,‡,Ru¨diger Bieler2, Timothy M. Collins3, Casey W. Dunn4, Paula M. Mikkelsen5, Research John D. Taylor6 and Gonzalo Giribet1 1 Cite this article: Gonza´lez VL, Andrade SCS, Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA Bieler R, Collins TM, Dunn CW, Mikkelsen PM, 2Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA Taylor JD, Giribet G. 2015 A phylogenetic 3Department of Biological Sciences, Florida International University, Miami, FL 33199, USA backbone for Bivalvia: an RNA-seq approach.
    [Show full text]
  • An Overview of Chemosynthetic Symbioses in Bivalves from the North Atlantic and Mediterranean Sea S
    An overview of chemosynthetic symbioses in bivalves from the North Atlantic and Mediterranean Sea S. Duperron, S. M. Gaudron, C. Rodrigues, M. R. Cunha, C. Decker, K. Olu To cite this version: S. Duperron, S. M. Gaudron, C. Rodrigues, M. R. Cunha, C. Decker, et al.. An overview of chemosyn- thetic symbioses in bivalves from the North Atlantic and Mediterranean Sea. Biogeosciences, European Geosciences Union, 2013, 10 (5), pp.3241-3267. 10.5194/bg-10-3241-2013. hal-01542777 HAL Id: hal-01542777 https://hal.sorbonne-universite.fr/hal-01542777 Submitted on 20 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences, 10, 3241–3267, 2013 Open Access www.biogeosciences.net/10/3241/2013/ Biogeosciences doi:10.5194/bg-10-3241-2013 Biogeosciences Discussions © Author(s) 2013.
    [Show full text]
  • Paleogene Marine Bivalves of the Deep-Water Keasey
    Peer Reviewed Title: Paleogene marine bivalves of the deep-water Keasey Formation in Oregon, Part III: The heteroconchs Journal Issue: PaleoBios, 32(1) Author: Hickman, Carole S., Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley Publication Date: 2015 Permalink: http://escholarship.org/uc/item/603017mr Acknowledgements: People and institutions providing invaluable assistance with the Keasey bivalve project are acknowledged at the end of the anomalodesmatan chapter (Hickman 2014). This monographic treatment of the bivalve fauna is dedicated to the late Harold Vokes in grateful recognition of the material that he collected and for encouraging me many years ago to undertake completion of a project in which he had already invested considerable effort. Paul Valentich-Scott has generously shared his enthusiasm and encyclopedic knowledge of the living bivalve fauna of the Northeastern Pacific as well as providing access to important collections in the Santa Barbara Museum of Natural History. John Armentrout, Casey Burns, Dave Jablonski, Liz Nesbitt, Graham Oliver, and Winston Ponder responded to queries with helpful information. Excavation and field work at the Rock Creek cold seep was undertaken jointly with Dave Taylor, who discovered the site, and Liz Nesbitt; and we are grateful to Richard Wysong for access to the site as well as to the Keasey family and friends in Vernonia, Oregon for their interest in the project. Casey Burns has continued to provide specimens that normally would have been overlooked in the field. I am especially thankful to UCMP Associate and Photographer Dave Strauss, for his volunteered time and exceptional expertise with the digital photography and finalization of the figures.
    [Show full text]
  • Bivalve Anatomy & Classification
    Bivalve Anatomy & Classification Class Bivalvia • ~15,000 species; includes clams, scallops, mussels, oysters • 2-valved (hinged) shells w/ adductor muscles • Body laterally flattened • Lack of cephalization • Spaceous mantle cavity • Sedentary lifestyle • NO radula Phylum Mollusca Subphylum Conchifera Bivalvia Class Lamellibranchia Subclass Protobranchia Pteriomorphia Paleoheterodonta Heterodonta Anomalodesmata Order Veneroida Myoida Tellinidae, Lucinidae, Donacidae, Thyasiridae, Myidae, Arcticidae, Galeommatidae, Hiatellidae, Corbiculidae, Carditidae, Pholadidae, Dreissenidae, Cardiidae, Teredinidae Mytilidae, Sphaeriidae, Tridacnidae, Pinnidae, Vesicomyidae Panoridae, Family Nuculidae, Mactridae, Ostreidae, Unionidae , Poromyidae, Nuculanidae, Pharidae, Solemyidae Pectinidae, Veneridae, Cuspidariidae, Anomiidae Petricolidae Clavagellidae Dorsal General Bivalve Morphology Ventral • Compare Filibranch and Eumellibranch Bivalves – Fillibranch = “thread gills” attached by ciliary tufts; mussels, oysters, scallops, jingle shells – Eulamellibranch = filaments connected w/ tissue bridges; clams • Protobranch - small and leaf like. Considered primitive • Filibranch - form lamellar sheets of individual filaments in a "W" shape. They hang downwards into the mantle cavity but have their terminal portions bent upwards • Eulamellibranch - have the same "W" shape but with cross partitions laterally joining the filaments to create water filled cavities. Most advanced and most common • Septibranch - only found in rock borers (Order Pholadomyoida).
    [Show full text]
  • Paleocene and Miocene Thyasira Sensu Stricto (Bivalvia: Thyasiridae) from Chemosynthetic Communities from Japan and New Zealand
    This is a repository copy of Paleocene and Miocene Thyasira sensu stricto (Bivalvia: Thyasiridae) from chemosynthetic communities from Japan and New Zealand. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85210/ Article: Amano, K, Little, CTS, Campbell, KA et al. (2 more authors) (2015) Paleocene and Miocene Thyasira sensu stricto (Bivalvia: Thyasiridae) from chemosynthetic communities from Japan and New Zealand. Nautilus, 129 (2). pp. 43-53. ISSN 0028-1344 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Paleocene and Miocene Thyasira (s. s.) (Bivalvia) from chemosynthetic communities from Japan and New Zealand Kazutaka Amano Department of Geoscience Joetsu University of Education Joetsu 943-8512, Japan [email protected] Crispin T.S. Little School of Earth and Environment University of Leeds Leeds LS2 9JT, United Kingdom [email protected] Kathleen A. Campbell Earth Sciences programme, School of Environment, Faculty of Science University of Auckland Private Bag 92019, Auckland Mail Centre Auckland 1142, New Zealand [email protected] Robert G.
    [Show full text]
  • A New Genus and Species of Thyasiridae (Mollusca, Bivalvia) from Deep-Water, Beaufort Sea, Northern Alaska
    A peer-reviewed open-access journal ZooKeys 462: 11–26A new (2014) genus and species of Thyasiridae( Mollusca, Bivalvia) from deep-water 11 doi: 10.3897/zookeys.462.6790 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new genus and species of Thyasiridae (Mollusca, Bivalvia) from deep-water, Beaufort Sea, northern Alaska Paul Valentich-Scott1, Charles L. Powell, II2, Thomas D. Lorenson2, Brian E. Edwards2 1 Santa Barbara Museum of Natural History, 2259 Puesta del Sol Road, Santa Barbara, CA 93105 2 U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 Corresponding author: Paul Valentich-Scott ([email protected]) Academic editor: R. C. Willan | Received 12 December 2013 | Accepted 11 November 2014 | Published 10 December 2014 http://zoobank.org/865205A2-6C79-4131-9C25-5625F3D8C59B Citation: Valentich-Scott P, Powell II CL, Lorenson TD, Edwards BE (2014) A new genus and species of Thyasiridae (Mollusca, Bivalvia) from deep-water, Beaufort Sea, northern Alaska. ZooKeys 462: 11–26. doi: 10.3897/zookeys.462.6790 Abstract Bivalve mollusk shells were collected in 2350 m depth in the Beaufort Sea, Arctic Ocean off northern Alaska. Initial identification suggested the specimens were a member of the bivalve family Thyasiridae, but no known eastern Pacific or Arctic living or fossil thyasirid resembled these deep-water specimens. Comparisons were made with the type of the genera Maorithyas Fleming, 1950, Spinaxinus Oliver & Holmes, 2006, Axinus Sowerby, 1821, and Parathyasira Iredale, 1930. We determined the Beaufort Sea species represents a new genus, herein described as Wallerconcha. These specimens also represent a new species, herein named Wallerconcha sarae.
    [Show full text]
  • On Bivalve Phylogeny: a High-Level Analysis of the Bivalvia (Mollusca) Based on Combined Morphology and DNA Sequence Data
    Invertebrate Biology 12 I(4): 27 1-324. 0 2002 American Microscopical Society, Inc. On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data Gonzalo Giribet'%aand Ward Wheeler2 ' Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University; 16 Divinity Avenue, Cambridge, Massachusetts 021 38, USA Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA Abstract. Bivalve classification has suffered in the past from the crossed-purpose discussions among paleontologists and neontologists, and many have based their proposals on single char- acter systems. More recently, molecular biologists have investigated bivalve relationships by using only gene sequence data, ignoring paleontological and neontological data. In the present study we have compiled morphological and anatomical data with mostly new molecular evi- dence to provide a more stable and robust phylogenetic estimate for bivalve molluscs. The data here compiled consist of a morphological data set of 183 characters, and a molecular data set from 3 loci: 2 nuclear ribosomal genes (1 8s rRNA and 28s rRNA), and 1 mitochondria1 coding gene (cytochrome c oxidase subunit I), totaling -3 Kb of sequence data for 76 rnollu bivalves and 14 outgroup taxa). The data have been analyzed separately and in combination by using the direct optimization method of Wheeler (1 996), and they have been evaluated under 1 2 analytical schemes. The combined analysis supports the monophyly of bivalves, paraphyly of protobranchiate bivalves, and monophyly of Autolamellibranchiata, Pteriomorphia, Hetero- conchia, Palaeoheterodonta, and Heterodonta s.I., which includes the monophyletic taxon An- omalodesmata.
    [Show full text]
  • An Overview of Chemosynthetic Symbioses in Bivalves
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 9, 16815–16875, 2012 www.biogeosciences-discuss.net/9/16815/2012/ Biogeosciences doi:10.5194/bgd-9-16815-2012 Discussions BGD © Author(s) 2012. CC Attribution 3.0 License. 9, 16815–16875, 2012 This discussion paper is/has been under review for the journal Biogeosciences (BG). An overview of Please refer to the corresponding final paper in BG if available. chemosynthetic symbioses in An overview of chemosynthetic bivalves symbioses in bivalves from the North S. Duperron et al. Atlantic and Mediterranean Sea Title Page S. Duperron1, S. M. Gaudron1, C. F. Rodrigues1,2, M. R. Cunha2, C. Decker3, and Abstract Introduction K. Olu3 Conclusions References 1Universite´ Pierre et Marie Curie, UMR7138 (UPMC CNRS IRD MNHN), Systematique,´ Tables Figures Adaptation, Evolution, 7, quai St. Bernard, batimentˆ A, 75005 Paris, France 1Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitario´ de Santiago, 3810-193 Aveiro, Portugal J I 3Laboratoire Environnement Profond, Departement´ Etudes des Ecosystemes` Profonds, Centre Ifremer de Brest, BP 71, 29280 Plouzane,´ France J I Received: 13 November 2012 – Accepted: 20 November 2012 Back Close – Published: 26 November 2012 Full Screen / Esc Correspondence to: S. Duperron ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 16815 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD Deep-sea bivalves found at hydrothermal vents, cold seeps and organic falls are sus- tained by chemosynthetic bacteria which ensure part or all of their carbon nutrition. 9, 16815–16875, 2012 These symbioses are of prime importance for the functioning of the ecosystems.
    [Show full text]
  • A New Genus and Two New Species of Thyasiridae Associated with Methane 55 Seeps Off Svalbard, Arctic Ocean Emmelie K.L
    SMAR1272699 Techset Composition India (P) Ltd., Bangalore and Chennai, India 1/19/2017 MARINE BIOLOGY RESEARCH, 2017 http://dx.doi.org/10.1080/17451000.2016.1272699 ORIGINAL ARTICLE 5 A new genus and two new species of Thyasiridae associated with methane 55 seeps off Svalbard, Arctic Ocean Emmelie K.L. Åströma, P. Graham Oliverb and Michael L. Carrolla,c aCAGE – Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, 10 Norway; bNational Museum of Wales, Cardiff, UK; cAkvaplan-niva, Fram – High North Centre for Climate and Environment, Tromsø, Norway 60 ABSTRACT ARTICLE HISTORY Bivalves have been found in unique benthic assemblages associated with active methane seeps Received 15 July 2016 and mounds along the western and southern margins of the Svalbard shelf (75–79°N) at 350– Accepted 2 December 2016 380 m depth. Among the samples collected were a number of shells of Thyasiridae that are RESPONSIBLE EDITOR 15 distinct from any species previously described. Here we describe one new genus Rhacothyas 65 Andrey Gebruk gen. nov. and two new species Thyasira capitanea sp. nov. and Rhacothyas kolgae sp. nov., including their distinguishing characteristics and the environmental setting where they were KEYWORDS found. Thyasira capitanea sp. nov. is large compared to many other thyasirids, has an Arctic; chemosymbiosis; cold equilateral shell and demarcated zones on the median and anterior areas along with a seep; new species; distinct posterior sulcus. Rhacothyas kolgae sp. nov. is unique among other thyasirid genera Thyasiridae 20 and species regarding its characteristic outline, sunken lunule, lack of submarginal sulcus and 70 wrinkled surface.
    [Show full text]