Rotating Baryonic Dark Halos F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Adrien Christian René THOB
THE RELATIONSHIP BETWEEN THE MORPHOLOGY AND KINEMATICS OF GALAXIES AND ITS DEPENDENCE ON DARK MATTER HALO STRUCTURE IN SIMULATED GALAXIES Adrien Christian René THOB A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy. 26 April 2019 To my grand-parents, René Roumeaux, Christian Thob, Yvette Roumeaux (née Bajaud) and Anne-Marie Thob (née Léglise). ii Abstract Galaxies are among nature’s most majestic and diverse structures. They can play host to as few as several thousands of stars, or as many as hundreds of billions. They exhibit a broad range of shapes, sizes, colours, and they can inhabit vastly differing cosmic environments. The physics of galaxy formation is highly non-linear and in- volves a variety of physical mechanisms, precluding the development of entirely an- alytic descriptions, thus requiring that theoretical ideas concerning the origin of this diversity are tested via the confrontation of numerical models (or “simulations”) with observational measurements. The EAGLE project (which stands for Evolution and Assembly of GaLaxies and their Environments) is a state-of-the-art suite of such cos- mological hydrodynamical simulations of the Universe. EAGLE is unique in that the ill-understood efficiencies of feedback mechanisms implemented in the model were calibrated to ensure that the observed stellar masses and sizes of present-day galaxies were reproduced. We investigate the connection between the morphology and internal 9:5 kinematics of the stellar component of central galaxies with mass M? > 10 M in the EAGLE simulations. We compare several kinematic diagnostics commonly used to describe simulated galaxies, and find good consistency between them. -
Particle Dark Matter an Introduction Into Evidence, Models, and Direct Searches
Particle Dark Matter An Introduction into Evidence, Models, and Direct Searches Lecture for ESIPAP 2016 European School of Instrumentation in Particle & Astroparticle Physics Archamps Technopole XENON1T January 25th, 2016 Uwe Oberlack Institute of Physics & PRISMA Cluster of Excellence Johannes Gutenberg University Mainz http://xenon.physik.uni-mainz.de Outline ● Evidence for Dark Matter: ▸ The Problem of Missing Mass ▸ In galaxies ▸ In galaxy clusters ▸ In the universe as a whole ● DM Candidates: ▸ The DM particle zoo ▸ WIMPs ● DM Direct Searches: ▸ Detection principle, physics inputs ▸ Example experiments & results ▸ Outlook Uwe Oberlack ESIPAP 2016 2 Types of Evidences for Dark Matter ● Kinematic studies use luminous astrophysical objects to probe the gravitational potential of a massive environment, e.g.: ▸ Stars or gas clouds probing the gravitational potential of galaxies ▸ Galaxies or intergalactic gas probing the gravitational potential of galaxy clusters ● Gravitational lensing is an independent way to measure the total mass (profle) of a foreground object using the light of background sources (galaxies, active galactic nuclei). ● Comparison of mass profles with observed luminosity profles lead to a problem of missing mass, usually interpreted as evidence for Dark Matter. ● Measuring the geometry (curvature) of the universe, indicates a ”fat” universe with close to critical density. Comparison with luminous mass: → a major accounting problem! Including observations of the expansion history lead to the Standard Model of Cosmology: accounting defcit solved by ~68% Dark Energy, ~27% Dark Matter and <5% “regular” (baryonic) matter. ● Other lines of evidence probe properties of matter under the infuence of gravity: ▸ the equation of state of oscillating matter as observed through fuctuations of the Cosmic Microwave Background (acoustic peaks). -
DARK MATTER and NEUTRINOS Arxiv:1711.10564V1 [Physics.Pop-Ph]
Physics Education 1 dateline DARK MATTER AND NEUTRINOS Gazal Sharma1, Anu2 and B. C. Chauhan3 Department of Physics & Astronomical Science School of Physical & Material Sciences Central University of Himachal Pradesh (CUHP) Dharamshala, Kangra (HP) INDIA-176215. [email protected] [email protected] [email protected] (Submitted 03-08-2015) Abstract The Keplerian distribution of velocities is not observed in the rotation of large scale structures, such as found in the rotation of spiral galaxies. The deviation from Keplerian distribution provides compelling evidence of the presence of non-luminous matter i.e. called dark matter. There are several astrophysical motivations for investigating the dark matter in and around the galaxy as halo. In this work we address various theoretical and experimental indications pointing towards the existence of this unknown form of matter. Amongst its constituents neutrino is one of the most prospective candidates. We know the neutrinos oscillate and have tiny masses, but there are also signatures for existence of heavy and light sterile neutrinos and possibility of their mixing. Altogether, the role of neutrinos is of great interests in cosmology and understanding dark matter. arXiv:1711.10564v1 [physics.pop-ph] 23 Nov 2017 1 Introduction revealed in 2013 that our Universe contains 68:3% of dark energy, 26:8% of dark matter, and only 4:9% of the Universe is known mat- As a human being the biggest surprise for us ter which includes all the stars, planetary sys- was, that the Universe in which we live in tems, galaxies, and interstellar gas etc.. This is mostly dark. -
A Derivation of Modified Newtonian Dynamics
Journal of The Korean Astronomical Society http://dx.doi.org/10.5303/JKAS.2013.46.2.93 46: 93 ∼ 96, 2013 April ISSN:1225-4614 c 2013 The Korean Astronomical Society. All Rights Reserved. http://jkas.kas.org A DERIVATION OF MODIFIED NEWTONIAN DYNAMICS Sascha Trippe Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea E-mail : [email protected] (Received February 14, 2013; Revised March 20, 2013; Accepted March 29, 2013) ABSTRACT Modified Newtonian Dynamics (MOND) is a possible solution for the missing mass problem in galac- tic dynamics; its predictions are in good agreement with observations in the limit of weak accelerations. However, MOND does not derive from a physical mechanism and does not make predictions on the transitional regime from Newtonian to modified dynamics; rather, empirical transition functions have to be constructed from the boundary conditions and comparisons with observations. I compare the formalism of classical MOND to the scaling law derived from a toy model of gravity based on virtual massive gravitons (the “graviton picture”) which I proposed recently. I conclude that MOND naturally derives from the “graviton picture” at least for the case of non-relativistic, highly symmetric dynamical systems. This suggests that – to first order – the “graviton picture” indeed provides a valid candidate for the physical mechanism behind MOND and gravity on galactic scales in general. Key words : Gravitation — Galaxies: kinematics and dynamics −10 −2 1. INTRODUCTION where x = ac/am, am ≈ 10 ms is Milgrom’s con- stant, and µ(x)isa transition function with the asymp- “ It is worth remembering that all of the discus- totic behavior µ(x) → 1 for x ≫ 1 and µ(x) → x for sion [on dark matter] so far has been based on x ≪ 1. -
The Contents of the Universe
Ay 127! The Contents of the Universe 0.5 % Stars and other visible stuff Supernovae alone ⇒ Accelerating expansion ⇒ Λ > 0 CMB alone ⇒ Flat universe ⇒ Λ > 0 Any two of SN, CMB, LSS ⇒ Dark energy ~70% Also in agreement with the age estimates (globular clusters, nucleocosmochronology, white dwarfs) Today’s Best Guess Universe Age: Best fit CMB model - consistent with ages of oldest stars t0 =13.82 ± 0.05 Gyr Hubble constant: CMB + HST Key Project to -1 -1 measure Cepheid distances H0 = 69 km s Mpc € Density of ordinary matter: CMB + comparison of nucleosynthesis with Lyman-a Ωbaryon = 0.04 € forest deuterium measurement Density of all forms of matter: Cluster dark matter estimate CMB power spectrum 0.31 € Ωmatter = Cosmological constant: Supernova data, CMB evidence Ω = 0.69 for a flat universe plus a low € Λ matter density € The Component Densities at z ~ 0, in critical density units, assuming h ≈ 0.7 Total matter/energy density: Ω0,tot ≈ 1.00 From CMB, and consistent with SNe, LSS From local dynamics and LSS, and Matter density: Ω0,m ≈ 0.31 consistent with SNe, CMB From cosmic nucleosynthesis, Baryon density: Ω0,b ≈ 0.045 and independently from CMB Luminous baryon density: Ω0,lum ≈ 0.005 From the census of luminous matter (stars, gas) Since: Ω0,tot > Ω0,m > Ω0,b > Ω0,lum There is baryonic dark matter There is non-baryonic dark matter There is dark energy The Luminosity Density Integrate galaxy luminosity function (obtained from large redshift surveys) to obtain the mean luminosity density at z ~ 0 8 3 SDSS, r band: ρL = (1.8 ± 0.2) 10 h70 L/Mpc 8 3 2dFGRS, b band: ρL = (1.4 ± 0.2) 10 h70 L/Mpc Luminosity To Mass Typical (M/L) ratios in the B band along the Hubble sequence, within the luminous portions of galaxies, are ~ 4 - 5 M/L This includes some dark matter - for pure stellar populations, (M/L) ratios should be slightly lower. -
Modified Newtonian Dynamics, an Introductory Review
Modified Newtonian Dynamics, an Introductory Review Riccardo Scarpa European Southern Observatory, Chile E-mail [email protected] Abstract. By the time, in 1937, the Swiss astronomer Zwicky measured the velocity dispersion of the Coma cluster of galaxies, astronomers somehow got acquainted with the idea that the universe is filled by some kind of dark matter. After almost a century of investigations, we have learned two things about dark matter, (i) it has to be non-baryonic -- that is, made of something new that interact with normal matter only by gravitation-- and, (ii) that its effects are observed in -8 -2 stellar systems when and only when their internal acceleration of gravity falls below a fix value a0=1.2×10 cm s . Being completely decoupled dark and normal matter can mix in any ratio to form the objects we see in the universe, and indeed observations show the relative content of dark matter to vary dramatically from object to object. This is in open contrast with point (ii). In fact, there is no reason why normal and dark matter should conspire to mix in just the right way for the mass discrepancy to appear always below a fixed acceleration. This systematic, more than anything else, tells us we might be facing a failure of the law of gravity in the weak field limit rather then the effects of dark matter. Thus, in an attempt to avoid the need for dark matter many modifications of the law of gravity have been proposed in the past decades. The most successful – and the only one that survived observational tests -- is the Modified Newtonian Dynamics. -
Disk Galaxy Rotation Curves and Dark Matter Distribution
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Disk galaxy rotation curves and dark matter distribution by Dilip G. Banhatti School of Physics, Madurai-Kamaraj University, Madurai 625021, India [Based on a pedagogic / didactic seminar given by DGB at the Graduate College “High Energy & Particle Astrophysics” at Karlsruhe in Germany on Friday the 20 th January 2006] Abstract . After explaining the motivation for this article, we briefly recapitulate the methods used to determine the rotation curves of our Galaxy and other spiral galaxies in their outer parts, and the results of applying these methods. We then present the essential Newtonian theory of (disk) galaxy rotation curves. The next two sections present two numerical simulation schemes and brief results. Finally, attempts to apply Einsteinian general relativity to the dynamics are described. The article ends with a summary and prospects for further work in this area. Recent observations and models of the very inner central parts of galaxian rotation curves are omitted, as also attempts to apply modified Newtonian dynamics to the outer parts. Motivation . Extensive radio observations determined the detailed rotation curve of our Milky Way Galaxy as well as other (spiral) disk galaxies to be flat much beyond their extent as seen in the optical band. Assuming a balance between the gravitational and centrifugal forces within Newtonian mechanics, the orbital speed V is expected to fall with the galactocentric distance r as V 2 = GM/r beyond the physical extent of the galaxy of mass M, G being the gravitational constant. -
Chapter 5 Rotation Curves
Chapter 5 Rotation Curves 5.1 Circular Velocities and Rotation Curves The circular velocity vcirc is the velocity that a star in a galaxy must have to maintain a circular orbit at a specified distance from the centre, on the assumption that the gravitational potential is symmetric about the centre of the orbit. In the case of the disc of a spiral galaxy (which has an axisymmetric potential), the circular velocity is the orbital velocity of a star moving in a circular path in the plane of the disc. If 2 the absolute value of the acceleration is g, for circular velocity we have g = vcirc=R where R is the radius of the orbit (with R a constant for the circular orbit). Therefore, 2 @Φ=@R = vcirc=R, assuming symmetry. The rotation curve is the function vcirc(R) for a galaxy. If vcirc(R) can be measured over a range of R, it will provide very important information about the gravitational potential. This in turn gives fundamental information about the mass distribution in the galaxy, including dark matter. We can go further in cases of spherical symmetry. Spherical symmetry means that the gravitational acceleration at a distance R from the centre of the galaxy is simply GM(R)=R2, where M(R) is the mass interior to the radius R. In this case, 2 vcirc GM(R) GM(R) = 2 and therefore, vcirc = : (5.1) R R r R If we can assume spherical symmetry, we can estimate the mass inside a radial distance R by inverting Equation 5.1 to give v2 R M(R) = circ ; (5.2) G and can do so as a function of radius. -
A Comparison of the DC14 and Corenfw Dark Matter Halo Models on Galaxy Rotation Curves F
A&A 605, A55 (2017) Astronomy DOI: 10.1051/0004-6361/201730402 & c ESO 2017 Astrophysics Testing baryon-induced core formation in ΛCDM: A comparison of the DC14 and coreNFW dark matter halo models on galaxy rotation curves F. Allaert1, G. Gentile2, and M. Baes1 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium e-mail: [email protected] 2 Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Received 6 January 2017 / Accepted 15 June 2017 ABSTRACT Recent cosmological hydrodynamical simulations suggest that baryonic processes, and in particular supernova feedback following bursts of star formation, can alter the structure of dark matter haloes and transform primordial cusps into shallower cores. To assess whether this mechanism offers a solution to the long-standing cusp-core controversy, simulated haloes must be compared to real dark matter haloes inferred from galaxy rotation curves. For this purpose, two new dark matter density profiles were recently derived 10 11 from simulations of galaxies in complementary mass ranges: the DC14 halo (10 < Mhalo=M < 8 × 10 ) and the coreNFW halo 7 9 (10 < Mhalo=M < 10 ). Both models have individually been found to give good fits to observed rotation curves. For the DC14 model, however, the agreement of the predicted halo properties with cosmological scaling relations was confirmed by one study, but strongly refuted by another. A next important question is whether, despite their different approaches, the two models converge to the same solution in the mass range where both should be appropriate. To investigate this, we tested the DC14 and coreNFW halo 9 10 models on the rotation curves of a selection of galaxies with halo masses in the range 4 × 10 M – 7 × 10 M and compared their 11 predictions. -
Possible Evidence for the Ejection of a Supermassive Black Hole from An
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 4 June 2021 (MN LATEX style file v2.2) Possible evidence for the ejection of a supermassive black hole from an ongoing merger of galaxies Martin G. Haehnelt1⋆, Melvyn B. Davies2 and Martin J. Rees1 1Institute of Astronomy, Madingley Road, Cambridge, CB3 OHA 2Lund Observatory, Box 43, SE–221 00, Lund, Sweden 4 June 2021 ABSTRACT Attempts of Magain et al (2005) to detect the host galaxy of the bright QSO HE0450– 2958 have not been successful. We suggest that the supermassive black hole powering the QSO was ejected from the observed ULIRG at the same redshift and at 1.5 arcsec distance. Ejection could have either be caused by recoil due to gravitational wave emission from a coalescing binary of supermassive black holes or the gravitational slingshot of three or more supermassive black holes in the ongoing merger of galaxies which triggered the starburst activity in the ULIRG. We discuss implications for the possible hierarchical build-up of supermassive black holes from intermediate and/or stellar mass black holes, and for the detection of coalescing supermassive binary black holes by LISA. Key words: Black hole physics; Celestial mechanics, stellar dynamics; Binaries: general; Galaxies:nuclei 1 INTRODUCTION jevic & Merritt 2001). The further evolution is somewhat uncertain. Hardening by gravitational interaction with stars In their recent paper, Magain et al (2005) describe observa- passing close to the binary will be much slower than the typ- tions of the bright quasar HE0450–2958 which suggest that ical duration of the star formation bursts in ULIRGs. -
Baryonic and Non-Baryonic Dark Matter in Massive Galaxies
Baryonic and Non-Baryonic Dark Matter: Halo Contraction and the IMF Matt Auger UC Santa Barbara Tommaso Treu, Raphael Gavazzi, Adam Bolton, Leon Koopmans, Phil Marshall Refrain: Strong Gravitational Lensing Background Source Multiply-Imaged by Massive Foreground Galaxy Image Separation depends on: - lens and source redshifts (geometry) - lensing galaxy mass First Verse: The Sloan Lens ACS (SLACS) Survey SLACS Strong Lens Factory Late-type Background Source Early-type Foreground Lens SLACS Strong Lens Factory [OII] from source Ca K&H from Lens Second Verse: Properties of Early-Type Galaxies ETGs show remarkably tight scaling relations between size, velocity dispersion and ... FP M*P MP Surface Stellar mass Total mass brightness density density Hyper-plane Relations Relationship between: - size - velocity dispersion - total mass in Re/2 - stellar mass Consistent with no intrinsic scatter, no dependence on stellar mass More Massive Galaxies have More Central Dark Matter Total M/L M/L `dark' matter Stellar M/L mass Dark Matter could be CDM or could be baryons not described by the IMF Third Verse: The Important Physical Properties and Mechanisms Three Key Ingredients - Star-formation efficiency (mass dependent) - Dark matter (response to baryons?) - IMF (mass-dependent ??) Star Formation Efficiency Increasing Satellite kinematics efficiency and weak lensing broadly confirm the expected trends of decreased eff. at high and low mass due to feedback from AGN and stars Dutton et al 2010 Abundance Matching Moster et al 2010 Cold Dark Matter Halo NFW Halos from N-body Simulations ETGs are dominated by baryons at small radii Cold Dark Matter Halo Cooling of baryons causes the halo to contract Gnedin et al 2004 Cold Dark Matter Halo Halo contraction may depend on the amount of baryons and how the baryons got there Dynamical friction can `puff up' halos.. -
Physics Beyond the Standard Model and Dark Matter.Pdf
Physics Beyond the Standard Model and Dark Matter Elise Wursten CERN, RIKEN AVA School on Precision Physics 25th of March 2020 1 Contents • Standard Model • Introduction • Open issues & Beyond • Dark Matter • Why do we think it exists? • Dark Matter Candidates • Searches for Dark Matter 2 Standard Model 3 Standard Model Fundamental constants have to be determined by experiment 4 Standard Model – Open Issues & Beyond Fundamental constants have to be determined by experiment • The strong CP problem: CP violating θ- term in Lagrangian is suppressed by 9 orders of magnitude. Why? • Possible solution: There is a particle called the axion, which makes this parameter small because of a spontaneously broken symmetry (Peccei-Quinn) • Candidate for dark matter 5 Standard Model – Open Issues & Beyond Fundamental constants have to be determined by experiment • Hierarchy problem: why is the Higgs mass so low? • Quantum corrections would make the mass huge! • Proposed solution is supersymmetry: fermionic and bosonic loop corrections cancel each other out • Lightest SUSY particle is candidate for dark matter 6 Standard Model – Open Issues & Beyond Fundamental constants have to be determined by experiment • What about the neutrino masses? • Are these fundamental constants really constant? (see next talk) 7 Standard Model – Open Issues & Beyond • Why is there so much more matter than antimatter in the universe? Baryon asymmetry parameter: Observed: Standard Model prediction: 5 Standard Model – Open Issues & Beyond • Why is there so much more matter than antimatter in the universe? Baryon asymmetry parameter: Observed: Standard Model prediction: • Conditions for baryon asymmetry by Sakharov: • Baryon number violation • C and CP violation • Departure from local equilibrium (or CPT violation) [1] JETP Lett 5, 24-27 (1967).