Thermodynamic Functions at Isobaric Process of Van Der Waals Gases

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Functions at Isobaric Process of Van Der Waals Gases Thermodynamic Functions at Isobaric Process of van der Waals Gases Akira Matsumoto Department of Material Sciences, College of Integrated Arts and Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan Reprint requests to Prof. A. Matsumoto; Fax. 81-0722-54-9927; E-mail: [email protected] Z. Naturforsch. 55 a, 851-855 (2000); received June 29, 2000 The thermodynamic functions for the van der Waals equation are investigated at isobaric process. The Gibbs free energy is expressed as the sum of the Helmholtz free energy and PV, and the volume in this case is described as the implicit function of the cubic equation for V in the van der Waals equation. Furthermore, the Gibbs free energy is given as a function of the reduced temperature, pressure and volume, introducing a reduced equation of state. Volume, enthalpy, entropy, heat capacity, thermal expansivity, and isothermal compressibility are given as functions of the reduced temperature, pressure and volume, respectively. Some thermodynamic quantities are calculated numerically and drawn graphically. The heat capacity, thermal expansivity, and isothermal compressibility diverge to infinity at the critical point. This suggests that a second-order phase transition may occur at the critical point. Key words: Van der Waals Gases; Isobaric Process; Second-order Phase Transition. 1. Introduction the properties of the determinant. In the case of these functions, a singularity will occur thermodynamically There is a continuing problem concerning the ther- at a critical point, while the volume V(T, P) becomes modynamic behaviours in a supercritical state. The a complicated expression as a root of the cubic equa- van der Waals equation as one of many empirical tion. Introducing a reduced equation of state obey- state equations, can be given some qualitative illustra- ing the principle of corresponding states, the Gibbs tions of observed P-V isotherm, the critical state and free energy can be replaced by a function of reduced the phase equilibrium between gas and liquid states. temperature, pressure and volume. Some thermody- There seems to be a problem associated with the fact namic quantities are written in a form, applicable that thermodynamic quantities have been expressed to all substances, which does not require the spe- quantitatively as functions of temperature and pres- cific constants, a and b, for any gas. From the view- sure as intensive variables, while the van der Waals point of an isobaric process, this may be significant equation has been applied to investigate deviations to provide the properties of thermodynamic quanti- from the equation of the ideal state of a gas by virial ties in the supercritical state and the second-order expansion [1,2]. phase transition of van der Waals gases at the critical The Gibbs free energy can be described as the sum point. of the Helmholtz free energy, A(T, V), and PV. The In this work, the Gibbs free energy is obtained Gibbs free energy, however, must essentially be repre- from the Helmholtz free energy in comparison with sented by the variables temperature and pressure. The the imperfect gases in classical statistical mechanics volume V in the Gibbs free energy equation always [1], and also this free energy becomes a function of satisfies the cubic equation for V in the van der Waals reduced temperature, pressure and volume. The vol- equation and becomes an implicit function of tem- ume, enthalpy, entropy, heat capacity, thermal expan- perature and pressure. The determinant of the cubic sivity and isothermal compressibility are included as equation is naturally zero at the critical point. Some variables. These thermodynamic quantities are deter- thermodynamic functions that contain the derivative mined through numerical calculations and are graph- of V(T, P) with respect to T or P depend strongly on ically displayed for an isobaric or isothermal process. 0932-0784 / 2000 / 0900-865 $ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen • www.znaturforsch.com 852 Thermodynamic Functions at Isobaric Process of van der Waals Gases • A. Matsumoto The second-order phase transition of van der Waals If the temperature, pressure and volume of a gas are gases at the critical point is discussed. expressed in terms of Tc, Pc and Vc, respectively, then T = 9TC, P = irPc, and V = (f)Vc. The reduced 2. Thermodynamic Functions equation of state obeying the principle of correspond- ing states is easily derived from the van der Waals A van der Waals gas is defined by the equation of equation: state RT a (V) P = (1) V - b V2' By applying 9,7r, and 0, the Gibbs free energy can be The Helmholtz free energy A{T, V) [3] is ex- written as pressed with the temperature function (p(T) as G(0, tt) = -RT 9 [C + j ln 9 + ln(0 - I) (8) RF a C A(T, V) = — --]iV + V(T). (2) 37T(f). In classical statistical mechanics [1], the partition function of an imperfect gas is represented by The constant C in (8) can be rewritten as / lirmkT \3N/2 Zy „ „ Z(T, V, N) = ( —2 J TT7 = Z«ZV. (3) 3 2irmkTc NA V h N\ C = - ln -rl ln — + ln Vc (9) 2 h e Z-d is the partition function of an ideal gas with the variable of T, and Zy is the configurational partition = -7.07228 + - ln MTC + In Vc, function with the variable V. The first and second term in (3) correspond to the free energy Zy and ZKj, where M is the molecular weight, Tc is in units of respectively. The free energy in (2) is rewritten as 3 K and Vc in units of cm . The Gibbs free energy, fl,21 as a function of the molecular weight and the critical constants of a particular gas, is not applicable to all . ^ , mr3, 2-KmkT , Na A(T,V) = -RT[- In—^--ln —* (4) substances. The reduced volume in this free energy, is ob- tained by the cubic equation for 0 in (7) as + ln(V - b) + RTV , 1 80 , 3 1 + + (10) where NA is Avogadro's number and e the base of 3 5LX 7T TT the natural logarithm. We can arrive at the Gibbs free Similarly, as mentioned in the case of V for (6), the energy by adding to PV: root of cf) in (10) is written as an implicit function of 9 and 7T. The Gibbs free energy in (8), therefore, can be G(T, P) = A(T, V) + PV (5) described as a function of 9 and 7r. All thermodynamic functions can be derived from the Gibbs free energy _r3 2ixmkT NA Tr , = -RT - ln —— ln — + ln(V - b) in the known way. 2 bl e We can exactly solve the cubic equation for a PV, Substituting (p = x + a, the standard cubic equation without x2 can be replaced by + RTV ~ ~RT ' x}+px + q = 0. (11) The volume in (5) always satisfies the roots of the cubic equation for V in (1): The coefficients p and q in (11) result from ab v-M » + f)V + £v = 0. (6) a=-(l + —), (12) ~P 9 TT Thermodynamic Functions at Isobaric Process of van der Waals Gases • A. Matsumoto 853 ^ j 3) The heat capacity at constant reduced pressure is eas- P .?.-(«*-I) 3 7T ily derived from the enthalpy, and ap i dH _ Q T 3ft 1 (22) Q = -- = a3 + —. (14) 2 2-7T 27T 3 6 d(j) The determinant of the cubic Eq. (11) is defined as = R[2 + ^Tj3(d9)"1 D = P3+Q2 (15) where the derivative of 0 with respect to 0 can be a3 3a2 3ft 1 1 given as 7T 47T2 27T2 7T3 47T2 dd> 8 dx = (23) If 7T > 1 or 0 > 1, then the determinant is always <7d 6 ^ 9tx d ft positive, and a real root and two complex conjugated roots are given. Especially, the triple real roots are found at D = 0. A real root is given by 1 (24) da ^ da + 2y/D da = a + .X = ft + y/R\ + \/R2, (16) where 1 1 d D R\ = Q + \[T) (17) 'r2 ^a 2 y/D d a J and dQ/da and dD/da can easily be obtained. The thermal R2 = Q-VD. (* 8) expansivity at constant reduced pressure is defined by Since the coefficient in the term (dcj)/dO) satisfies the n 1 ,3V\ 1 n^ reduced equation of state in (10), the volume is given Q = 7(5T)p = 2t0(d?)' (25) as the form missing (dcfr/dO)^, The isothermal compressibility is defined by (19) V dP Pq (p d 7T (j) becomes the real root in (16). The entropy is ob- tained as where the derivative of (f) with respect to 7r can be given as 80 dx (27) d 7T 9t:2 d 7T = + ^ + + i)]. with da: Id Q Id D The entropy in (20) involves the constant C. How- d 7T 3 L 3 d7T + r~7=-]—2y/D d7r ) (28) ever this entropy, which is dependent on C, becomes generally applicable to all substances. The enthalpy is obtained as 1 (d Q 1 d D ffii d 7r 2\fD d 7r 3 G d G (21) H = 1W(T)]p = ~ lde(J)]' where 9 3tr<£ d Q _ SO 2 3 )+ 3a .1 = RTd-2, PTT + -TT")- d 7T 97t2 27t 27r2 2ir2 854 Thermodynamic Functions at Isobaric Process of van der Waals Gases • A. Matsumoto o 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 Fig. 2. Heat capacities, plotted against the reduced temper- ature at various reduced pressures.
Recommended publications
  • 3-1 Adiabatic Compression
    Solution Physics 213 Problem 1 Week 3 Adiabatic Compression a) Last week, we considered the problem of isothermal compression: 1.5 moles of an ideal diatomic gas at temperature 35oC were compressed isothermally from a volume of 0.015 m3 to a volume of 0.0015 m3. The pV-diagram for the isothermal process is shown below. Now we consider an adiabatic process, with the same starting conditions and the same final volume. Is the final temperature higher, lower, or the same as the in isothermal case? Sketch the adiabatic processes on the p-V diagram below and compute the final temperature. (Ignore vibrations of the molecules.) α α For an adiabatic process ViTi = VfTf , where α = 5/2 for the diatomic gas. In this case Ti = 273 o 1/α 2/5 K + 35 C = 308 K. We find Tf = Ti (Vi/Vf) = (308 K) (10) = 774 K. b) According to your diagram, is the final pressure greater, lesser, or the same as in the isothermal case? Explain why (i.e., what is the energy flow in each case?). Calculate the final pressure. We argued above that the final temperature is greater for the adiabatic process. Recall that p = nRT/ V for an ideal gas. We are given that the final volume is the same for the two processes. Since the final temperature is greater for the adiabatic process, the final pressure is also greater. We can do the problem numerically if we assume an idea gas with constant α. γ In an adiabatic processes, pV = constant, where γ = (α + 1) / α.
    [Show full text]
  • Chapter 6 - Engineering Equations of State II
    Introductory Chemical Engineering Thermodynamics By J.R. Elliott and C.T. Lira Chapter 6 - Engineering Equations of State II. Generalized Fluid Properties The principle of two-parameter corresponding states 50 50 40 40 30 30 T=705K 20 20 ρ T=286K L 10 10 T=470 T=191K T=329K 0 0 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 -10 T=133K -10 ρV Density (g/cc) Density (g/cc) VdW Pressure (bars) in Methane VdW Pressure (bars) in Pentane Critical Definitions: Tc - critical temperature - the temperature above which no liquid can exist. Pc - critical pressure - the pressure above which no vapor can exist. ω - acentric factor - a third parameter which helps to specify the vapor pressure curve which, in turn, affects the rest of the thermodynamic variables. ∂ ∂ 2 P = P = 0 and 0 at Tc and Pc Note: at the critical point, ∂ρ ∂ρ 2 T T Chapter 6 - Engineering Equations of State Slide 1 II. Generalized Fluid Properties The van der Waals (1873) Equation Of State (vdW-EOS) Based on some semi-empirical reasoning about the ways that temperature and density affect the pressure, van der Waals (1873) developed the equation below, which he considered to be fairly crude. We will discuss the reasoning at the end of the chapter, but it is useful to see what the equations are and how we use them before deriving the details. The vdW-EOS is: bρ aρ 1 aρ Z =+1 −= − ()1− bρ RT()1− bρ RT van der Waals’ trick for characterizing the difference between subcritical and supercritical fluids was to recognize that, at the critical point, ∂P ∂ 2 P = 0 and = 0 at T , P ∂ρ ∂ρ 2 c c T T Since there are only two “undetermined parameters” in his EOS (a and b), he has reduced the problem to one of two equations and two unknowns.
    [Show full text]
  • On the Van Der Waals Gas, Contact Geometry and the Toda Chain
    entropy Article On the van der Waals Gas, Contact Geometry and the Toda Chain Diego Alarcón, P. Fernández de Córdoba ID , J. M. Isidro * ID and Carlos Orea Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain; [email protected] (D.A.); [email protected] (P.F.d.C.); [email protected] (C.O.) * Correspondence: [email protected] Received: 7 June 2018; Accepted: 16 July 2018; Published: 26 July 2018 Abstract: A Toda–chain symmetry is shown to underlie the van der Waals gas and its close cousin, the ideal gas. Links to contact geometry are explored. Keywords: van der Waals gas; contact geometry; Toda chain 1. Introduction The contact geometry of the classical van der Waals gas [1] is described geometrically using a five-dimensional contact manifold M [2] that can be endowed with the local coordinates U (internal energy), S (entropy), V (volume), T (temperature) and p (pressure). This description corresponds to a choice of the fundamental equation, in the energy representation, in which U depends on the two extensive variables S and V. One defines the corresponding momenta T = ¶U/¶S and −p = ¶U/¶V. Then, the standard contact form on M reads [3,4] a = dU + TdS − pdV. (1) One can introduce Poisson brackets on the four-dimensional Poisson manifold P (a submanifold of M) spanned by the coordinates S, V and their conjugate variables T, −p, the nonvanishing brackets being fS, Tg = 1, fV, −pg = 1. (2) Given now an equation of state f (p, T,...) = 0, (3) one can make the replacements T = ¶U/¶S, −p = ¶U/¶V in order to obtain ¶U ¶U f − , ,..
    [Show full text]
  • Muddiest Point – Entropy and Reversible I Am Confused About Entropy and How It Is Different in a Reversible Versus Irreversible Case
    1 Muddiest Point { Entropy and Reversible I am confused about entropy and how it is different in a reversible versus irreversible case. Note: Some of the discussion below follows from the previous muddiest points comment on the general idea of a reversible and an irreversible process. You may wish to have a look at that comment before reading this one. Let's talk about entropy first, and then we will consider how \reversible" gets involved. Generally we divide the universe into two parts, a system (what we are studying) and the surrounding (everything else). In the end the total change in the entropy will be the sum of the change in both, dStotal = dSsystem + dSsurrounding: This total change of entropy has only two possibilities: Either there is no spontaneous change (equilibrium) and dStotal = 0, or there is a spontaneous change because we are not at equilibrium, and dStotal > 0. Of course the entropy change of each piece, system or surroundings, can be positive or negative. However, the second law says the sum must be zero or positive. Let's start by thinking about the entropy change in the system and then we will add the entropy change in the surroundings. Entropy change in the system: When you consider the change in entropy for a process you should first consider whether or not you are looking at an isolated system. Start with an isolated system. An isolated system is not able to exchange energy with anything else (the surroundings) via heat or work. Think of surrounding the system with a perfect, rigid insulating blanket.
    [Show full text]
  • Isothermal Process It Is the Process in Which Other Physical Quantities Might Change but the Temperature of the System Remains Or Is Forced to Remain Constant
    Sajit Chandra Shakya Department of Physics Kathmandu Don Bosco College New Baneshwor, Kathmandu Isothermal process It is the process in which other physical quantities might change but the temperature of the system remains or is forced to remain constant. For example, the constant temperature of human body. Under constant temperature, the volume of a gas system is inversely proportional to the pressure applied, the phenomena being called Boyle's Law, written in symbols as 1 V ∝ P 1 Or, V = KB× where KB is a constant quantity. P Or, PV = KB …………….. (i) This means whatever be the values of volume and pressure, their product will be constant. So, P1V1 = KB, P2V2 = KB, P3V3 = KB, etc, Or, P1V1 = P2V2 = P3V3, etc. The requirements for an isothermal process are as follows: 1. The process should be carried very slowly so that there is an ample time for compensation of heat in case of any loss or addition. 2. The boundaries of the system should be highly conducting so that there is a path for heat to flow into or flow away from a closed space in case of any energy loss or oversupply. 3. The boundaries should be made very thin because the resistance of the substance for heat conduction will be less for thin boundaries. Since in an isothermal change, the temperature remains constant, the internal energy also does not change, i.e. dU = 0. So if dQ amount of heat is given to a system which undergoes isothermal change, the relation for the first law of thermodynamics would be dQ = dU + dW Or, dQ = 0 + PdV Or, dQ = PdV This means all the heat supplied will be utilized for performing external work and consequently its value will be very high compared to other processes.
    [Show full text]
  • The First Law of Thermodynamics Continued Pre-Reading: §19.5 Where We Are
    Lecture 7 The first law of thermodynamics continued Pre-reading: §19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pV = nRT = NkT For an ideal gas, the temperature T is is a direct measure of the average kinetic energy of its 3 3 molecules: KE = nRT = NkT tr 2 2 2 3kT 3RT and vrms = (v )av = = r m r M p Where we are We define the internal energy of a system: UKEPE=+∑∑ interaction Random chaotic between atoms motion & molecules For an ideal gas, f UNkT= 2 i.e. the internal energy depends only on its temperature Where we are By considering adding heat to a fixed volume of an ideal gas, we showed f f Q = Nk∆T = nR∆T 2 2 and so, from the definition of heat capacity Q = nC∆T f we have that C = R for any ideal gas. V 2 Change in internal energy: ∆U = nCV ∆T Heat capacity of an ideal gas Now consider adding heat to an ideal gas at constant pressure. By definition, Q = nCp∆T and W = p∆V = nR∆T So from ∆U = Q W − we get nCV ∆T = nCp∆T nR∆T − or Cp = CV + R It takes greater heat input to raise the temperature of a gas a given amount at constant pressure than constant volume YF §19.4 Ratio of heat capacities Look at the ratio of these heat capacities: we have f C = R V 2 and f + 2 C = C + R = R p V 2 so C p γ = > 1 CV 3 For a monatomic gas, CV = R 3 5 2 so Cp = R + R = R 2 2 C 5 R 5 and γ = p = 2 = =1.67 C 3 R 3 YF §19.4 V 2 Problem An ideal gas is enclosed in a cylinder which has a movable piston.
    [Show full text]
  • Comments on Failures of Van Der Waals' Equation at the Gas–Liquid
    Comments on Failures of van der Waals’ Equation at the Gas–Liquid Critical Point, L. V. Woodcock, International Journal of Thermophysics (2018) 39:120 I.H. Umirzakov Institute of Thermophysics, Novosibirsk, Russia [email protected] Abstract These comments are a response to the discussion presented in the above paper concerning the “New comment on Gibbs Density Surface of Fluid Argon: Revised Critical Parameters” by Umirzakov. Here we show that: Woodcock’s results obtained for the dependencies for the isochoric heat capacity, excess Gibbs energy and coexisting difference functional of argon, and coexisting densities of liquid and vapor of the van der Waals fluid and presented in all Figures are incorrect; his Table includes incorrect values of coexisting difference functional; his paper includes many incorrect equations, mathematical and logical errors and physically incorrect assertions concerning the temperature dependences of the isochoric heat capacity and entropy of real fluids; most of the his conclusions are based on the above errors, incorrect data, incorrect comparisons and incorrect dependencies; and most of his conclusions are invalid. We also show that the van der Waals equation of state quantitatively describes the dependencies of saturation pressure on vapor density and temperature near critical point, and the equation of state can describe qualitatively the reduced excess Gibbs energy, rigidity and densities of coexisting liquid and vapor of argon, including the region near critical point. Keywords Coexistence · Critical point · First-order phase transition · Liquid · Phase equilibrium · Vapor 1. Introduction Our comments are a response to a discussion of the article “New comment on Gibbs Density Surface of Fluid Argon: Revised Critical Parameters” by Umirzakov [1] held in the paper [2].
    [Show full text]
  • Ch 19. the First Law of Thermodynamics
    Ch 19. The First Law of Thermodynamics Liu UCD Phy9B 07 1 19-1. Thermodynamic Systems Thermodynamic system: A system that can interact (and exchange energy) with its surroundings Thermodynamic process: A process in which there are changes in the state of a thermodynamic system Heat Q added to the system Q>0 taken away from the system Q<0 (through conduction, convection, radiation) Work done by the system onto its surroundings W>0 done by the surrounding onto the system W<0 Energy change of the system is Q + (-W) or Q-W Gaining energy: +; Losing energy: - Liu UCD Phy9B 07 2 19-2. Work Done During Volume Changes Area: A Pressure: p Force exerted on the piston: F=pA Infinitesimal work done by system dW=Fdx=pAdx=pdV V Work done in a finite volume change W = final pdV ∫V initial Liu UCD Phy9B 07 3 Graphical View of Work Gas expands Gas compresses Constant p dV>0, W>0 dV<0, W<0 W=p(V2-V1) Liu UCD Phy9B 07 4 19-3. Paths Between Thermodynamic States Path: a series of intermediate states between initial state (p1, V1) and a final state (p2, V2) The path between two states is NOT unique. V2 W= p1(V2-V1) +0 W=0+ p2(V2-V1) W = pdV ∫V 1 Work done by the system is path-dependent. Liu UCD Phy9B 07 5 Path Dependence of Heat Transfer Isotherml: Keep temperature const. Insulation + Free expansion (uncontrolled expansion of a gas into vacuum) Heat transfer depends on the initial & final states, also on the path.
    [Show full text]
  • Convolutional Neural Networks for Atomistic Systems
    Convolutional neural networks for atomistic systems Kevin Ryczko Department of Physics, University of Ottawa Kyle Mills Department of Physics, University of Ontario Institute of Technology Iryna Luchak Department of Electrical & Computer Engineering, University of British Columbia Christa Homenick National Research Council of Canada Isaac Tamblyn Department of Physics, University of Ontario Institute of Technology Department of Physics, University of Ottawa National Research Council of Canada Abstract We introduce a new method, called CNNAS (convolutional neural networks for atom- istic systems), for calculating the total energy of atomic systems which rivals the com- putational cost of empirical potentials while maintaining the accuracy of ab initio calculations. This method uses deep convolutional neural networks (CNNs), where the input to these networks are simple representations of the atomic structure. We use this approach to predict energies obtained using density functional theory (DFT) for 2D hexagonal lattices of various types. Using a dataset consisting of graphene, hexagonal boron nitride (hBN), and graphene-hBN heterostructures, with and with- out defects, we trained a deep CNN that is capable of predicting DFT energies to an extremely high accuracy, with a mean absolute error (MAE) of 0.198 meV / atom (maximum absolute error of 16.1 meV / atom). To explore our new methodology, arXiv:1706.09496v2 [cond-mat.mtrl-sci] 20 Mar 2018 Email addresses: [email protected] (Kevin Ryczko), [email protected] (Isaac Tamblyn) Preprint submitted to Computational Materials Science March 21, 2018 we investigate the ability of a deep neural network (DNN) in predicting a Lennard- Jones energy and separation distance for a dataset of dimer molecules in both two and three dimensions.
    [Show full text]
  • Thermodynamic Propertiesproperties
    ThermodynamicThermodynamic PropertiesProperties PropertyProperty TableTable -- from direct measurement EquationEquation ofof StateState -- any equation that relates P,v, and T of a substance jump ExerciseExercise 33--1212 A bucket containing 2 liters of R-12 is left outside in the atmosphere (0.1 MPa) a) What is the R-12 temperature assuming it is in the saturated state. b) the surrounding transfer heat at the rate of 1KW to the liquid. How long will take for all R-12 vaporize? See R-12 (diclorindifluormethane) on Table A-2 SolutionSolution -- pagepage 11 Part a) From table A-2, at the saturation pressure of 0.1 MPa one finds: • Tsaturation = - 30oC 3 • vliq = 0.000672 m /kg 3 • vvap = 0.159375 m /kg • hlv = 165KJ/kg (vaporization heat) SolutionSolution -- pagepage 22 Part b) The mass of R-12 is m = Volume/vL, m = 0.002/0.000672 = 2.98 kg The vaporization energy: Evap = vap energy * mass = 165*2.98 = 492 KJ Time = Heat/Power = 492 sec or 8.2 min GASGAS PROPERTIESPROPERTIES Ideal -Gas Equation of State M PV = nR T; n = u mol Universal gas constant is given on Ru = 8.31434 kJ/kmol-K = 8.31434 kPa-m3/kmol-k = 0.0831434 bar-m3/kmol-K = 82.05 L-atm/kmol-K = 1.9858 Btu/lbmol-R = 1545.35 ft-lbf/lbmol-R = 10.73 psia-ft3/lbmol-R EExamplexample Determine the particular gas constant for air (28.97 kg/kmol) and hydrogen (2.016 kg/kmol). kJ 8.1417 kJ = Ru = kmol − K = 0.287 Rair kg M 28.97 kg − K kmol kJ 8.1417 kJ = kmol − K = 4.124 Rhydrogen kg 2.016 kg − K kmol IdealIdeal GasGas “Law”“Law” isis aa simplesimple EquationEquation ofof StateState PV = MRT Pv = RT PV = NRuT P V P V 1 1 = 2 2 T1 T2 QuestionQuestion …...…..
    [Show full text]
  • Chemical Engineering Thermodynamics
    CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY | 1 TABLE OF CONTENTS Symbol Dictionary ........................................................................................................................ 3 1. Measured Thermodynamic Properties and Other Basic Concepts .................................. 5 1.1 Preliminary Concepts – The Language of Thermodynamics ........................................................ 5 1.2 Measured Thermodynamic Properties .......................................................................................... 5 1.2.1 Volume .................................................................................................................................................... 5 1.2.2 Temperature ............................................................................................................................................. 5 1.2.3 Pressure .................................................................................................................................................... 6 1.3 Equilibrium ................................................................................................................................... 7 1.3.1 Fundamental Definitions .......................................................................................................................... 7 1.3.2 Independent and Dependent Thermodynamic Properties ........................................................................ 7 1.3.3 Phases .....................................................................................................................................................
    [Show full text]
  • 12/8 and 12/10/2010
    PY105 C1 1. Help for Final exam has been posted on WebAssign. 2. The Final exam will be on Wednesday December 15th from 6-8 pm. First Law of Thermodynamics 3. You will take the exam in multiple rooms, divided as follows: SCI 107: Abbasi to Fasullo, as well as Khajah PHO 203: Flynn to Okuda, except for Khajah SCI B58: Ordonez to Zhang 1 2 Heat and Work done by a Gas Thermodynamics Initial: Consider a cylinder of ideal Thermodynamics is the study of systems involving gas at room temperature. Suppose the piston on top of energy in the form of heat and work. the cylinder is free to move vertically without friction. When the cylinder is placed in a container of hot water, heat Equilibrium: is transferred into the cylinder. Where does the heat energy go? Why does the volume increase? 3 4 The First Law of Thermodynamics The First Law of Thermodynamics The First Law is often written as: Some of the heat energy goes into raising the temperature of the gas (which is equivalent to raising the internal energy of the gas). The rest of it does work by raising the piston. ΔEQWint =− Conservation of energy leads to: QEW=Δ + int (the first law of thermodynamics) This form of the First Law says that the change in internal energy of a system is Q is the heat added to a system (or removed if it is negative) equal to the heat supplied to the system Eint is the internal energy of the system (the energy minus the work done by the system (usually associated with the motion of the atoms and/or molecules).
    [Show full text]