Proteases: Nature’S Destroyers and the Drugs That Stop Them

Total Page:16

File Type:pdf, Size:1020Kb

Proteases: Nature’S Destroyers and the Drugs That Stop Them Pharmacy & Pharmacology International Journal Mini Review Open Access Proteases: nature’s destroyers and the drugs that stop them Abstract Volume 2 Issue 6 - 2015 Proteases are found in all life forms and regulate many cellular pathways. Proteases Charles A Veltri have been proven as viable drug targets. This paper reviews the mechanism of Pharmaceutical Sciences, Midwestern University College of hydrolysis of the amino acid based aspartic, cysteine, serine and threonine proteases Pharmacy, USA and will also highlight the current anti protease therapeutics in the clinic. Correspondence: Charles A Veltri, Midwestern University, Keywords: protease, inhibitor, drug development USA, Tel 635723589, Fax 6235723565, Email [email protected] Received: April 17, 2015 | Published: November 30, 2015 Introduction Proteases are found in all life forms. Initially proteases were described from gastric juices and thought to be involved in nonspecific degradation of proteins. While some proteases are nonspecific, others are highly specific both in their substrate selection and cleavage recognition sites. Proteases account for ~2% of the human genome with 553 defined members1,2 and 1-5% of the genomes in infectious organisms such as bacteria, parasites and viruses.3 Proteases regulate many cellular processes, such as protein degradation,4,5 digestion6,7 blood coagulation,8 wound healing,9 ovulation,10 embryonic development,11 bone formation,12 neuronal outgrowth,13 cell-cycle regulation,14 immune and inflammatory response,15 angiogenesis16 and apoptosis.17 Proteases are viable drug targets because of their role in cellular functions of both mammalian cells and pathogens. There are five major classes of proteases categorized by the Figure 1 Cartoon depicting the substrate (P) and the binding pockets (S). catalytic method used to hydrolyze peptide bonds: serine (30%), aspartic (4%), cysteine (26%), threonine (5%) and metallo proteases Nucleophilic proteases (34%).3 Although the specific residues differ between the various classes, they all bind their substrates in a groove where peptide bond Mechanism hydrolysis occurs, and all proteases recognize β-strands in their active Serine, aspartic, threonine and cysteine proteases share common 3 site. The amino acids of the substrate occupy recognition pockets in active site functionality in a nucleophilic residue coupled with a general the groove of the protease. The interactions are designated P3, P2, P1, base. The general base abstracts the proton from the nucleophilic P1′, P2′ and P3′ for the substrate and S3, S2, S1, S1′, S2′ and S3′ for the residue to allow the active site residue to become charged (Figure 2). binding pockets. Prime and nonprime designations are with respect These residues are typically the target for inhibitors. to the cleaved peptide bond (Figure 1). The S pockets of the protease have amino acids complementary to the side chains of the substrate at The mechanism of hydrolysis is highlighted in Figure 3, using the site of cleavage. This complementation allows for selectivity in the the active site of a cysteine proteasesas the example. The protease peptide bonds cleaved by an enzyme, for example trypsin specifically active site residue attacks the carbonyl of the peptide bond to form a cleaves at the carboxyl terminus of arginine or lysine residues. tetrahedral transition state intermediate. Electrons from the oxygen of the carbonyl drive the cleavage of the peptide bond, which abstracts This paper will review the mechanism of how proteases hydrolyze hydrogen from the general base. Water then releases the second half of peptide bonds and discuss the similarities and differences between the product from the active site residue. The oxyanion hole generated the serine, aspartic, cysteine and threonine proteases. All four of during the transition state is stabilized through hydrogen bonding with these classes of proteins share common active site functionality that amino groups of the backbone. The role of the oxyanion hole is not is often the target for inhibitors. The development of inhibitors and fully understood.18 their mechanism of inhibition against proteases will also be discussed. Finally, this paper will highlight the current therapeutics available on While the chemistry of the mechanism of hydrolysis is similar the market to target the various protease classes. for serine, aspartic, cysteine and threonine proteases, the amino acids involved in catalysis are what define the various classes. The different classes of proteases are discussed below. Submit Manuscript | http://medcraveonline.com Pharm Pharmacol Int J. 2015;2(6):222‒230. 222 © 2015 Veltri. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially. Copyright: Proteases: nature’s destroyers and the drugs that stop them ©2015 Veltri 223 Figure 2 Active site residues of serine and cysteine proteases. The dashed lines represent hydrogen bonds. Figure 3 Mechanism of hydrolysis using the cysteine protease as the model. The thiol of the Cys attacks the carbonyl of the peptide bond. The electrons from the carbonyl oxygen drive the cleavage of the peptide bond. Water then attacks the carbonyl to release the protein from the protease. Serine proteases trypsin-like proteases cleave positively charged residues (Lys or Arg are preferred at P ), elastase-like proteases prefer small hydrophobic Serine proteases19‒21 use an active site serine to hydrolyze a peptide 1 residues (Ala or Val are preferred at P1) while chymotrypsin-like bond. The other amino acids involved in catalysis vary between proteases prefer large hydrophobic residues (Phe, Tyr, or Leu).2,19,20 the different serine protease groups. The Ser-His-Asp triad can be replaced with Ser-His-Glu, Ser-His-His or Ser-Lys depending on the Aspartic proteases 20,21 family of serine protease. The serine proteases are categorized 19,23‒26 by tertiary structures into the super families of the trypsin-like or Aspartic proteases use two aspartic acid residues to subtilisin-like.2,19,20 Examples of the trypsin-like serine proteases, hydrolyze a peptide bond. These proteases are categorized into the super families of pepsin-like or viral retropepsin-like due to the the larger of the super families, are trypsin, chymotrypsin, thrombin, 23,24,26,27 2,19,20 tertiary structure. The pepsin-like include pepsin, cathepsin D factor IX a, and factor Xa. Interestingly, some cysteine proteases 23,27 22 and chymosin. The viral retropepsin-like include the retro pepsins adopt the trypsin-like structure. Examples of the subtilisin-like 24,26 serine proteases are proteinase K and thermitase.2,19,20 of the immune viruses HIV, FIV and SIV. Along with tertiary structure, serine proteases are designed against Aspartic proteases are unique in the fact they do not have a His residue in their active site. The general acid-base mechanism the nature of the P1 residue recognized by the protease types. The Citation: Veltri CA. Proteases: nature’s destroyers and the drugs that stop them. Pharm Pharmacol Int J. 2015;2(6):222‒230. DOI: 10.15406/ppij.2015.02.00044 Copyright: Proteases: nature’s destroyers and the drugs that stop them ©2015 Veltri 224 proposed for peptide hydrolysis involves two Asp residues and uses the deprotonated Asp residue. The protonated Asp residue undergoes water to attack the targeted peptide bond (Figure 4). The peptide nucleophilic attack by the amide of the peptide bond, resulting in the bond undergoes nucleophilic attack by water which is activated by cleavage of the peptide bond.19,23‒26 Figure 4 Mechanism of hydrolysis of aspartic proteases. The dashed line is a hydrogen bond between the two Asp active site residues. Water is used to attack the carbonyl of the peptide bond. The protonated Asp is then attacked by the amide of the peptide bond, resulting in cleavage of the peptide bond. Cysteine proteases Inhibitor design background Cysteine proteases12,18,19,22,25,28‒30 use a cysteine residue to Early inhibitors of nucleophilic proteases were designed as peptide hydrolyze a peptide bond. These proteases are categorized into three substrates to deliver a warhead to the active site.25 This approach super families of viral, papain-like or caspase-like.19,22 The viral was favorable because a specific substrate could be synthesized for proteases have examples from many viral origins.22 As stated earlier, the target protease. The early warheads were diazo- or halo-ketone the viral cysteine proteases take on the serine protease trypsin-like compounds, which are excellent alkylating agents because diazo and tertiary structure.22 The papain-like proteases include the papain halogens represent good leaving groups.25 The active site residue and cathepsins. The caspase-like proteases include the caspases and attacks the carbonyl of the warhead rather than that of the peptide gingipain.22 bond (Figure 5).25,33 Threonine proteases While many proteases are not highly substrate specific (only a few residues are recognized for cleavage), some proteases have extended The only enzymes that are threonine proteases are the substrate binding grooves and require longer peptides (up to 30 4,5,18,31,32 proteasomes. Proteasomes are multifunctional and possess residues) for effective binding.25 The caspases, thrombins, neutrophil three distinct cleavage recognition sites: trypsin-like (Lys or Arg are elastases and deubiquitinating enzymes are examples of proteases that preferred at P ), chymotrypsin-like which prefer large hydrophobic 4,9,25,34‒37 1 recognize longer peptide fragments. Therefore, the traditional residues (Phe, Tyr, or Leu is preferred at P ), and caspase-like (Asp 1 method of attaching a warhead onto a substrate can become quite or Glu are preferred at P ).4,5,18,31 Inhibition of the proteasomes causes 1 difficult due to the size of the peptide-warhead library necessary to cell cycle arrest and apoptosis. identify the best inhibitors. The proteasomes are all barrel shaped protein complexes that Two approaches have been taken to overcome this barrier.
Recommended publications
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • For Serine Proteas
    Ribeiro et al. BMC Structural Biology 2010, 10:36 http://www.biomedcentral.com/1472-6807/10/36 METHODOLOGY ARTICLE Open Access Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors Cristina Ribeiro1†, Roberto C Togawa2†, Izabella AP Neshich3, Ivan Mazoni3, Adauto L Mancini3, Raquel C de Melo Minardi5, Carlos H da Silveira4, José G Jardine3, Marcelo M Santoro1, Goran Neshich3* Abstract Background: Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR). We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix) of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. Results: We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR) for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB) does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes The IFRs are obtained by “rigid body docking” among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine and ovomucoid third domain inhibitor.
    [Show full text]
  • Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
    Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1
    [Show full text]
  • Associations Between the Complement System and Choroidal Neovascularization in Wet Age-Related Macular Degeneration
    International Journal of Molecular Sciences Review Associations between the Complement System and Choroidal Neovascularization in Wet Age-Related Macular Degeneration 1 2 1 1, Emilie Grarup Jensen , Thomas Stax Jakobsen , Steffen Thiel , Anne Louise Askou y 1,2, , and Thomas J. Corydon * y 1 Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; [email protected] (E.G.J.); [email protected] (S.T.); [email protected] (A.L.A.) 2 Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +45-28-99-21-79 These authors contributed equally to this work. y Received: 18 November 2020; Accepted: 17 December 2020; Published: 21 December 2020 Abstract: Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD.
    [Show full text]
  • Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases
    International Journal of Molecular Sciences Review Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases Emma L. Carroll 1,†, Mariarca Bailo 2,†, James A. Reihill 1 , Anne Crilly 2 , John C. Lockhart 2, Gary J. Litherland 2, Fionnuala T. Lundy 3 , Lorcan P. McGarvey 3, Mark A. Hollywood 4 and S. Lorraine Martin 1,* 1 School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; [email protected] (E.L.C.); [email protected] (J.A.R.) 2 Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; [email protected] (M.B.); [email protected] (A.C.); [email protected] (J.C.L.); [email protected] (G.J.L.) 3 Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; [email protected] (F.T.L.); [email protected] (L.P.M.) 4 Smooth Muscle Research Centre, Dundalk Institute of Technology, A91 HRK2 Dundalk, Ireland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are Citation: Carroll, E.L.; Bailo, M.; characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to Reihill, J.A.; Crilly, A.; Lockhart, J.C.; Litherland, G.J.; Lundy, F.T.; persistent inflammation, infection and dysregulated protease activity.
    [Show full text]
  • Downloading the Nucleotide Sequences and Scanning Them Against the Database
    An in silico analysis, purification and partial kinetic characterisation of a serine protease from Gelidium pristoides A dissertation submitted in fulfilment of the requirement for the degree of Master of Science (MSc) Biochemistry by Zolani Ntsata Supervisor: Prof. Graeme Bradley 2020 Department of Biochemistry and Microbiology Declaration I, Zolani Ntsata (201106067), declare that this dissertation, entitled ‘An in silico analysis and kinetic characterisation of proteases from red algae’ submitted to the University of Fort Hare for the Master’s degree (Biochemistry) award, is my original work and has NOT been submitted to any other university. Signature: __________________ I, Zolani Ntsata (201106067), declare that I am highly cognisant of the University of Fort Hare policy on plagiarism and I have been careful to comply with these regulations. Furthermore, all the sources of information have been cited as indicated in the bibliography. Signature: __________________ I, Zolani Ntsata (201106067), declare that I am fully aware of the University of Fort Hare’s policy on research ethics, and I have taken every precaution to comply with these regulations. There was no need for ethical clearance. Signature: _________________ i Dedication I dedicate this work to my grandmother, Nyameka Mabi. ii Acknowledgements Above all things, I would like to give thanks to God for the opportunity to do this project and for the extraordinary strength to persevere in spite of the challenges that came along. I am thankful to my family, especially my grandmother, for her endless support. I would also like to acknowledge Prof Graeme Bradley for his supervision and guidance. Thanks to my friends and colleagues, especially Yanga Gogela and Ntombekhaya Nqumla, and the plant stress group for their help and support.
    [Show full text]
  • The Role of Proteases in Plant Development
    The Role of Proteases in Plant Development Maribel García-Lorenzo Department of Chemistry, Umeå University Umeå 2007 i Department of Chemistry Umeå University SE - 901 87 Umeå, Sweden Copyright © 2007 by Maribel García-Lorenzo ISBN: 978-91-7264-422-9 Printed in Sweden by VMC-KBC Umeå University, Umeå 2007 ii Organization Document name UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Chemistry SE - 901 87 Umeå, Sweden Date of issue October 2007 Author Maribel García-Lorenzo Title The Role of Proteases in Plant Development. Abstract Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Systematic comparative analysis of the available sequenced genomes of two model organisms led to the identification of an increasing number of protease genes, giving insights about protein sequences that are conserved in the different species, and thus are likely to have common functions in them and the acquisition of new genes, elucidate issues concerning non-functionalization, neofunctionalization and subfunctionalization. The involvement of proteases in senescence and PCD was investigated. While PCD in woody tissues shows the importance of vacuole proteases in the process, the senescence in leaves demonstrate to be a slower and more ordered mechanism starting in the chloroplast where the proteases there localized become important. The light-harvesting complex of Photosystem II is very susceptible to protease attack during leaf senescence. We were able to show that a metallo-protease belonging to the FtsH family is involved on the process in vitro.
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]
  • Intrinsic Evolutionary Constraints on Protease Structure, Enzyme
    Intrinsic evolutionary constraints on protease PNAS PLUS structure, enzyme acylation, and the identity of the catalytic triad Andrew R. Buller and Craig A. Townsend1 Departments of Biophysics and Chemistry, The Johns Hopkins University, Baltimore MD 21218 Edited by David Baker, University of Washington, Seattle, WA, and approved January 11, 2013 (received for review December 6, 2012) The study of proteolysis lies at the heart of our understanding of enzyme evolution remain unanswered. Because evolution oper- biocatalysis, enzyme evolution, and drug development. To un- ates through random forces, rationalizing why a particular out- derstand the degree of natural variation in protease active sites, come occurs is a difficult challenge. For example, the hydroxyl we systematically evaluated simple active site features from all nucleophile of a Ser protease was swapped for the thiol of Cys at serine, cysteine and threonine proteases of independent lineage. least twice in evolutionary history (9). However, there is not This convergent evolutionary analysis revealed several interre- a single example of Thr naturally substituting for Ser in the lated and previously unrecognized relationships. The reactive protease catalytic triad, despite its greater chemical similarity rotamer of the nucleophile determines which neighboring amide (9). Instead, the Thr proteases generate their N-terminal nu- can be used in the local oxyanion hole. Each rotamer–oxyanion cleophile through a posttranslational modification: cis-autopro- hole combination limits the location of the moiety facilitating pro- teolysis (10, 11). These facts constitute clear evidence that there ton transfer and, combined together, fixes the stereochemistry of is a strong selective pressure against Thr in the catalytic triad that catalysis.
    [Show full text]
  • Activity-Based Profiling of Proteases
    BI83CH11-Bogyo ARI 3 May 2014 11:12 Activity-Based Profiling of Proteases Laura E. Sanman1 and Matthew Bogyo1,2,3 Departments of 1Chemical and Systems Biology, 2Microbiology and Immunology, and 3Pathology, Stanford University School of Medicine, Stanford, California 94305-5324; email: [email protected] Annu. Rev. Biochem. 2014. 83:249–73 Keywords The Annual Review of Biochemistry is online at biochem.annualreviews.org activity-based probes, proteomics, mass spectrometry, affinity handle, fluorescent imaging This article’s doi: 10.1146/annurev-biochem-060713-035352 Abstract Copyright c 2014 by Annual Reviews. All rights reserved Proteolytic enzymes are key signaling molecules in both normal physi- Annu. Rev. Biochem. 2014.83:249-273. Downloaded from www.annualreviews.org ological processes and various diseases. After synthesis, protease activity is tightly controlled. Consequently, levels of protease messenger RNA by Stanford University - Main Campus Lane Medical Library on 08/28/14. For personal use only. and protein often are not good indicators of total protease activity. To more accurately assign function to new proteases, investigators require methods that can be used to detect and quantify proteolysis. In this review, we describe basic principles, recent advances, and applications of biochemical methods to track protease activity, with an emphasis on the use of activity-based probes (ABPs) to detect protease activity. We describe ABP design principles and use case studies to illustrate the ap- plication of ABPs to protease enzymology, discovery and development of protease-targeted drugs, and detection and validation of proteases as biomarkers. 249 BI83CH11-Bogyo ARI 3 May 2014 11:12 gens that contain inhibitory prodomains that Contents must be removed for the protease to become active.
    [Show full text]
  • 31 Antiphospholipid Antibody–Induced Pregnancy Loss and Thrombosis Guillermina Girardi and Jane E
    31 Antiphospholipid Antibody–Induced Pregnancy Loss and Thrombosis Guillermina Girardi and Jane E. Salmon Antiphospholipid (aPL) antibodies are a family of autoantibodies that exhibit a broad range of target specificities and affinities, all recognizing various combina- tions of phospholipids, phospholipid binding proteins, or both. The first aPL anti- body, a complement fixing antibody that reacted with extracts from bovine hearts, was detected in patients with syphilis in 1906 [1]. The relevant antigen was later identified as cardiolipin, a mitochondrial phospholipid [2]. The presence of aPL antibodies in serum has been associated with arterial and venous thrombosis and recurrent pregnancy loss [3–7], but the pathogenic mechanisms mediating these events are unknown. Several hypotheses have been proposed to explain the cellular and molecular mechanisms by which aPL antibodies induce thrombosis and fetal loss. There are reports that aPL antibodies activate endothelial cells, monocytes, and platelets [8–10]. In vivo and in vitro studies have shown that exposure to aPL antibodies induces activation of endothelial cells and a prothrombotic phenotype, as assessed by upregulation of the expression of adhesion molecules, secretion of cytokines, and the metabolism of prostacyclins [8, 10, 11]. aPL antibodies recognize β 2-glycoprotein I bound to resting endothelial cells, although the basis for the inter- β action of 2-glycoprotein I with viable endothelial cells remains unclear [12, 13]. As β 2-glycoprotein I is considered a natural anticoagulant [14], some authors propose that aPL antibodies interfere with or modulate the function of phospholipid binding proteins involved in the regulation of coagulation, activate platelets, or induce monocytes to express tissue factor [9].
    [Show full text]
  • Hereditary Alpha Tryptasemia, Mastocytosis and Beyond
    International Journal of Molecular Sciences Review Genetic Regulation of Tryptase Production and Clinical Impact: Hereditary Alpha Tryptasemia, Mastocytosis and Beyond Bettina Sprinzl 1,2, Georg Greiner 3,4,5 , Goekhan Uyanik 1,2,6, Michel Arock 7,8 , Torsten Haferlach 9, Wolfgang R. Sperr 4,10, Peter Valent 4,10 and Gregor Hoermann 4,9,* 1 Ludwig Boltzmann Institute for Hematology and Oncology at the Hanusch Hospital, Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria; [email protected] (B.S.); [email protected] (G.U.) 2 Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria 3 Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; [email protected] 4 Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; [email protected] (W.R.S.); [email protected] (P.V.) 5 Ihr Labor, Medical Diagnostic Laboratories, 1220 Vienna, Austria 6 Medical School, Sigmund Freud Private University, 1020 Vienna, Austria 7 Department of Hematology, APHP, Pitié-Salpêtrière-Charles Foix University Hospital and Sorbonne University, 75013 Paris, France; [email protected] 8 Centre de Recherche des Cordeliers, INSERM, Sorbonne University, Cell Death and Drug Resistance in Hematological Disorders Team, 75006 Paris, France 9 MLL Munich Leukemia Laboratory, 81377 Munich, Germany; [email protected] 10 Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria * Correspondence: [email protected]; Tel.: +49-89-99017-315 Citation: Sprinzl, B.; Greiner, G.; Uyanik, G.; Arock, M.; Haferlach, T.; Abstract: Tryptase is a serine protease that is predominantly produced by tissue mast cells (MCs) and Sperr, W.R.; Valent, P.; Hoermann, G.
    [Show full text]