Proteolytic Cleavage—Mechanisms, Function, and “Omic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Control of Protein Function
3 Control of Protein Function In the cell, precise regulation of protein function is essential to avoid chaos. This chapter describes the most important molecular mechanisms by which protein function is regulated in cells. These range from control of a protein’s location and lifetime within the cell to the binding of regulatory molecules and covalent modifications such as phosphorylation that rapidly switch protein activity on or off. Also covered here are the nucleotide-driven switches in conformation that underlie the action of motor proteins and that regulate many signal transduction pathways. 3-0 Overview: Mechanisms of Regulation 3-1 Protein Interaction Domains 3-2 Regulation by Location 3-3 Control by pH and Redox Environment 3-4 Effector Ligands: Competitive Binding and Cooperativity 3-5 Effector Ligands: Conformational Change and Allostery 3-6 Protein Switches Based on Nucleotide Hydrolysis 3-7 GTPase Switches: Small Signaling G Proteins 3-8 GTPase Switches: Signal Relay by Heterotrimeric GTPases 3-9 GTPase Switches: Protein Synthesis 3-10 Motor Protein Switches 3-11 Regulation by Degradation 3-12 Control of Protein Function by Phosphorylation 3-13 Regulation of Signaling Protein Kinases: Activation Mechanism 3-14 Regulation of Signaling Protein Kinases: Cdk Activation 3-15 Two-Component Signaling Systems in Bacteria 3-16 Control by Proteolysis: Activation of Precursors 3-17 Protein Splicing: Autoproteolysis by Inteins 3-18 Glycosylation 3-19 Protein Targeting by Lipid Modifications 3-20 Methylation, N-acetylation, Sumoylation and Nitrosylation 3-0 Overview: Mechanisms of Regulation Protein function in living cells is precisely regulated A typical bacterial cell contains a total of about 250,000 protein molecules (comprising different amounts of each of several thousand different gene products), which are packed into a volume so small that it has been estimated that, on average, they are separated from one another by a distance that would contain only a few molecules of water. -
Enzyme-Catalyzed Expressed Protein Ligation
ENZYME-CATALYZED EXPRESSED PROTEIN LIGATION by Samuel Henager A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland August, 2017 Abstract Expressed protein ligation involves the chemoselective reaction of recombinant protein thioesters produced via inteins with N-Cys containing synthetic peptides and has proved to be a valuable method for protein semisynthesis. Expressed protein ligation requires a cysteine residue at the ligation junction which can limit its use. Here we employ subtiligase, a re-engineered form of the protease subtilisin, to ligate a range of synthetic peptides, without the requirement of an N-terminal cysteine, to a variety of recombinant protein thioesters in rapid fashion. We have further broadened the scope of subtiligase-mediated protein ligations by employing a second-generation form (E156Q/G166K subtiligase) and a newly developed form (Y217K subtiligase) for ligation junctions with acidic residues. We have applied subtiligase-mediated expressed protein ligation to the generation of tetraphosphorylated, monophosphorylated, and non-phosphorylated forms of the tumor suppressor lipid phosphatase PTEN. In this way, we have demonstrated that the natural sequence around the ligation junction produced by subtiligase rather than cysteine-mediated ligation is necessary to confer the dramatic impact of tail phosphorylation on driving PTEN's closed conformation and reduced activity. We thus propose that subtiligase-mediated expressed protein ligation is an attractive traceless technology for precision analysis of protein post- translational modifications. Thesis Advisor: Dr. Philip Cole Second Reader: Dr. Jungsan Sohn ii To my family and friends, without whom none of this would have been possible. -
NMR Evidence for an Unusual Peptide Bond at the N-Extein–Intein Junction
Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein–intein junction Alessandra Romanelli*†, Alexander Shekhtman†‡, David Cowburn‡, and Tom W. Muir*§ *Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and ‡New York Structure Biology Center, New York, NY 10027 Edited by Rowena G. Matthews, University of Michigan, Ann Arbor, MI, and approved March 9, 2004 (received for review October 13, 2003) Protein splicing is a posttranslational autocatalytic process in which (or O 3 N) acyl shift. This is known to be a spontaneous chemical an intervening sequence, termed an intein, is removed from a host rearrangement (10) and presumably does not require the intein. protein, the extein. Although we have a reasonable picture of the Although we have a reasonable overview of the various steps in basic chemical steps in protein splicing, our knowledge of how protein splicing, the mechanistic details of autocatalysis remain these are catalyzed and regulated is less well developed. In the poorly understood. There have been several high-resolution crystal current study, a combination of NMR spectroscopy and segmental structures of inteins (11–16) and related proteins (5, 7, 17). These isotopic labeling has been used to study the structure of an active structures have shed some light on the mechanism of the first step protein splicing precursor, corresponding to an N-extein fusion of in protein splicing, the N 3 S (or N 3 O) acyl shift. As illustrated ؊ 1 the Mxe GyrA intein. The JNC coupling constant for the ( 1) in Fig. -
The Splicing Factor XAB2 Interacts with ERCC1-XPF and XPG for RNA-Loop Processing During Mammalian Development
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211441; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Splicing Factor XAB2 interacts with ERCC1-XPF and XPG for RNA-loop processing during mammalian development Evi Goulielmaki1*, Maria Tsekrekou1,2*, Nikos Batsiotos1,2, Mariana Ascensão-Ferreira3, Eleftheria Ledaki1, Kalliopi Stratigi1, Georgia Chatzinikolaou1, Pantelis Topalis1, Theodore Kosteas1, Janine Altmüller4, Jeroen A. Demmers5, Nuno L. Barbosa-Morais3, George A. Garinis1,2* 1. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology- Hellas, GR70013, Heraklion, Crete, Greece, 2. Department of Biology, University of Crete, Heraklion, Crete, Greece, 3. Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal, 4. Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany, 5. Proteomics Center, Netherlands Proteomics Center, and Department of Biochemistry, Erasmus University Medical Center, the Netherlands. Corresponding author: George A. Garinis ([email protected]) *: equally contributing authors bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211441; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. -
Site Selection of Pyrococcus Horikoshi Rada Intein
Murray State's Digital Commons Honors College Theses Honors College Spring 5-8-2020 Site Selection of Pyrococcus horikoshi RadA Intein Madison Paige White Murray State University Follow this and additional works at: https://digitalcommons.murraystate.edu/honorstheses Part of the Biology Commons, and the Microbiology Commons Recommended Citation White, Madison Paige, "Site Selection of Pyrococcus horikoshi RadA Intein" (2020). Honors College Theses. 44. https://digitalcommons.murraystate.edu/honorstheses/44 This Thesis is brought to you for free and open access by the Honors College at Murray State's Digital Commons. It has been accepted for inclusion in Honors College Theses by an authorized administrator of Murray State's Digital Commons. For more information, please contact [email protected]. Murray State University Honors College HONORS THESIS Certificate of Approval Site Selection of Pyrococcus horikoshi RadA Intein Madison White May/2021 Approved to fulfill the _________________________________________ requirements of HON 437 Dr. Christopher Lennon, Assistant Professor Biology Approved to fulfill the _________________________________________ Honors Thesis requirement Dr. Warren Edminster, Executive Director of the Murray State Honors Honors College Diploma Examination Approval Page Author: Madison White Project Title: Site Selection of Pyrococcus horikoshi RadA Intein Department: Biology Date of Defence: April 24, 2020 Approval by Examining Committee: ____________________________________________ __________________ -
BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’S Disease Pathology
Review BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’s Disease Pathology Gerald Koelsch CoMentis, Inc., South San Francisco, CA 94080, USA; [email protected] Received: 15 September 2017; Accepted: 10 October 2017; Published: 13 October 2017 Abstract: Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations. Keywords: Alzheimer’s disease; amyloid hypothesis; BACE1; beta secretase; pharmacology 1. Introduction Alzheimer’s disease (AD) is a fatal progressive neurodegenerative disorder, slowly eroding memory, cognition, and functions of daily living, inevitably culminating in death from pneumonia and infectious diseases resulting from failure to thrive, loss of fine motor skills, and incapacitation. Treatment is limited to therapeutics that alleviate symptoms of memory loss, but are effective for a relatively short duration during and after which disease progression continues. -
Expanding the Uses of Split-Intein Through Protein Engineering
Expanding The Uses of Split-Intein Through Protein Engineering by Stanley Siu Cheung Wong A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Stanley Siu Cheung Wong 2013 Expanding the Uses of Split-Intein Through Protein Engineering Stanley Siu Cheung Wong Doctor of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto 2013 Abstract Split-protein systems are invaluable tools used for the discovery and investigations of the complexities of protein functions and interactions. Split-protein systems rely on the non-covalent interactions of two fragments of a split protein to restore protein function. Because of this, they have the ability to restore protein functions post-translationally, thus allowing for quick and efficient responses to a milieu of cellular mechanisms. Despite this, split-protein systems ha ve been largely limited as a reporting tool for protein-protein interactions. The recent discovery of inteins has the potential of broadening the scope of split-protein systems. Inteins are protein elements that possess the unique ability of post-translationally ligating protein fragments together with a native peptide bond, a process termed protein splicing. This allows split-proteins to reassemble in a more natural state. Exploiting this property and utilizing protein engineering techniques and methodologies, several approaches are described here for restoring and controlling split-protein functions using inteins. ii First, the protein splicing behaviour was demonstrated with the development of a simple in vitro visual fluorescence assay that relies on examining the subcellular localization of different fluorescent proteins. -
Reduced Reelin Expression Accelerates Amyloid-ßplaque
9228 • The Journal of Neuroscience, July 7, 2010 • 30(27):9228–9240 Neurobiology of Disease Reduced Reelin Expression Accelerates Amyloid- Plaque Formation and Tau Pathology in Transgenic Alzheimer’s Disease Mice Samira Kocherhans,1* Amrita Madhusudan,1* Jana Doehner,1* Karin S. Breu,1 Roger M. Nitsch,2 Jean-Marc Fritschy,1 and Irene Knuesel1 1Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland, and 2Division of Psychiatry Research, University of Zurich, CH-8008 Zurich, Switzerland In addition to the fundamental role of the extracellular glycoprotein Reelin in neuronal development and adult synaptic plasticity, alterations in Reelin-mediated signaling have been suggested to contribute to neuronal dysfunction associated with Alzheimer’s disease (AD). In vitro data revealed a biochemical link between Reelin-mediated signaling, Tau phosphorylation, and amyloid precursor protein (APP) processing. To directly address the role of Reelin in amyloid- plaque and Tau pathology in vivo, we crossed heterozygous Reelin knock-out mice (reeler) with transgenic AD mice to investigate the temporal and spatial AD-like neuropathology. We demonstrate that a reduction in Reelin expression results in enhanced amyloidogenic APP processing, as indicated by the precocious production of amyloid- peptides, the significant increase in number and size of amyloid- plaques, as well as age-related aggravation of plaque pathology in double mutant compared with single AD mutant mice of both sexes. Numerous amyloid- plaques accumulate in the hippocampal formation and neocortex of double mutants, precisely in layers with strongest Reelin expression and highest accumulation of Reelin plaques in aged wild-type mice. Moreover, concentric accumulations of phosphorylated Tau-positive neurons around amyloid- plaques were evident in 15-month-old double versus single mutant mice. -
This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Protein secretion and encystation in Acanthamoeba Alvaro de Obeso Fernández del Valle Doctor of Philosophy The University of Edinburgh 2018 Abstract Free-living amoebae (FLA) are protists of ubiquitous distribution characterised by their changing morphology and their crawling movements. They have no common phylogenetic origin but can be found in most protist evolutionary branches. Acanthamoeba is a common FLA that can be found worldwide and is capable of infecting humans. The main disease is a life altering infection of the cornea named Acanthamoeba keratitis. Additionally, Acanthamoeba has a close relationship to bacteria. Acanthamoeba feeds on bacteria. At the same time, some bacteria have adapted to survive inside Acanthamoeba and use it as transport or protection to increase survival. When conditions are adverse, Acanthamoeba is capable of differentiating into a protective cyst. -
Downloading the Nucleotide Sequences and Scanning Them Against the Database
An in silico analysis, purification and partial kinetic characterisation of a serine protease from Gelidium pristoides A dissertation submitted in fulfilment of the requirement for the degree of Master of Science (MSc) Biochemistry by Zolani Ntsata Supervisor: Prof. Graeme Bradley 2020 Department of Biochemistry and Microbiology Declaration I, Zolani Ntsata (201106067), declare that this dissertation, entitled ‘An in silico analysis and kinetic characterisation of proteases from red algae’ submitted to the University of Fort Hare for the Master’s degree (Biochemistry) award, is my original work and has NOT been submitted to any other university. Signature: __________________ I, Zolani Ntsata (201106067), declare that I am highly cognisant of the University of Fort Hare policy on plagiarism and I have been careful to comply with these regulations. Furthermore, all the sources of information have been cited as indicated in the bibliography. Signature: __________________ I, Zolani Ntsata (201106067), declare that I am fully aware of the University of Fort Hare’s policy on research ethics, and I have taken every precaution to comply with these regulations. There was no need for ethical clearance. Signature: _________________ i Dedication I dedicate this work to my grandmother, Nyameka Mabi. ii Acknowledgements Above all things, I would like to give thanks to God for the opportunity to do this project and for the extraordinary strength to persevere in spite of the challenges that came along. I am thankful to my family, especially my grandmother, for her endless support. I would also like to acknowledge Prof Graeme Bradley for his supervision and guidance. Thanks to my friends and colleagues, especially Yanga Gogela and Ntombekhaya Nqumla, and the plant stress group for their help and support. -
Investigating the Impact of Mpapr1, an Aspartic Protease from the Yeast Metschnikowia Pulcherrima, on Wine Properties
THÈSE EN COTUTELLE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ET DE L’UNIVERSITÉ DE STELLENBOSCH ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ SPÉCIALITÉ ŒNOLOGIE FACULTY OF AGRISCIENCES Par Louwrens THERON ETUDE DE L’IMPACT DE MPAPR1, UNE PROTEASE ASPARTIQUE DE LA LEVURE METSCHNIKOWIA PULCHERRIMA, SUR LES PROPRIETES DU VIN Sous la direction de Benoit DIVOL et de Marina BELY Soutenue le 27 janvier 2017 Membres du jury: Mme. LE HENAFF-LE MARREC Claire, Professeur à l’université de Bordeaux Président M. MARANGON Matteo, Chargé de recherche à l’université de Padoue Rapporteur Mme. CAMARASA Carole, Chargée de recherche à l’INRA de Montpellier Rapporteur M. BAUER Florian, Professeur à l’université de Stellenbosch Examinateur Titre : Etude de l’impact de MpAPr1, une protéase aspartique de la levure Metschnikowia pulcherrima, sur les propriétés du vin Résumé : L'élimination des protéines est une étape clé lors de la production du vin blanc afin d'éviter l'apparition éventuelle d'un voile inoffensif mais inesthétique. Des solutions de rechange à l'utilisation de la bentonite sont activement recherchées en raison des problèmes technologiques, organoleptiques et de durabilité associés à son utilisation. Dans cette étude, MpAPr1, une protéase aspartique extracellulaire préalablement isolée et partiellement caractérisée à partir de la levure Metschnikowia pulcherrima, a été clonée et exprimée de manière hétérologue dans la levure Komagataella pastoris. Les propriétés enzymatiques de MpAPr1 ont été initialement caractérisées dans un extrait brut. Après plusieurs essais faisant appel à différentes techniques, MpAPr1 a été purifié avec succès par chromatographie échangeusede cations. -
N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton
BRIEF COMMUNICATION www.jasn.org N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton †‡ † | † Markus M. Rinschen,* § Ann-Kathrin Hoppe,* Florian Grahammer, ¶ Martin Kann,* † † † †‡ Linus A. Völker,* Eva-Maria Schurek,* Julie Binz,* Martin Höhne,* § Fatih Demir,** | †† † ‡‡ Milena Malisic,** Tobias B. Huber, ¶ Christine Kurschat,* Jayachandran N. Kizhakkedathu, †‡ †‡ Bernhard Schermer,* § Pitter F. Huesgen,** and Thomas Benzing* § *Department II of Internal Medicine, †Center for Molecular Medicine Cologne (CMMC), ‡Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and §Systems Biology of Ageing Cologne (Sybacol), BRIEF COMMUNICATION University of Cologne, Cologne, Germany; |Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ¶Department of Medicine IV, Medical Center and Faculty of Medicine – University of Freiburg, Freiburg, Germany; **Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; ††BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany; and ‡‡Centre for Blood Research, Department of Pathology and Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, Canada ABSTRACT Regulated intracellular proteostasis, controlled in part by proteolysis, is essential in of these genes leads to altered signaling maintaining the integrity of podocytes