The HSB/HSL Filter the HSB/HSL Filter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Color Management
Color Management hotoshop 5.0 was justifiably praised as a ground- breaking upgrade when it was released in the summer of 1998, although the changes made to the color P management setup were less well received in some quarters. This was because the revised system was perceived to be complex and unnecessary. Bruce Fraser once said of the Photoshop 5.0 color management system ‘it’s push-button simple, as long as you know which of the 60 or so buttons to push!’ Attitudes have changed since then (as has the interface) and it is fair to say that most people working today in the pre-press industry are now using ICC color profile managed workflows. The aim of this chapter is to introduce the basic concepts of color management before looking at the color management interface in Photoshop and the various color management settings. 1 Color management Adobe Photoshop CS6 for Photographers: www.photoshopforphotographers.com The need for color management An advertising agency art buyer was once invited to address a meeting of photographers. The chair, Mike Laye, suggested we could ask him anything we wanted, except ‘Would you like to see my book?’ And if he had already seen your book, we couldn’t ask him why he hadn’t called it back in again. And if he had called it in again we were not allowed to ask why we didn’t get the job. And finally, if we did get the job we were absolutely forbidden to ask why the color in the printed ad looked nothing like the original photograph! That in a nutshell is a problem which has bugged many of us throughout our working lives, and it is one which will be familiar to anyone who has ever experienced the difficulty of matching colors on a computer display with the original or a printed output. -
Image Processing
IMAGE PROCESSING ROBOTICS CLUB SUMMER CAMP’12 WHAT IS IMAGE PROCESSING? IMAGE PROCESSING = IMAGE + PROCESSING WHAT IS IMAGE? IMAGE = Made up of PIXELS Each Pixels is like an array of Numbers. Numbers determine colour of Pixel. TYPES OF IMAGES 1. BINARY IMAGE 2. GREYSCALE IMAGE 3. COLOURED IMAGE BINARY IMAGE Each Pixel has either 1 (White) or 0 (Black) Depth =1 (bit) Number of Channels = 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 GRAYSCALE Each Pixel has a value from 0 to 255. 0 : black and 1 : White Between 0 and 255 are shades of b&w. Depth=8 (bits) Number of Channels =1 GRAYSCALE IMAGE RGB IMAGE Each Pixel stores 3 values :- R : 0- 255 G: 0 -255 B : 0-255 Depth=8 (bits) Number of Channels = 3 RGB IMAGE HSV IMAGE Each pixel stores 3 values :- H ( hue ) : 0 -180 S (saturation) : 0-255 V (value) : 0-255 Depth = 8 (bits) Number of Channels = 3 Note : Hue in general is from 0-360 , but as hue is 8 bits in OpenCV , it is shrinked to 180 STARTING WITH OPENCV OpenCV is a library for C language developed for Image Processing To embed opencv library in Dev C complier , follow instructions in :- http://opencv.willowgarage.com/wiki/DevCpp HEADER FILES IN C After embedding openCV library in Dev C include following header files:- #include "cv.h" #include "highgui.h" IMAGE POINTER An image is stored as a structure IplImage with following elements :- int height Width int width int nChannels int depth Height char *imageData int widthStep …. -
Illumination and Distance
PHYS 1400: Physical Science Laboratory Manual ILLUMINATION AND DISTANCE INTRODUCTION How bright is that light? You know, from experience, that a 100W light bulb is brighter than a 60W bulb. The wattage measures the energy used by the bulb, which depends on the bulb, not on where the person observing it is located. But you also know that how bright the light looks does depend on how far away it is. That 100W bulb is still emitting the same amount of energy every second, but if you are farther away from it, the energy is spread out over a greater area. You receive less energy, and perceive the light as less bright. But because the light energy is spread out over an area, it’s not a linear relationship. When you double the distance, the energy is spread out over four times as much area. If you triple the distance, the area is nine Twice the distance, ¼ as bright. Triple the distance? 11% as bright. times as great, meaning that you receive only 1/9 (or 11%) as much energy from the light source. To quantify the amount of light, we will use units called lux. The idea is simple: energy emitted per second (Watts), spread out over an area (square meters). However, a lux is not a W/m2! A lux is a lumen per m2. So, what is a lumen? Technically, it’s one candela emitted uniformly across a solid angle of 1 steradian. That’s not helping, is it? Examine the figure above. The source emits light (energy) in all directions simultaneously. -
Preparing Images for Delivery
TECHNICAL PAPER Preparing Images for Delivery TABLE OF CONTENTS So, you’ve done a great job for your client. You’ve created a nice image that you both 2 How to prepare RGB files for CMYK agree meets the requirements of the layout. Now what do you do? You deliver it (so you 4 Soft proofing and gamut warning can bill it!). But, in this digital age, how you prepare an image for delivery can make or 13 Final image sizing break the final reproduction. Guess who will get the blame if the image’s reproduction is less than satisfactory? Do you even need to guess? 15 Image sharpening 19 Converting to CMYK What should photographers do to ensure that their images reproduce well in print? 21 What about providing RGB files? Take some precautions and learn the lingo so you can communicate, because a lack of crystal-clear communication is at the root of most every problem on press. 24 The proof 26 Marking your territory It should be no surprise that knowing what the client needs is a requirement of pro- 27 File formats for delivery fessional photographers. But does that mean a photographer in the digital age must become a prepress expert? Kind of—if only to know exactly what to supply your clients. 32 Check list for file delivery 32 Additional resources There are two perfectly legitimate approaches to the problem of supplying digital files for reproduction. One approach is to supply RGB files, and the other is to take responsibility for supplying CMYK files. Either approach is valid, each with positives and negatives. -
Sunlight Readability and Luminance Characteristics of Light
SUNLIGHT READABILITY AND LUMINANCE CHARACTERISTICS OF LIGHT- EMITTING DIODE PUSH BUTTON SWITCHES Robert J. Fitch, B.S.E.E., M.B.A. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2004 APPROVED: Albert B. Grubbs, Jr., Major Professor and Chair of the Department of Engineering Technology Don W. Guthrie, Committee Member Michael R. Kozak, Committee Member Roman Stemprok, Committee Member Vijay Vaidyanathan, Committee Member Oscar N. Garcia, Dean of the College of Engineering Sandra L. Terrell, Interim Dean of the Robert B. Toulouse School of Graduate Studies Fitch, Robert J., Sunlight readability and luminance characteristics of light- emitting diode push button switches. Master of Science (Engineering Technology), May 2004, 69 pp., 7 tables, 9 illustrations, references, 22 titles. Lighted push button switches and indicators serve many purposes in cockpits, shipboard applications and military ground vehicles. The quality of lighting produced by switches is vital to operators’ understanding of the information displayed. Utilizing LED technology in lighted switches has challenges that can adversely affect lighting quality. Incomplete data exists to educate consumers about potential differences in LED switch performance between different manufacturers. LED switches from four different manufacturers were tested for six attributes of lighting quality: average luminance and power consumption at full voltage, sunlight readable contrast, luminance contrast under ambient sunlight, legend uniformity, and dual-color uniformity. Three of the four manufacturers have not developed LED push button switches that meet lighting quality standards established with incandescent technology. Copyright 2004 by Robert J. Fitch ii ACKNOWLEDGMENTS I thank Don Guthrie and John Dillow at Aerospace Optics, Fort Worth, Texas, for providing the test samples, lending the use of their laboratories, and providing tremendous support for this research. -
Converting an Alpha Channel to a Spot Channel
43_589164 bk09ch01.qxd 6/2/05 11:12 AM Page 629 Chapter 1: Prepping Graphics for Print In This Chapter ߜ Picking the right resolution, mode, and format ߜ Prepress and working with a service bureau ߜ Creating color separations reparing images for the screen is a snap compared to what you have to Pgo through to get images ripe for the printing process. If all you ever want to do is print your images to a desktop laser or inkjet printer, the task is a little easier, but you still must take some guidelines into account. And prepping your images for offset printing? Well, throw in an additional set of guidelines. It’s not rocket science, mind you. If you stick to the basic rules and, more importantly, spend some time developing a good work- ing relationship with your service bureau and offset printer, you’re good to go. Getting the Right Resolution, Mode, and Format If you’re not familiar with the concept of resolution, I suggest taking a look at Book II, Chapter 1. That’s where I cover all the basics on resolution, pixel dimension, resampling, and other related topics. For full descriptions on color modes and file formats, see Book II, Chapter 2. That said, the next few sections give you the lowdownCOPYRIGHTED on the proper settings MATERIALfor an image that will ultimately go to print. Resolution and modes Table 1-1 provides some guidelines on what resolution settings to use for the most common type of output. Remember these are just guidelines. They aren’t chiseled into stone to withstand the sands of time or anything lofty like that. -
Image Formats
Image Formats Ioannis Rekleitis Many different file formats • JPEG/JFIF • Exif • JPEG 2000 • BMP • GIF • WebP • PNG • HDR raster formats • TIFF • HEIF • PPM, PGM, PBM, • BAT and PNM • BPG CSCE 590: Introduction to Image Processing https://en.wikipedia.org/wiki/Image_file_formats 2 Many different file formats • JPEG/JFIF (Joint Photographic Experts Group) is a lossy compression method; JPEG- compressed images are usually stored in the JFIF (JPEG File Interchange Format) >ile format. The JPEG/JFIF >ilename extension is JPG or JPEG. Nearly every digital camera can save images in the JPEG/JFIF format, which supports eight-bit grayscale images and 24-bit color images (eight bits each for red, green, and blue). JPEG applies lossy compression to images, which can result in a signi>icant reduction of the >ile size. Applications can determine the degree of compression to apply, and the amount of compression affects the visual quality of the result. When not too great, the compression does not noticeably affect or detract from the image's quality, but JPEG iles suffer generational degradation when repeatedly edited and saved. (JPEG also provides lossless image storage, but the lossless version is not widely supported.) • JPEG 2000 is a compression standard enabling both lossless and lossy storage. The compression methods used are different from the ones in standard JFIF/JPEG; they improve quality and compression ratios, but also require more computational power to process. JPEG 2000 also adds features that are missing in JPEG. It is not nearly as common as JPEG, but it is used currently in professional movie editing and distribution (some digital cinemas, for example, use JPEG 2000 for individual movie frames). -
Color Images, Color Spaces and Color Image Processing
color images, color spaces and color image processing Ole-Johan Skrede 08.03.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides by Fritz Albregtsen today’s lecture ∙ Color, color vision and color detection ∙ Color spaces and color models ∙ Transitions between color spaces ∙ Color image display ∙ Look up tables for colors ∙ Color image printing ∙ Pseudocolors and fake colors ∙ Color image processing ∙ Sections in Gonzales & Woods: ∙ 6.1 Color Funcdamentals ∙ 6.2 Color Models ∙ 6.3 Pseudocolor Image Processing ∙ 6.4 Basics of Full-Color Image Processing ∙ 6.5.5 Histogram Processing ∙ 6.6 Smoothing and Sharpening ∙ 6.7 Image Segmentation Based on Color 1 motivation ∙ We can differentiate between thousands of colors ∙ Colors make it easy to distinguish objects ∙ Visually ∙ And digitally ∙ We need to: ∙ Know what color space to use for different tasks ∙ Transit between color spaces ∙ Store color images rationally and compactly ∙ Know techniques for color image printing 2 the color of the light from the sun spectral exitance The light from the sun can be modeled with the spectral exitance of a black surface (the radiant exitance of a surface per unit wavelength) 2πhc2 1 M(λ) = { } : λ5 hc − exp λkT 1 where ∙ h ≈ 6:626 070 04 × 10−34 m2 kg s−1 is the Planck constant. ∙ c = 299 792 458 m s−1 is the speed of light. ∙ λ [m] is the radiation wavelength. ∙ k ≈ 1:380 648 52 × 10−23 m2 kg s−2 K−1 is the Boltzmann constant. T ∙ [K] is the surface temperature of the radiating Figure 1: Spectral exitance of a black body surface for different body. -
Which Image Format
CASE STUDY Which Image Format PNG PNG (Portable Network Graphics), an extensible file format for the lossless, portable, well-compressed storage of raster images. PNG provides a patent-free replacement for GIF and can also replace many common uses of TIFF. Indexed-color, gray scale, and true color images are supported, plus an optional alpha channel. Sample depths range from 1 to 16 bits. However, the format is not widely supported in common image programs. AVI AVI stands for Audio Video Interleave and is currently the most common file format for storing audio/video data on the PC. AVI’s are 8-bit per image plane. This file format conforms to the Microsoft Windows Resource Interchange File Format (RIFF) specification, which makes it convenient for sharing the image sequence between computers. AVI files (which typically end in the .avi extension) require a specific player that supports. RAW A RAW image format contains minimally processed data from the image sensor. RAW literally means unprocessed or uncooked. RAW images must be processed and converted to RGB format if it is a color image. Photron however, does not limit RAW as a unprocessed image. The “Bayer” check box must be selected to save the RAW image as an unprocessed image. RAW images have 8-bits per image plane. RAWW A RAWW image format contains minimally processed data from the image sensor. RAWW images must be processed and converted to RGB format if it is a color image. Photron however, does not limit RAWW as a unprocessed image. The “Bayer” check box must be selected to save the RAWW image as an unprocessed image. -
Arxiv:1902.00267V1 [Cs.CV] 1 Feb 2019 Fcmue Iin Oto H Aaesue O Mg Classificat Image Th for in Used Applications Datasets Fundamental the Most of the Most Vision
ColorNet: Investigating the importance of color spaces for image classification⋆ Shreyank N Gowda1 and Chun Yuan2 1 Computer Science Department, Tsinghua University, Beijing 10084, China [email protected] 2 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China [email protected] Abstract. Image classification is a fundamental application in computer vision. Recently, deeper networks and highly connected networks have shown state of the art performance for image classification tasks. Most datasets these days consist of a finite number of color images. These color images are taken as input in the form of RGB images and clas- sification is done without modifying them. We explore the importance of color spaces and show that color spaces (essentially transformations of original RGB images) can significantly affect classification accuracy. Further, we show that certain classes of images are better represented in particular color spaces and for a dataset with a highly varying number of classes such as CIFAR and Imagenet, using a model that considers multi- ple color spaces within the same model gives excellent levels of accuracy. Also, we show that such a model, where the input is preprocessed into multiple color spaces simultaneously, needs far fewer parameters to ob- tain high accuracy for classification. For example, our model with 1.75M parameters significantly outperforms DenseNet 100-12 that has 12M pa- rameters and gives results comparable to Densenet-BC-190-40 that has 25.6M parameters for classification of four competitive image classifica- tion datasets namely: CIFAR-10, CIFAR-100, SVHN and Imagenet. Our model essentially takes an RGB image as input, simultaneously converts the image into 7 different color spaces and uses these as inputs to individ- ual densenets. -
14. Color Mapping
14. Color Mapping Jacobs University Visualization and Computer Graphics Lab Recall: RGB color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 691 CMY color model • The CMY color model is related to the RGB color model. •Itsbasecolorsare –cyan(C) –magenta(M) –yellow(Y) • They are arranged in a 3D Cartesian coordinate system. • The scheme is subtractive. Jacobs University Visualization and Computer Graphics Lab Data Analytics 692 Subtractive color scheme • CMY color model is subtractive, i.e., adding colors makes the resulting color darker. • Application: color printers. • As it only works perfectly in theory, typically a black cartridge is added in practice (CMYK color model). Jacobs University Visualization and Computer Graphics Lab Data Analytics 693 CMY color cube • All colors c that can be generated are represented by the unit cube in the 3D Cartesian coordinate system. magenta blue red black grey white cyan yellow green Jacobs University Visualization and Computer Graphics Lab Data Analytics 694 CMY color cube Jacobs University Visualization and Computer Graphics Lab Data Analytics 695 CMY color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 696 CMYK color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 697 Conversion • RGB -> CMY: • CMY -> RGB: Jacobs University Visualization and Computer Graphics Lab Data Analytics 698 Conversion • CMY -> CMYK: • CMYK -> CMY: Jacobs University Visualization and Computer Graphics Lab Data Analytics 699 HSV color model • While RGB and CMY color models have their application in hardware implementations, the HSV color model is based on properties of human perception. • Its application is for human interfaces. Jacobs University Visualization and Computer Graphics Lab Data Analytics 700 HSV color model The HSV color model also consists of 3 channels: • H: When perceiving a color, we perceive the dominant wavelength. -
Color-Proposal.Pdf
Colors in Snap! -bh proposal, draft, do not distribute Your computer monitor can display millions of colors, but you probably can’t distinguish that many. For example, here’s red 57, green 180, blue 200: And here’s red 57, green 182, blue 200: You might be able to tell them apart if you see them side by side: … but maybe not even then. Color space—the collection of all possible colors—is three-dimensional, but there are many ways to choose the dimensions. RGB (red-green-blue), the one most commonly used, matches the way TVs and displays produce color. Behind every dot on the screen are three tiny lights: a red one, a green one, and a blue one. But if you want to print colors on paper, your printer probably uses a different set of three colors: CMY (cyan-magenta-yellow). You may have seen the abbreviation CMYK, which represents the common technique of adding black ink to the collection. (Mixing cyan, magenta, and yellow in equal amounts is supposed to result in black ink, but typically it comes out a not-very-intense gray instead.) Other systems that try to mimic human perception are HSL (hue-saturation-lightness) and HSV (hue-saturation-value). If you are a color professional—a printer, a web designer, a graphic designer, an artist—then you need to understand all this. It can also be interesting to learn about. For example, there are colors that you can see but your computer display can’t generate. If that intrigues you, look up color theory in Wikipedia.