1 Evidence for Intrinsic Redshifts in Normal Spiral Galaxies David G. Russell Owego Free Academy, Owego, NY 13827 USA
[email protected] Abstract The Tully-Fisher Relationship (TFR) is utilized to identify anomalous redshifts in normal spiral galaxies. Three redshift anomalies are identified in this analysis: (1) Several clusters of galaxies are examined in which late type spirals have significant excess redshifts relative to early type spirals in the same clusters, (2) Galaxies of morphology similar to ScI galaxies are found to have a systematic excess redshift relative to the redshifts expected if the Hubble Constant is 72 km s-1 Mpc-1, (3) individual galaxies, pairs, and groups are identified which strongly deviate from the predictions of a smooth Hubble flow. These redshift deviations are significantly larger than can be explained by peculiar motions and TFR errors. It is concluded that the redshift anomalies identified in this analysis are consistent with previous claims for large non-cosmological (intrinsic) redshifts. Keywords: Galaxies: distances and Redshifts 1. Introduction Empirical evidence has accumulated which indicates that some quasars and other high redshift objects may not be at the large cosmological distances expected from the traditional redshift-distance relation (Arp1987,1998a, 1999; Chu et al 1998; Bell 2002; Lopez-Corredoira&Gutierrez 2002, 2004; Gutierrez & Lopez-Corredoira 2004). The emerging picture is that some quasars may be ejected from active Seyfert galaxies as high redshift objects that evolve to lower redshifts as they age. Recently, Lopez-Corredoira & Gutierrez (2002, 2004) demonstrated that a pair of high z HII galaxies are present in a luminous filament apparently connecting the Seyfert galaxy NGC 7603 to the companion galaxy NGC 7603B which is previously known to have a discordant redshift.